首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》2005,92(1):11-16
Abiotic stresses such as salinity affect rice yield components and grain quality. Among these components, 1000-grain weight (TGW) is thought to be quite constant due to a rigid hull whose size is genetically determined, but chilling and salinity stresses have been reported to strongly reduce TGW. A new, automated methodology is presented to analyze grain weight, length and width distributions for grain samples. Frequency distribution analyses on the basis of histograms generally gave bimodal patterns for grain weight (filled and unfilled grains) and monomodal patterns for grain dimensions. These histograms permit the distinction of unfilled, partially filled and fully filled grains. Peak shape and location on the histogram provide further information potentially useful for the diagnosis of physiological stresses affecting grain hull development, spikelet fertility and filling, and may be of value in breeding and grain quality research. The methodology was applied to rice grain samples taken from farmer's fields having different levels of soil salinity in the Camargue delta region in France. High salinity levels were associated with an increased fraction of unfilled spikelets and reduced grain dimensions and weight, which point at salinity affects taking place before flowering during hull development. The methodology is being further developed with a biometric tool for histogram analysis, and will be extended to other stresses and germplasm.  相似文献   

2.
In saline fields, irrigation management often requires understanding crop responses to soil moisture and salt content. Developing models for evaluating the effects of soil moisture and salinity on crop yield is important to the application of irrigation practices in saline soil. Artificial neural network (ANN) and multi-linear regression (MLR) models respectively with 10 (ANN-10, MLR-10) and 6 (ANN-6, MLR-6) input variables, including soil moisture and salinity at crop different growth stages, were developed to simulate the response of sunflower yield to soil moisture and salinity. A connection weight method is used to understand crop sensitivity to soil moisture and salt stress of different growth stages. Compared with MLRs, both ANN models have higher precision with RMSEs of 1.1 and 1.6 t ha−1, REs of 12.0% and 17.3%, and R2 of 0.84 and 0.80, for ANN-10 and ANN-6, respectively. The sunflower sensitivity to soil salinity varied with the different soil salinity ranges. For low and medium saline soils, sunflower yield was more sensitive at crop squaring stage, but for high saline soil at seedling stage. High soil moisture content could compensate the yield decrease resulting from salt stress regardless of salt levels at the crop sowing stage. The response of sunflower yield to soil moisture at different stages in saline soils can be understood through the simulated results of ANN-6. Overall, the ANN models are useful for investigating and understanding the relationship between crop yield and soil moisture and salinity at different crop growth stages.  相似文献   

3.
The effects of exogenous application of γ-aminobutyric acid (GABA) on yield and quality characteristics, especially 2-acetyl-1-pyrroline (2AP) biosynthesis, are rarely investigated. Two field experiments, i.e., experiment 1 (EXP.1) and experiment 2 (EXP.2), were conducted, and four GABA levels, i.e., 0, 50, 500, 1000 mg l−1, classified as CK, T1, T2, and T3, respectively, were sprayed at the initial heading stage of a fragrant rice cultivar, Yuxiangyouzhan. The results showed that exogenous GABA application increased the 2AP content in grains 8.58%–19.44% in EXP.1 and 0.01%–6.22% in EXP.2. Exogenous GABA treatments also increased the GABA concentration in the grains and proline content in fragrant rice. Significant correlations between the grain 2AP content and proline content in leaves at 5 days after spraying were also detected in EXP.1, whereas GABA application did not significantly affect leaf dry weight, total dry weight, or grain yield. Moreover, gas exchange parameters, soil-plant analyses development values, and antioxidant activities were improved under GABA treatments. Additionally, the GABA applications substantially improved the grain quality characteristics, including milled rice percentage, head rice percentage, and protein content. Overall, exogenous GABA application was effective in the improvement of quality characteristics in fragrant rice, especially that of grain 2AP contents.  相似文献   

4.
The effect of salt-induced soil on growth and yield development of paddy rice in Akure, Nigeria was determined. This was to ascertain effect of various salt-inducing parameters on rice yield. Fifteen soil samples were collected and 13 parameters were analysed using standard procedures. The parameters include electrical conductivity (EC), pH, particle size, cation exchange capacity (CEC), exchangeable acidity (EA), organic matter (OM), organic carbon (OC), phosphorus, sodium, calcium (Ca), potassium (K), and magnesium. Geographic information System (GIS) mapping was also carried out on the affected areas and results compared with the international standards. From the results, predominant soil class was clay loam which is excellent for rice growth while salinity levels were not in excess to lead to stress or low rice yield although very low values of N and K were recorded. EC, CEC and EA were well below critical levels in the soil and with the exception of OM, OC, MC and pH which were statistically significant at P < 0.05, other parameters were statistically non-significant. GIS mapping also showed traces of salt but not in high concentration levels as to result in crop stress.  相似文献   

5.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

6.
杂交中稻粒叶比与再生力的关系   总被引:4,自引:1,他引:3  
以33个杂交中稻组合为材料,研究了粒叶比与再生力的关系。结果表明:头季稻品种间粒叶比与再生力呈显著或极显著负相关,在粒叶比的调节下,品种间再生力的强弱可以相互转化;其原因在于,母茎鞘干物重与再生力呈极显著正相关,而粒叶比与母茎鞘干物重则呈极显著负相关关系,即头季稻粒叶比小,单位颖花绿叶面积占有量大,可减少母茎鞘中先期贮藏的光合产物向穗部的输入量,使头季稻收割时母茎鞘有较多剩余光合产物,为再生芽生长提供重要的营养物质;杂交中稻组合间着粒数与粒叶比呈极显著正相关,组合间着粒数与再生稻产量呈极显著负相关,可将头季稻品种着粒数作为判别再生力的重要指标之一。  相似文献   

7.
生物炭对双季水稻产量、养分吸收和土壤性状的残留效应   总被引:2,自引:0,他引:2  
生物炭对改良酸性土壤质量和提高作物产量具有重要作用。本研究以常规稻中嘉早17(早稻)和杂交稻五优308(晚稻)为供试品种,于2015年开始设置不施生物炭(C0)和一次性施用生物炭20 t/hm^2(C20)处理,以阐明施用生物炭3年后对双季稻产量、养分吸收和土壤性状的残留效应。结果表明,与C0处理相比,C20处理显著提高双季早稻产量,但对晚稻产量无显著影响;C20处理显著提高早、晚稻钾素吸收,对早稻氮素和磷素吸收有增加的趋势,但未达显著水平。试验进行4年后,C20处理显著提高土壤有机质含量和pH值。因此,在本试验中的酸性红壤上一次性施用生物炭后的第4年,生物炭仍然对双季水稻产量和土壤肥力具有提升效应。  相似文献   

8.
Water shortage in the Huai River Basin prompts farmers to adopt water-saving technologies such as direct-seeded nonflooded or aerobic rice. Different cultivation practices impact on tiller growth and development. Improved insight into tiller dynamics is needed to increase yield in these production systems. We conducted field experiments with four direct-seeded rice varieties under flooded and nonflooded conditions in Mengcheng county, Anhui province, in 2005–2006. The soil water content in the nonflooded treatment varied between saturation and field capacity. Yields in nonflooded soil ranged from 3.6 to 4.7 t ha−1, and did not differ significantly from yields in flooded soil that ranged from 3.6 to 5.1 t ha−1. Variety had a significant effect on biomass, yield, panicle number, spikelet number, grain weight, and grain filling percentage. Panicle number was the main factor limiting yield, resulting from a low tiller emergence frequency and a low fraction of productive tillers in both the flooded and the nonflooded soils. On average, the panicle number was 159–232 m−2, including 34–167 productive tillers per m2 for all the varieties under the two water regimes. The contribution of productive tillers to yield varied between 7% and 47%. There were two peaks of tillers that contributed to yield, one at the low (4th or 5th) and one at the high (10th or 11th) phytomer orders. Frequencies of tiller emergence at most phytomer orders were higher in the flooded soil than in the nonflooded soil. There were no significant differences in frequencies of productive tiller emergence and contributions to yield from tillers between the soil water regimes for three of the four tested varieties. To increase yield in direct-seeded nonflooded rice production systems, both the tiller emergence frequency and the fraction of productive tillers should increase through breeding, improved crop management, or a combination.  相似文献   

9.
Prolonged submergence is a major constraint to rice production, affecting over 15 million ha in South and Southeast Asia and causing an annual yield loss of over US$ 600 million. This is because all the modern high-yielding rice varieties are sensitive to complete submergence. A major quantitative trait locus (QTL), SUB1, associated with submergence tolerance, was mapped on chromosome 9 and recently bred into popular rainfed lowland rice varieties sensitive of complete submergence, using marker-assisted backcrossing (MABC). Here, we assessed the impact of introgressing SUB1 into three rice varieties popular in farmers’ fields of South and Southeast Asia, Swarna, Sambha Mahsuri, and IR64, under control conditions as well as following submergence in the field. Under control conditions, no differences were observed between Sub1 introgression lines and their recurrent parents in grain yield or quality aspects. Submergence substantially delayed flowering and maturity, and reduced grain yield, shoot biomass, harvest index, and yield components across cultivars. The reduction in yield was more drastic in the sensitive varieties, particularly when submerged for longer duration (17 d). The significant decline in grain yield was mainly attributed to reductions in grain filling, number of grains per panicle, and grain weight. The SUB1 QTL is effective in conferring tolerance of submergence for about 12–17 d, depending on floodwater conditions. Sub1 introgression lines showed a yield advantage of up to 3.8 t ha−1 and slightly better grain quality after submergence compared with their parents. Apparently, the introgression of SUB1 into popular varieties did not have any negative impact on their performance under control conditions but considerably enhanced their yield and grain quality following short-term submergence.  相似文献   

10.
Success in “super” rice breeding has been considered a great progress in rice production in China. This study aimed to test the hypothesis that an improved root system may contribute to better shoot growth and consequently to higher grain yield in “super” rice. Two “super” rice varieties Liangyoupeijiu (an indica hybrid) and Huaidao 9 (a japonica inbred) and two elite check varieties Yangdao 6 (an indica inbred) and Yangfujiang 8 (a japonica inbred) were field-grown at Yangzhou, China in 2006 and 2007. Root and shoot dry weight (DW) was significantly greater in “super” rice varieties than in check ones throughout the growth season in both years, so was the root length density. Root oxidation activity (ROA) and root zeatin (Z) zeatin riboside (ZR) content, in per plant basis, were significantly greater in “super” rice than check varieties before and at heading time. However, both ROA and root Z + ZR content, either in per plant basis or per unit root DW basis, were significantly lower in ‘super’ rice than in check varieties at the mid- and late grain filling stages. Grain yield of the two ‘super’ rice varieties, on average, was 10.2 t ha−1 in 2006 and 11.4 t ha−1 in 2007, and was 13% and 21% higher than that of check varieties, respectively. The high grain yield was mainly due to a larger sink size (total number of spikelets) as a result of a larger panicle. The percentage of filled grains of the two “super” rice varieties, on average, was 72.9% in 2006 and 79.0% in 2007, and was 19.4% and 12.9%, respectively, lower than that of the check varieties. The mean ROA and root Z + ZR content during the grain filling period significantly correlated with the percentage of filled grains. Collectively, the data suggest that an improved root and shoot growth, as showing a larger root and shoot biomass and greater root length density during the whole growing season and higher ROA and root Z + ZR content per plant at early and mid-growth stages, contributes to the large sink size and high grain yield in the “super” rice varieties. The data also suggest the yield of “super” rice varieties can be further increased by an increase in filled grains through enhancing root activity during grain filling.  相似文献   

11.
Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutrition. However, the inferior agronomic performance of lpa crops and their environmental growth adaptation have not yet been fully understood. Three rice lpa lines and their corresponding wild-types were used to compare their differences in grain phytic acid (PA) in response to high temperature (HT) and its relation to spikelet sterility and grain weight at a controlled temperature at the filling stage. Results showed that HT caused an increase in grain PA and inorganic phosphate contents, with more substantial increase of PA content for lpa lines compared with corresponding wild-types. This increase in PA content in high temperature-ripened grains was not simply attributed to the reduction in grain weight and relatively enhanced proportion of aleurone-layer fraction to whole grains. Significant increase in PA contents was also detected in milled rice. Moreover, spikelet sterility and grain plumpness of lpa lines were more susceptible to HT stress than those of wild-types. Exogenous PA spraying with an appropriate concentration could increase grain PA content, but it had only a slight contribution to the enhancement of heat-tolerance and injury alleviation for rice exposed to stressful HT.  相似文献   

12.
1000-grain weight(TGW) is one of the three component traits of the grain yield in rice(Oryza sativa L). This study was conducted to validate and fine-map qT GW1.1, a minor QTL for TGW which was previously located in a 3.7-Mb region on the long arm of rice chromosome 1. Five sets of near isogenic lines(NILs) were developed from two BC2F4 populations of the indica rice cross Zhenshan 973/Milyang 46.The NIL sets consisted of two homozygous genotypic groups differing in the regions RM11448-RM11522,RM11448- RM11549, RM1232- RM11615, RM11543-RM11554 and RM11569-RM11621, respectively. Four traits, including TGW, grain length, grain width and heading date, were measured. Phenotypic difference between the two genotypic groups in each NIL population was analyzed using SAS procedure GLM.Significant QTL effects were detected on TGW with the Zhenshan 97 allele increasing grain weight by0.12 g to 0.14 g and explaining 8.30% to 15.19% of the phenotypic variance. Significant effects were also observed for grain length and width, whereas no significant effect was found for heading date. Based on comparison among the five NILs on the segregating regions and the results of QTL analysis, qT GW1.1was delimited to a 376.9-kb region flanked by DNA markers Wn28382 and RM11554. Our results indicate that the effects of minor QTLs could be steadily detected in a highly isogenic background and suggest that such QTLs could be utilized in the breeding of high-yielding rice varieties.  相似文献   

13.
Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development. Rice (Oryza sativa) is a major food crop greatly affected by soil salinity and alkalinity, requiring tolerant varieties in the saline-alkali prone areas. Understanding the molecular and physiological mechanisms of saline-alkali tolerance paves the base for improving saline-alkali tolerance in rice and leads to progress in breeding. This review illustrated the physiological consequences, and molecular mechanisms especially signaling and function of regulating genes for saline-alkali tolerance in rice plants. We also discussed QTLs regarding saline-alkali tolerance accordingly and ways of deployment for improvement. More efforts are needed to identify and utilize the identified QTLs for saline-alkali tolerance in rice.  相似文献   

14.
为明确种植水稻对陕北盐碱地土壤理化性质的影响,并筛选适宜陕北地区种植的耐盐渍水稻品种,进一步探索陕北盐碱地改良利用方式,以陕西省定边县堆子梁镇营盘梁村土地开发项目为契机,开展大田试验。结果表明,水稻种植可以显著改善盐碱地表层(0~20 cm)土壤的理化性质,表层土壤pH值和含盐量较未种植水稻前分别降低5.7%和25.5%,全氮、有效磷、速效钾和有机质含量则分别提高117.3%、45.9%、27.7%和67.3%。另外,种植不同水稻品种对盐碱地土壤酸碱度和含盐量影响基本无差异,但对表层土壤养分含量影响存在一定差异,水稻收获后,种植东稻4号的土壤全氮、有效磷含量最高,种植宁粳28的土壤有机质含量最高。隆优619产量较宁粳28、东稻4号分别提高4.96%和42.78%。  相似文献   

15.
盐逆境对水稻产量、光合特性及品质的影响   总被引:5,自引:0,他引:5  
【目的】江苏沿海滩涂种植水稻是促进盐土脱盐改良和开发利用滩涂的主要技术之一,研究盐逆境对水稻产量、光合特性和稻米品质的影响,可为发展滩涂种稻提供参考和理论依据。【方法】以耐盐性较好的通粳981、盐稻12、盐稻10号和南粳5055等4个粳稻品种为材料,设置非盐逆境(S0,电导率0.207 d S/m)和逆境(S1,电导率1.112 d S/m)2个处理,分别测定产量及其构成因素、光合参数、稻米品质和淀粉黏滞特性。【结果】与非盐逆境相比,盐逆境下水稻产量显著下降,仅为非逆境的40.5%,单位面积穗数差异不显著,每穗粒数和千粒重显著减少;光合速率、胞间CO2浓度显著下降,而气孔导度和蒸腾速率差异不显著;稻米加工品质显著下降,外观品质变化不大,直链淀粉含量显著下降,蛋白质含量显著增加;峰值黏度、热浆黏度、最终黏度、崩解值和回复值均未发生显著的变化,消减值和起始糊化温度显著增高。【结论】盐逆境对水稻产量、光合参数、稻米品质等均有不利的影响,可在盐逆境对产量、品质影响的关键时期孕穗期和灌浆结实期采取措施缓解盐逆境的危害。  相似文献   

16.
Four varieties of rice, differing in salinity tolerance and grown in saline soil (electrical conductivity 5–6 dS/m) at Sadhoke, Punjab, Pakistan, had lighter grain and higher Na content than control samples. Grains of three out of the four rices grown on saline soils had higher brown rice protein (higher nutritional value), less translucent grain, lower starch and amylose content, and lower K than their control samples, but these differences were not related to salinity tolerance. Alkali spreading value and gel consistency were not affected by culture in saline soil. Cooked rice Instron hardness increased in saline culture in two higher-protein samples of the four rices. Amylograph peak viscosity was suppressed by saline culture.  相似文献   

17.
【目的】探究杂交稻头季与再生季镉积累分配特性差异,为再生稻安全生产提供科学依据。【方法】以Y两优9918和甬优4149为材料,采用随机区组设计开展大田试验,比较头季与再生季产量与镉积累分配特性。【结果】1)甬优4149再生季产量显著低于头季,而Y两优9918表现相反;两品种再生季有效穗数、结实率显著高于头季,而千粒重显著低于头季;2)两品种头季成熟期根、茎、叶、穗镉含量均显著低于再生季,再生季糙米镉含量为0.13~0.17 mg/kg,显著高于头季;3)再生季各器官镉含量、镉积累量、日均镉积累速率、镉转移系数与富集系数均大于头季,Y两优9918与甬优4149再生季镉总积累量分别是头季的4.28和2.67倍,再生季糙米镉含量分别是头季的1.63和1.42倍;4)头季穗部镉主要来自灌浆中期-成熟期,而再生季主要来自齐穗前,镉积累最快阶段存在品种间差异;5)两品种稻桩镉积累量在再生季全生育期内表现累积趋势,但各生育阶段的表现存在品种间差异,Y两优9918以灌浆中期为界先降后升,甬优4149表现先降后升再降趋势。6)本研究条件下,Y两优9918头季产量低于甬优4149,但再生季产量表现相反,两品种全年产量差异不大;甬优4149器官镉含量、积累量、日均积累速率及富集系数一般高于Y两优9918。【结论】再生季镉超标风险大于头季,在镉污染稻作区应慎重发展再生稻,同时再生季降镉措施的应用应以齐穗前为重点。  相似文献   

18.
A field experiment was conducted to investigate the impact of simulated rat damage on grain yield in irrigated lowland rice in An Giang province, in the Mekong Delta of Vietnam. Rat damage was simulated by making a 45° cut at the base of the rice tillers about 3–5 cm above the soil surface. 0% (control), 5%, 10%, 25% and 50% of the tillers were removed at the tillering (25 days after sowing, DAS), panicle initiation (43 DAS), flowering (72 DAS) and ripening (87 DAS) stages. The total number of mature tillers, immature tillers and percent filled grains, the weight of 1000 grains and grain yields were recorded. The rice crop completely compensated by increased tillering and yield for tillers damaged up to 50% at the tillering stage. However, the damage and yield loss were highly variable. The ability of the rice crop to compensate at later stages progressively reduced. The implications for managing rat damage to rice crops are (1) rodent control activities should be applied before 10% of tillers are damaged at the tillering stage, and (2) a well balanced nitrogen supply during the tillering stage could potentially assist the rice plants to better compensate for rat damage.  相似文献   

19.
The system of rice intensification (SRI) is reported to have advantages like lower seed requirement,less pest attack,shorter crop duration,higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation.With this background,SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute,New Delhi,India during two wet seasons (2009-2011).In the experiment laid out in a factorial randomized block design,two methods of rice cultivation [conventional transplanting (CT) and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44) were used under seven crop nutrition treatments,viz.T 1,120 kg/hm2 N,26.2 kg/hm2 P and 33 kg/hm2 K;T 2,20 t/hm2 farmyard manure (FYM);T 3,10 t/hm2 FYM+ 60 kg/hm2 N;T 4,5 t/hm2 FYM+ 90 kg/hm2 N;T 5,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.5 kg/hm2 blue green algae (BGA);T 6,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.0 t/hm2 Azolla,and T 7,N 0 P 0 K 0 (control,no NPK application) to study the effect on seed quality,yield and water use.In SRI,soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2-3 cm) was maintained during the reproductive phase of rice,however,in CT,standing water was maintained in crop growing season.Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI.Seed quality was superior in SRI as compared to CT.Integrated nutrient management (INM) resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties.Grain yield attributes such as number of effective tillers per hill,panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone.Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer.The grain yield and its attributes of Pusa 44 were significantly higher than those of Pusa Basmati 1.The seed quality parameters like germination rate and vigor index as well as N uptake and soil organic carbon content were higher in INM than those in chemical fertilizer alone.CT rice used higher amount of water than SRI,with water saving of 37.6% to 34.5% in SRI.Significantly higher water productivity was recorded in SRI as compared to CT rice.  相似文献   

20.
Glutelin, a major protein in rice grains, is encoded by a multigene family. However, its protein composition is not well characterised. Here, we identified and characterised two novel glutelin subunits, GluBX and GluC. The individual glutelin subunits of japonica cv. Nipponbare and indica cv. 93-11 rice were analysed using 2-dimensional gel electrophoresis, LC–MS/MS, and Western blotting. Comparison of the glutelin profiles between three japonica and three indica cultivars indicated two distinct subunits (GluA-1 and GluA-3 isomers) and a distinction in the subunit composition (notably GluA-3 and Lys-rich GluB-1 components) of these two subspecies. Sequence alignment revealed different nutritional (Lys residues) and functional (Cys residues) characteristics between the type-A and type-B glutelin subfamilies. We also analysed amino acid and total protein contents of the grains in thirty-five cultivars, and we demonstrated that the Lys-rich glutelin composition of indica cultivars is superior to that of japonica cultivars. The Lys-rich and Cys-poor GluBX subunit is a native protein and is a high nutritional protein in grains. Our combined approaches for the identification of glutelin subunits have revealed the nutritional characteristics of individual subunits in rice, and this knowledge will provide new insights for improving grain quality during rice breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号