首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The weight of the tractor is not the only factor affecting soil compaction. Soil-management practices, such as the use of fertilizers and pesticides, also affect soil properties through an increased number of overriding. The aim of the current study was to investigate compaction effects on soil physical properties, such as dry bulk density and penetration resistance, and the growth of spring barley (Hordeum vulgare L.) as a monoculture. The five-year experiment was conducted on the Estonian University of Life Sciences’ research field at Eerika, near Tartu in 2001–2005. The soil of the experimental site is sandy loam Stagnic Luvisol. The treatments included were no compaction, one pass, three passes, and six passes. All passes were track-by-track. Measurements of soil and plant were made in the earing phase of barley and measurements of yield in the maturity phase of barley. The compaction treatment was conducted using an MTZ-82 tractor (total weight 4.84 Mg). Neither fertilizers nor herbicides were used. 5 years after compaction distinguishable subsoil and topsoil compaction was detected. Soil deformation increases with the number of passes; in the case of six passes soil bulk density increased by 0.15 Mg m?3 and penetration resistance by 3 MPa. However, there were no significant differences in the soil bulk density and penetration resistance between treatments compacted with one and three passes. The effect of compaction on soil bulk density was higher when the soil was compacted under wet conditions. Compaction decreased the quantity of barley shoots, their phytomass, and grain yield by more than 80%. In the second year of the experiment the dry weight of above ground biomass decreased by almost three times and shoots’ density by 1.5 times, compared with the first year results. In the third year of the experiment the biomass, plant density, and grain yield of barley were stabilized and no further decreases were detected in the following two experimental years. The results from the experiment revealed that even a low weight tractor can induce subsoil compaction and a high decrease of plant productivity by repeated passes over time.  相似文献   

2.
There is increased use of rubber-tracked tractors for ploughing on clay soil (Vertic Cambisol) in central, south and insular Italy instead of metal-tracked tractors, because they allow travel on public roads. Field tests were carried out on arable soil previously ploughed and harrowed to compare two types of tractors, one rubber-tracked (CAT Challenger Ch 45) and one wheeled (New Holland 8770) in order to establish the compacting effects resulting from 1 and 4 passes of the tractors in the same track. The following parameters were studied: soil penetration resistance, bulk density and its increment ratio, soil shear strength, soil macroporosity and hydraulic conductivity. Multiple passes made by the two tractors induced very similar effects on the soil in regards to soil penetration resistance. Mean values of penetration resistance (0–0.20 m depth) were 1.15 MPa for the rubber-tracked tractor and 1.11 MPa for the wheeled tractor; mean values of penetration resistance (0.21–0.40 m depth) were 1.07 MPa for the rubber-tracked tractor and 1.17 MPa for the wheeled tractor. The decrease in macroporosity, in particular that of elongated pores in the soil surface layer (0–0.10 m depth) was greater in treatments involving the rubber-tracked tractor (from 20.2 to 2.7%) than for the wheeled tractor (from 20.2 to 10.3%). Following traffic of the two tractors, hydraulic conductivity decreased and the following values were found for the five treatments: control, 18.48 mm h−1; wheeled tractor 1 and 4 passes, 11.15 and 7.45 mm h−1, respectively; rubber-tracked tractor 1 and 4 passes, 3.25 and 1.1 mm h−1, respectively. Highly significant correlations between shear strength and dry bulk density, and between hydraulic conductivity and elongated pores and total macroporosity were found. Significant linear relationships between macroporosity and penetration resistance for 1 and 4 passes of both tractors were found in the soil layers (0–0.10 m). A significant difference was found between tractors and for correlations of penetration resistance values above control values. However, in the soil layer (0–0.20 m depth), with respect to the higher degree of macroporosity and low values of penetration resistance, treatments involving wheeled tractor (1 pass) showed a lower degree of soil compaction than was observed after 1 pass of the rubber-tracked tractor.  相似文献   

3.
The aim of this study was to evaluate the compacting effect of rubber tracked tractors in comparison to that of the traditional wheeled tractors. Macroporosity, pore shape and size distribution, bulk density, penetration resistance and saturated hydraulic conductivity were analysed in a clay soil (Vertic Cambisol) near Rome (Italy) following one and four passes on the same track of rubber tracked and wheeled tractors of medium power. The soil structure attributes were evaluated by characterising porosity by means of image analysis of soil thin sections prepared from undisturbed samples. Macroporosity decreased in the 0–10 cm layer of compacted soil, particularly after four tractor passes, due to a large reduction in the proportion of elongated pores and in their vertical continuity. The rubber tracked tractor had a more pronounced compaction effect in the surface layer (0–10 cm) than the wheeled tractor both after one and four passes; the latter treatment producing the lowest soil porosity. The same trend was observed for hydraulic conductivity, which showed a highly significant correlation with elongated pores. In the 10–20 cm layer the porosity was significantly decreased following traffic, apart from in the soil under one pass of the rubber tracked tractor. Again in this layer, the lowest values of porosity were found in soil after four passes of the rubber tracked tractor. Single and multiple passes made by the two tractors induced different effects regarding soil penetration resistance and bulk density. Increment ratio of penetration resistance after tractor passes with respect to the control was: 12.5 and 49.9% with the wheeled and 34.4 and 39.8% with the tracked after one and four passes, respectively. Increment ratio of dry bulk density values after tractor passes with respect to the control was 7.9 and 11.7% with the wheeled and 7.5 and 8.3% with the tracked after one and four passes, respectively. The tractor passes transformed the initial subangular blocky structure into a massive structure with sometimes a platy structure in the upper few centimetres. The results indicated that soil compaction following traffic with the rubber tracked tractor was generally the more pronounced. However the compacting effect of this tractor after one pass seemed to be limited to the surface layer only.  相似文献   

4.
Results of field experiments with soil compaction induced by wheel traffic applied uniformly to cover the entire surface of the experimental plots are reported. Compaction was done immediately before sowing, and each year, in each location, the same treatments were repeated on the same plots. The number of tractor passes varied between 0 and 30. The experiments were conducted during the 1978–1981 period in four locations with different soil and climatic conditions.Changes in soil physical properties, as well as in the yield of maize grain, were shown to be related to the number of tractor passes according to regression formulae of the type: Y = aXb. Most of the changes were recorded between 0 and 8–10 passes, while with more than 15–20 passes changes became negligible. The average maximum increase in bulk density was 20–25% as compared with the non-compacted control plot, and the average maximum decrease in yield was 46%. Moisture content in the compacted control plot, and the was 2–3% (w/w) lower than in the control plot, except for the soils with poor drainage where the lower part of the compacted topsoil showed an increase in moisture content. Air content in the compacted plots often dropped below 10, and occasionally to nearly 0% (v/v). For three of the four locations, grain yield of maize linearly decreased by 13 kg ha?1 (or 0.18% of the control plot yield) for each 1 kg m?3 increase in bulk density.  相似文献   

5.
农业机械的过度使用、密集轮作以及不适当管理等都会造成土壤压实。试验研究了拖拉机行走对土壤特性和小麦生长的影响。试验所使用的耕作机械包括轮式、履带式和手扶式三种拖拉机,分析了土壤压实对小麦生长以及土壤结构不连续性的影响。试验数据表明,土壤密度、土壤阻力以及土壤水分一般会随拖拉机行走次数增加而增大。同时,文中给出了小麦根系与秸秆间蕴涵的机理关系。试验数据还表明,小麦发芽率在显著性水平P≤0.05时,不同处理组之间无明显差异。但是,2、4、6、8、10、12、18周以及收割时的小麦秸秆高度在显著性水平P≤0.01时,各处理组之间却存在显著差异,其中轮式和手扶式拖拉机处理组高于履带式拖拉机处理组。当显著性水平分别为P≤0.05和 P≤0.01时,不同处理组的小麦根长度和密度间也存在显著差异,其中轮式和手扶式拖拉机处理组同样表现出更好的结果。总之,拖拉机行走会显著影响干物质、谷物产量等小麦生长参数。然而,作物产量不仅受土壤压实的影响,同时很大程度上也取决于天气以及土壤初始压实等因素。  相似文献   

6.
Secondary tillage performed under inadequate soil water contents usually leads to a poor seedbed. Under normal Swedish weather conditions, clayey soils ploughed during autumn form a very dry top layer in spring, which acts as an evaporation barrier so that deeper layers remain wet. Thus, the conventional approach considering soil workability in relation to a single value of soil water content is difficult to apply. Hence, a field experiment was carried out to study the effect of seedbed preparation date, the associated soil water contents and traffic consequences on the physical properties of a spring seedbed. The field was autumn ploughed and the experiment started as soon as the field was trafficable after winter thawing. The seedbed preparation consisted of three harrowing operations on plots 8 m×8 m (three replications) with a spring tined harrow and a tractor mounted with dual tyres and was performed on 10 occasions from the beginning of April to the middle of May. With the exception of some short periods after rain, the soil had a clear water stratification during the experiment, with a very dry superficial layer (5–20 mm thick) contrasting to water contents over 300 g kg−1 from only 40 mm depth. After the harrowing operation, the seedbed aggregate fraction less than 2 mm increased from about 40% at the beginning of April to about 60% for the last four treatments in May. Contributing factors to the rise were attributed to the lower water contents of the top layer (<40 mm) and the drying–wetting and freezing–thawing cycles that occurred in the surface layer during April. There were no significant differences in bulk density after harrowing between the treatments but an increase in penetration resistance up to a depth of 180 mm in the harrowed plots was statistically significant (P<0.001). In the non-harrowed soil, penetration resistance also increased, including in those soil layers where water contents kept nearly constant.

In conclusion, the seedbed preparation dates had only a minor effect on soil compaction, as measured by bulk density and penetration resistance, due to the slow drying beneath the dry top layer. The fraction of fine aggregates in the seedbed increased with time. Thus, the optimal time for seedbed preparation depended mainly on soil friability and not on the risk of compaction.  相似文献   


7.
All transport in forest stands occurs on the ground that at the same time is used as a growth substrate, not only for timber production but for grass as well in several Argentine production systems. Heavy traffic will damage the ground vegetation, affect tree roots and compact the soil to a degree where the tree roots have difficulty in regenerating in the damaged zone. The main objective of this research was to evaluate changes in soil compaction, introduced by traffic, during harvesting operations in a timber forest where grass production is also used for cattle feeding. Four experimental variables were measured: changes in bulk density in the profile, changes in penetration resistance, grassland yield and forest plantation regeneration after harvesting traffic. The work was performed in the south of the Rolling Pampa region, Argentina. The soil was a fine clayey, illitic, thermic Typic Argiudoll. Treatments consisted of four different traffic intensities, due to different passes of a tractor pulling a trailer on the inter-row area of the plantation, during harvesting operations. Increasing the number of traffic passes, increased the depth at which differences in cone penetration resistance values began to be significantly higher.The increments in bulk density values after traffic were not so evident as those in penetration resistance values, but the same tendencies were shown. The least traffic intensity, corresponding to only one pass, resulted in a reduction of grass yield (40·3%) in comparison with the control (no traffic) treatment, although there was no effect on tree regeneration. Traffic within the plantation impacted principally on tree shoot mortality, with a maximum of 51·5%, measured 1 year after traffic, recorded in the ten pass treatment. Grassland production within the plantation, after harvesting operations, was directly associated with forest regrowth.  相似文献   

8.
The effects of five tillage treatments: no tillage (NT), disc harrowing (DH), mouldboard ploughing followed by disc harrowing (MPH), disc ploughing followed by disc harrowing (DPH), and disc ploughing followed by two passes of disc harrowing (DPHH) on crop residue cover, soil properties and some yield parameters of cowpea were investigated for a derived savannah ectone soil. The residue left on the soil surface for NT, DH, and MPH is not significantly different. The NT left 32.1 and 44.3% more residue on the soil surface than the DPH and DPHH treatments, respectively. The NT treatment had least average value of soil bulk density of 1.01 g/cm3. The mean soil bulk densities for the DH, MPH, DPH and DPHH vary between 1.20 and 1.35 g/cm3. The soil moisture content decreased with increasing soil depth. At the soil depth of 10–30 cm, the cone penetration resistance at NT was 1.18 MPa compared with 0.92 MPa for the DH treatment, although these were not significant (p≤0.05). The tillage treatments had a significant effect on grain yield, mass of leaves and stems, root length density, and number of pods per plant of cowpea except on the germination count. DH and NT treatments gave different grain yield and number of pods per plant but these values were not statistically different and represent the highest grain yield and number of pods per plant among the other treatments were considered. The root zone exploration revealed highest root density at shallow depths with the DH and MPH treatments.  相似文献   

9.
Frequent machinery traffic on sloping vineyard influences spatial distribution of soil physical properties. Our objective was to assess the effects of crawler tractor traffic across the slope (20%) on spatial distribution of soil strength and water content of silt loam soil under controlled grass cover and conventionally cultivated vineyard. The experiment was situated on hillside vineyard (NW, Italy) arranged with rows crosswise the slope. The grass covered treatment included periodical mowing and chopping of herbs and the cultivated treatment—autumn ploughing (18 cm) and spring and summer rotary-hoeing in the vineyard inter-rows (2.7 m). A crawler tractor (2.82 Mg) was used at the same locations across the slope for all tillage and chemical operations. The measurements of soil bulk density, penetration resistance and volumetric water content were done in autumn (after vintage) within the sloping inter-row. The results were analyzed using classic statistics and geostatistics with and without trend. The highest variability was obtained for penetration resistance (CV 56.6%) and the lowest for bulk density (9.6%). In most cases, the semivariograms of the soil parameters were well described by spherical models. The semivariance parameters of all properties measured were influenced by trend. Three-dimensional (3D) maps well identified areas with the highest soil strength in lower crawler ruts being positioned in the upper side of vine row and successively lower strength in upper ruts situated on other side of the same row and inter-rut area. Higher strength in lower than upper ruts was induced by tractor's tilt and resulting higher ground contact pressure. Soil water content in both treatments was the lowest below the upper rut and increased in inter-rut and lower rut areas. The differences in the soil properties between the places within the inter-row were more pronounced in grass covered than in cultivated soil.  相似文献   

10.
The capability of the soil water balance model SIMWASER to predict the impact of soil compaction upon the yield of maize (Zea mays L.) is tested, using the results of a field experiment on the influence of soil compaction by wheel pressure upon soil structure, water regime and plant growth. The experimental site was located on an Eutric Cambisol with loamy silt soil texture at an elevation of 260 m in the northern, semi-humid sub-alpine zone of Austria. Within the experimental field a 7 m wide strip was compacted by a tractor driven trailer just before planting maize in May 1988. Compression effects due to trailer traffic resulted in distinct differences of physical and mechanical soil parameters in comparison with the uncompressed experimental plots down to a depth of about 30 cm: bulk density and penetration resistance at field capacity were increased from 1.45 to 1.85 g/cm3, and from 0.8 to 1.5 MPa, respectively, while air-filled pore space as well as infiltration rate were appreciable lowered from about 0.08–0.02 cm3/cm3 and from 50 to 0.5 cm per day, respectively. The overall effect was a clear depression of the dry matter grain yield from 7184 kg/ha of the non-compacted plot to 5272 kg/ha in the compacted field strip. The deterministic and functional model SIMWASER simulates the water balance and the crop yield for any number of crop rotations and years, provided that daily weather records (air temperature, humidity of air, global radiation, wind and precipitation) are available. Crop growth and soil water regime are coupled together by the physiological processes of transpiration and assimilation, which take place at the same time through the stomata of the plant leaves and are both reacting in the same direction to changes in the soil water availability within the rooting zone. The water availability during rainless seasons depends on the hydraulic properties of the soil profile within the rooting depth and on rooting density. Rooting depth and density are affected by both the type of the crop and the penetration resistance of the soil, which depends on the soil moisture status and may be strongly increased by soil compaction. The model SIMWASER was able to simulate these effects as shown by the calculated grain yields, which amounted in the non-compacted plot to 7512 and to 5558 kg dry matter/ha in the compacted plot.  相似文献   

11.
Traffic and tillage induced compaction affect soil physical, chemical and biological properties and processes directly and influences plant root growth indirectly. In a pot experiment with an Entisol and an Alfisol, the effect of 0, 50, 100 and 200 kPa of compactive stress on bulk density, penetration resistance, and on root growth of maize seedlings, at the early stages of development, was studied.

Compaction resulted in a progressive increase in bulk density and penetration resistance for both soils. The Entisol reached a greater bulk density and penetration resistance than the Alfisol. Bulk density or penetration resistance were closely correlated with compactive stress. The correlation between bulk density and penetration resistance was not so close.

Increased bulk density and penetration resistance resulted in a reduction of all the root growth parameters such as number of roots, mean and total root length, rateof root elongation and fresh and dry root mass. Significant linear or curvilinear relationships were found between bulk density or penetration resistance and most of the root growth parameters studied. However, the relationships were improved when relative values (expressed as fractions of the controls) of bulk density or penetration resistance and of any one of the root growth parameters were considered. Roots grown in more compact soil had a smaller ratio of fresh to dry mass.  相似文献   


12.
The yield of direct-seeded and transplanted upland rice was investigated for seven tillage methods for an ultisol in a high rainfall region of southeastern Nigeria. The tillage methods were: two compaction passes of a 6-t roller with and without residue mulch; six compaction passes with mulch; ploughing with and without mulch and no-till with and without mulch. Soil compaction decreased seedling emergence and shoot and root growth. Residue mulching decreased seedling emergence by 35.6% in direct-seeded rice. There were more leaves, productive tillers and dry matter in the ploughed plots. Root densities at 10–20- and 20–30-cm depths were higher by 157 and 47%, respectively, in ploughed treatments. The highest grain yields of 6.3 and 6.1 Mg ha−1 in ploughed plots for the first and second seasons, respectively, were associated with greater uptake of P, Na, Fe and Zn at flowering and of N, Mg, K, Mn and Cu at both maximum tillering and flowering growth stages. The grain yield in the first season was 2.1 and 2.5 Mg ha−1 for two- and six-compaction pass mulched plots, respectively. In the second season, the yields of no-till and compacted treatments were identical and ranged from 1.5 to 2.4 Mg ha−1. Mulching decreased grain yield by 43, 27 and 12% on compacted, no-till and ploughed plots, respectively, due to transient flooding and mechanical impedance to seedling emergence by the mulch cover. Within the unmulched treatments, ploughing increased rice yield by 71 and 35% over two compaction passes and the no-till treatments, respectively. The least bulk density and penetrometer resistance were also observed in ploughed plots.  相似文献   

13.
A field experiment based on controlled traffic concept was conducted over three rainy seasons in a bimodal rainfall area during 1982–1983 with the objective of, firstly, determining the effects of traffic-induced compaction on soil physical properties, root growth and leaf nutrient concentration in maize (Zea mays L.) cowpea (Vigna unguiculata (L.) Walp) and soya bean (Glycine max Merr.) and secondly, characterizing soil compaction by evaluating soil physical properties which closely correlated with crop yields. Main treatments of tillage methods compared discing (to 20 cm depth followed by harrowing) to a no-tillage system. Traffic treatments of 0, 2 and 4 passes of a 2-Mg roller were subplots in a split-plot design experiment. The roller simulated field traffic in the 1.5–2.5 Mg weight range and exerted an average contact pressure of 113 kPa per pass on soil. Traffic-induced compaction decreased water infiltration rate and increased soil dry density and penetrometer resistance. Vertical root growth of maize and cowpea was consequently reduced down to 21 cm depth and that of soya bean down to 14 cm depth. Lateral root distribution was also markedly reduced. In the third consecutive growing season, traffic-induced soil compaction reduced the leaf nutrient concentration of Mg in no-tillage and P, Ca, K and Mn in discing for maize; Mg in discing for cowpea; and Ca in discing for soya bean. Traffic-induced soil compaction reduced grain yields of maize, cowpea and soya bean in all three seasons under both no-till and disced treatments, but the severity of this compaction increased considerably in the third consecutive season and was particularly more marked on the disced plots than on the no-till plots. The water infiltration rate was found to be the most sensitive soil property in characterizing soil compaction on this Alfisol in relation to crop yield.  相似文献   

14.
华北典型区域土壤耕作方式对土壤特性和作物产量的影响   总被引:5,自引:0,他引:5  
华北平原是我国重要的小麦玉米种植区,长期土壤旋耕免耕和秸秆全量还田带来耕层变浅、犁底层变厚和上移、土壤养分表聚等现象,通过耕作方式改变,解决上述问题对维持区域粮食生产有重要意义。试验以冬小麦-夏玉米轮作系统为研究对象,分别在代表华北平原高产区的栾城试验区和代表中低产区的南皮试验区进行,设置冬小麦播种前进行土壤深耕、深松、窄深松3种处理,以生产上常用的旋耕为对照。所有处理夏玉米季均采用土壤免耕播种,测定项目包括土壤容重、作物根系、作物产量和水分利用效率。结果表明,不同耕作方式对土壤特性和作物产量的影响具有区域差异。南皮试验区土壤深耕(松)显著地(P0.05)提高了作物产量,深耕、深松和窄深松处理的冬小麦产量比旋耕分别增加16.5%、19.3%和13.1%,夏玉米产量分别增加17.3%、16.2%和21.9%,周年产量分别增加16.9%、17.6%和17.8%;深耕、深松和窄深松处理间作物产量差异不显著。栾城试验区冬小麦、夏玉米产量和周年产量各处理之间差异不显著。土壤深耕、深松、窄深松和旋耕均能降低0~20 cm土层土壤紧实度和土壤容重。冬小麦播种后,与土壤耕作前比较,土壤深耕、深松和旋耕处理土壤紧实度南皮试验区分别平均降低71.6%和68.2%,栾城试验区分别降低88.8%和?7.7%,常用的旋耕模式在栾城试区没有降低土壤紧实度。小麦收获时不同耕作方式0~40cm土层的土壤容重均低于土壤耕作前的土壤容重,至夏玉米收获时不同耕作处理的土壤容重与耕作前基本一致,不同耕作处理对土壤容重的影响差异不显著。在南皮试验区, 3种耕作方式与旋耕相比,均显著提高了冬小麦和夏玉米水分利用效率;在栾城试验区,各处理冬小麦和夏玉米水分利用效率差异不显著。本研究结果显示在华北平原高产区连续实施土壤旋耕模式没有影响作物产量,而在中低产区实施土壤深耕或者深松模式更利于作物产量提高。  相似文献   

15.
Wood extraction by heavy machinery has always been associated with soil disturbance in mountain forests,and the degree of soil degradation is influenced by several factors,including site and soil characteristics,soil moisture,type of equipment used,and number of machine passes.The effects of ground-based skidding operations on the physical properties of soils with different texture were evaluated at different levels of traffic frequency and trail gradient at two sites in an Iranian temperate forest.The treatments included combinations of three different traffic frequencies(3,8,and 14 passes of a rubber-tired cable skidder),three levels of trail gradient(10%,10%–20%,and20%) and two soil texture classes,clay loam(Site 1) and sandy loam(Site 2).The average gravimetric soil moisture at the time of skidding was 23%(Site 1) and 20%(Site 2).The average dry bulk density and total porosity of the undisturbed soil(control) were0.71 g cm~(-3) and 73.3% at Site 1(clay loam) and 0.86 g cm~(-3)and 59.1% at Site 2(sandy loam),respectively.At site 1(fine-textured soil),rutting began after three passes of the skidder,whereas at site 2(coarse-textured soil),rutting occurred only after eight passes.Independent of the traffic frequency and trail gradient,machine impact on the fine-textured soil caused greater increases in bulk density and rut depth compared to that on the coarse-textured soil.After three skidder passes and independent from trail gradients,dry bulk density at Site 1 increased by 54.8% compared to that of the undisturbed control,and the increase was 45.5% at Site 2.Therefore,medium to fine-textured soils are more susceptible to compaction than coarse-textured soils.Such soils,especially when moist,should be protected using brush mats created from harvesting residues during the forest processing phase.  相似文献   

16.
With rising energy costs, expensive deep tillage needs to be reevaluated. In 2002 and 2003, tillage treatments were evaluated for effectiveness in increasing cotton yield when noninversion deep tillage was either performed annually or not. Tillage treatments included a nontilled control, a straight-legged subsoil shank with bedding, and strip tillage with each of the following: a straight-legged subsoil shank, a Paratill, and a Terra-Max. In 2003, treatments were split with half the plots tilled and half not. No-tillage treatment significantly reduced penetration resistances better than others. Tillage decreased penetration resistance and improved yield but differences were significant only half the time. Treatments not tilled in the second year did not have significantly reduced penetration resistance because of a lack of recompaction during a dry first growing season. Tilling the second year improved yield marginally. Producers need to decide whether to till after a dry year on a case-by-case basis.  相似文献   

17.
土壤压实对土壤物理性质及小麦氮磷钾吸收的影响   总被引:11,自引:4,他引:7  
为了研究土壤压实对土壤物理性质以及小麦养分吸收情况的影响,在2006和2007年进行了两轮田间试验.试验中,先用旋耕机对田块进行旋耕,耕深10cm,然后使用手扶式、轮式、履带式拖拉机在旋耕后的田块中通过1次(T1)、2次(T2)、4次(T3)以对土壤进行压实处理,对照组(T4)不作任何压实处理.压实处理后再次对土壤表层进行浅旋耕,耕深5 cm,耕后用播种机进行小麦播种,小麦品种为南京-601.试验结果发现,次表层土壤的压实处理显著影响次表层土壤的容重,孔隙度,小麦蛋白质含量以及植物中N、P、K的含量.除次表层的土壤容重在T3组中最大,T4组中最小外,其他参数值在T4组中最大,T3组中最小.并且,随着次表层土壤压实程度的增加,几乎所有的参数(土壤容重除外)都有所减少.不过,与第一年相比,参数值在第二年略有增加.总之,土壤压实严重破坏土壤结构,不利于小麦对养分的吸收.  相似文献   

18.
In a long-term cultivation experiment on a sandy clay loam overlying magnesian limestone and cropped with spring barley (Hordeum sativum) each year, mouldboard ploughing, shallow tine cultivation and direct drilling were compared. Compaction had become evident on the direct drilled treatment and to alleviate this the ‘Paraplow’, a slant-legged soil loosening implement, was used on all treatments to a depth of 35 cm in the autumn of 1980.A crop of spring barley (var. Athos) was grown in 1981, at a nitrogen fertiliser rate of 75 kg ha?1 N. Root growth, shoot dry matter, nitrogen uptake, grain yield and components of yield were recorded. Soil strength (by cone resistance) and dry bulk density of the soil were also measured. As a mean of all cultivation systems the ‘Paraplow’ increased grain yield by 12%. The response of the crop to cultivation by the ‘Paraplow’ was greatest on the mouldboard ploughed and long-term direct-drilled systems. The latter out-yielded the former, with shallow tine cultivation intermediate.The decrease in soil strength caused by the ‘Paraplow’ resulted in more rapid penetration of root axes and greater proliferation of roots in each horizon of the profile. There was no significant effect on shoot dry matter up to anthesis but, at harvest, barley on land treated with the ‘Paraplow’ had more ears with more grains per ear. Thousand-grain weight was not affected.The poorer growth of barley on ploughed than direct drilled land in 1981 was explained by temporary waterlogging of the soil in May.  相似文献   

19.
A 762‐mm‐diameter pipe 1,886 km long was installed to transfer crude oil in the USA from North Dakota to Illinois. To investigate the impact of construction and restoration practices on long‐term soil productivity and crop yield, vertical soil stresses induced by a Caterpillar (CAT) pipe liner PL 87 (475 kN vehicle load) and semi‐trailer truck (8.9 kN axle load) were studied in a farm field. Soil properties (bulk density and cone penetration resistance) were measured on field zones within the right‐of‐way (ROW) classified according to construction machine trafficking and subsoil tillage (300‐mm‐depth tillage and 450‐mm‐depth tillage in two repeated passes) treatments. At 200 mm depth from the subsoiled surface, the magnitude of peak vertical soil stress from trafficking by the semi‐truck trailer and CAT pipe liner PL 87 was 133 kPa. The peak vertical soil stress at 400 mm soil depth appeared to be influenced by vehicle weight, where the Caterpillar pipe liner PL 87 created soil compaction a magnitude of 1.5 greater than from the semi‐trailer truck. Results from the soil bulk density and soil cone penetration resistance measurements also showed the ROW zones had significantly higher soil compaction than adjacent unaffected corn planted fields. Tillage to 450 mm depth alleviated the deep soil compaction better than the 300‐mm‐depth tillage as measured by soil cone penetration resistance within the ROW zones and the unaffected zone. These results could be incorporated into agricultural mitigation plans in ROW construction utilities to minimize soil and crop damage.  相似文献   

20.
Dryland wheat (Triticum aestivum L.) and grain sorghum (Sorghum bicolor (L.) Moench) are often grown using a wheat–sorghum-fallow (WSF) crop rotation on the semiarid North American Great Plains. Precipitation stored during fallow as soil water is crucial to the success of the WSF rotation. Stubble mulch-tillage (SM) and no-tillage (NT) residue management practices reduce evaporation, but the sparse residue cover produced by dryland crops, particularly sorghum, is insufficient to reduce soil crusting and runoff. Subsoil tillage practices, e.g., paratill (PT) or sweep (ST), fracture infiltration limiting soil layers and, when used with residue management practices, may increase soil-water storage and crop growth. Our objectives were to compare the effects of PT to 0.35 m or ST to 0.10 m treatments on soil cone penetration resistance, soil-water storage, and dryland crop yield with NT and SM residue management. Six contour-farmed level-terraced watersheds with a Pullman clay loam (US soil taxonomy: fine, mixed, superactive, thermic Torrertic Paleustoll; FAO: Kastanozems) at the USDA—Agricultural Research Service, Conservation and Production Research Laboratory, Bushland, TX, USA (35°11′N, 102°5′W) were cropped as pairs using a WSF rotation so that each phase of the sequence appeared each year. In 1988, residue management plots received PT or ST every 3 years during fallow after sorghum resulting in five treatments: (i) NT–PT, (ii) NT–NOPT, (iii) NT–ST, (iv) SM–PT, and (v) SM–NOPT. Cone penetration resistance was the greatest in NT plots and reduced with PT after 12, 23, and 31 months. Mean 1990–1995 soil-water storage during fallow after wheat was greater with NT than with SM, but unaffected by PT or ST. Dryland wheat and sorghum grain yields, total water use, and water use efficiency (WUE) were not consistently increased with NT, however, and unaffected by PT or ST tillage. We conclude, for a dryland WSF rotation, that: (1) NT increased mean soil-water storage during fallow after wheat compared to SM, and (2) ST and PT “subsoil” tillage of a Pullman did not increase water storage or yield. Therefore, NT residue management was more beneficial for dryland crop production than subsoil tillage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号