首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Weed competition is a major constraint to lowland rice production in West Africa. Interspecific rice varieties named New Rice for Africa (NERICA) may have superior weed competitiveness and could as such play an important role in integrated weed management. The NERICA varieties were developed from the wide cross between high-yielding Oryza sativa (L.) and weed competitive and disease resilient Oryza glaberrima (Steud.). In this study weed competitiveness of all 60 lowland varieties of NERICA (NERICA-L) was compared with their most frequently used parents [IR64 (O. sativa) and TOG5681 (O. glaberrima)], the weed competitive variety Jaya (O. sativa) and the O. glaberrima upland NERICA parent CG14. During the 2006 and 2007 rainy seasons these varieties were grown under weed-free and weedy conditions in a lowland farmers’ field with partially controlled irrigation in south-east Benin. Weedy plots included single hand weeding at 28 days after sowing, whereas weed-free plots were weekly weeded.  相似文献   

2.
Improving rice (Oryza spp.) competitiveness against weeds would provide a low-cost and safe tool for an integrated weed management strategy. This paper addresses the underlying causes of tradeoff between yield without weed competition and weed competitiveness. Rice yield or weed biomass under weedy conditions are used as indicators of weed competitiveness. For this analysis, a common database was compiled from the results of 45 concurrent field trials comparing the performance of four to 64 genotypes in weed-free and weedy conditions in Asia, West Africa, North America and Latin America. Cyperus spp., Echinochloa spp. and Eleusine indica were the most frequent dominant weed species, being found in 9, 20 and 7 trials, respectively. Mean relative yield reduction [(yield under weed-free conditions − yield under weedy conditions)/yield under weed-free conditions] across genotypes tested for each trial was defined as weed pressure level. Mean yield without weed competition across genotypes ranged from 1.8 to 11.6 t ha−1 with mean relative yield reduction from almost 0 to 91%. Correlations for rice yield between weed-free and weedy conditions were generally positive, and significant in 27 trials. The correlations were related to weed pressure level and dominant weed species, but not to ecosystem (upland or lowland) or yield level under weed-free conditions. Relative yield reduction had a more pronounced effect than dominant weed species. Correlation decreased as weed pressure level increased, and became negative when relative yield reduction exceeded 80%, suggesting that different morpho-physiological mechanisms are responsible for high yields under weed-free conditions or severe weed competition. Correlations between rice yield under weed-free conditions and weed biomass varied, giving 17 and 19 for positive and negative ones, respectively. These correlations were related neither to weed pressure level, ecosystem and yield level under weed-free conditions, nor to dominant weed species. These results indicate that correlations between rice yields under weed-free and weedy conditions can be strongly affected by weed pressure level, and, unless severe weed competition occurs, there appears to be no tradeoff between them. Association of morpho-physiological mechanisms with weed competitiveness under conditions differing in weed pressure levels and dominant weed species deserves further investigation.  相似文献   

3.
Traditional tropical japonica (Oryza sativa) and Oryza glaberrima cultivars are typically grown in low-input, subsistence production systems in the uplands of West Africa by resource-poor farmers. In these systems, low soil fertility (LF), which is generally associated with lower organic carbon content, and N and P availability, is one of the major constraints to rice productivity. Thus, cultivars adapted to LF are needed for the food security of farmers, who would otherwise be solely reliant on nutrient inputs to increase productivity. This study evaluated the performance of six diverse cultivars grown in LF and high soil fertility (HF) conditions with supplemental irrigation over two seasons. Average grain yield across all cultivars in LF was 54% of that in HF (156 vs. 340 g m−2). Three improved indica rice cultivars and CG 14 (O. glaberrima) out-yielded Morobérékan (traditional tropical japonica) and WAB450-IBP-38-HB (progeny from interspecific hybridization of tropical japonica and O. glaberrima) in LF (181 vs. 105 g m−2 on average). The high grain yield in LF was the result of large spikelet number m−2 due to superior tillering ability and high harvest index rather than biomass production. The high-yielding cultivars in LF consistently had lower leaf chlorophyll content and higher specific leaf area during the period from the early vegetative stage through the reproductive stage. Among them, two indica cultivars (B6144F-MR-6-0-0 and IR 55423-01) were also high yielding in HF. The use of improved indica cultivars adapted to LF, but also with input-responsiveness, appears to offer an attractive and economical approach to improving upland rice productivity and widening genetic diversity in this region.  相似文献   

4.
Weed management is among the main factors limiting cultivation of castor (Ricinus communis) in extensive fields, particularly when labor is scarce or expensive. This experiment evaluated the efficiency of weed management programs using preemergence (clomazone, pendimethalin, and trifluralin) and a postemergence herbicide (chlorimuron-ethyl) applied at 20 days after emergence in castor plants cv. BRS Energia under rainfed conditions in Apodi, Brazil. No phytotoxicity was observed on the castor plants, and the postemergence herbicide significantly increased castor seed yield to 1466 kg ha−1 complementing the weed control of preemergence herbicides treatments in which seed yield was 1207 kg ha−1. Seed yield on weedy and weed-free treatments was 760 and 1971 kg ha−1, respectively. Weeds were kept under a satisfactory control up to 40 days after emergence. This program resulted in reasonable weed control because the preemergence herbicides controled monocotyledon weeds, while the postemergence herbicide controlled broad leafed species being selective to castor plants.  相似文献   

5.
Drought stress is the most important abiotic factor limiting upland rice yields. Identification of quantitative trait loci (QTL) conferring improved drought resistance may facilitate breeding progress. We previously mapped a QTL with a large effect on grain yield under severe drought stress (qtl12.1) in the Vandana/Way Rarem population. In the current paper, we present results from a series of experiments investigating the physiological mechanism(s) by which qtl12.1 affects grain yield under drought conditions. We performed detailed plant water status measurements on a subset of lines having similar crop growth duration but contrasting genotypes at qtl12.1 under field (24 genotypes) and greenhouse (14 genotypes) conditions. The Way Rarem-derived allele of qtl12.1 was confirmed to improve grain yield under drought mainly through a slight improvement (7%) in plant water uptake under water-limited conditions. Such an apparently small increase in water uptake associated with this allele could explain the large effect on yield observed under field conditions. Our results suggest that this improvement of plant water uptake is likely associated with improved root architecture.  相似文献   

6.
《Field Crops Research》1998,57(1):57-69
A recent breakthrough in generating fertile progeny from Oryza sativa×O. glaberrima crosses gives rice breeders access to a broader range of germplasm. Interspecific crosses might provide new solutions to the low productivity of upland rice systems prone to weed competition. Two field and one pot experiments conducted during 1995 and 1996 served to characterize growth and yield potential of CG14 (O. glaberrima), WAB56-104 (O. sativa) and their progeny. During the 1995 wet season and the 1996 dry and wet seasons, the lines were seeded in a well-drained upland field in Ivory Coast with supplemental sprinkler irrigation. A randomized complete-block design with three replications was used, with cultivar and nitrogen levels as sub-plots. Specific leaf area (SLA), leaf area index (LAI), leaf chlorophyll content (SPAD method) and tiller number were measured at 2-week intervals until flowering. Grain yield and yield components were measured at maturity. In all environments, CG14 produced two to three times the LAI and tiller numbers as WAB56-104. This was associated with a high SLA and low leaf chlorophyll content. Grain yields of CG14 did not respond to N inputs, although the sink potential did. The difference was mainly caused by grain shattering. The progenies had intermediate LAI, SLA and leaf chlorophyll content, but their grain yields, tiller numbers and resistance to lodging and grain shattering were similar to WAB56-104. Across lines, LAI and SLA were significantly correlated. A paddy field experiment confirmed the relationship between LAI and SLA for a wider range of rice cultivars and interspecific progenies. A pot experiment demonstrated that leaf net CO2 assimilation rates (Amax) followed a common linear function of areal leaf chlorophyll content across cultivars. The main common cause of differential LAI and Amax appeared to have been genotypic patterns of SLA, which might be an important determinant of growth vigor and competitiveness with weeds. The possibility is discussed of combining, in a single line, high SLA during vegetative growth (for weed competitiveness) with low SLA during the reproductive growth phase (for high yield potential), to produce an efficient plant type for low-management conditions.  相似文献   

7.
Rice (Oryza sativa L.) is a semi-aquatic member of the grass family that is poorly adapted to dry environments and has greater sensitivity to water-deficits than other important cereals in this family. To increase productivity in aerobic or water-limited environments rice must overcome its adaptations to flooded environments. Deletion mutants offer an alternative genetic resource for improving drought tolerance. Almost 3500 IR64 deletion mutants were screened under vegetative and reproductive stage drought stress in the field and evaluated for leaf drying and/or grain yield. Seven novel conditional mutants of rice which showed gain of function through continued growth as drought stress developed compared to the wild type were identified. Mutant recovery rate was 0.1%. Further evaluation of putative drought mutants revealed that their average shoot biomass at maturity and grain yield per plant under stress exceeded those of the wild type by two-fold. Studies under controlled conditions confirmed mutants to have continued growth of both roots and shoots as drought developed compared to the wild type, and a tendency for greater water extraction. We propose that deletions in these mutants have affected a regulator of the highly conservative growth response common to irrigated lowland rice cultivars. Our results suggest that screening deletion mutants for performance under managed drought stress in the field could be a highly effective way to identify valuable genetic resources for improved drought response and aerobic adaptation in rice.  相似文献   

8.
《Field Crops Research》1999,61(1):79-95
Weed-competitive upland rices with an acceptable yield potential are needed for labor-limited systems in Africa, particularly where shortened fallow periods have increased weed pressure. Crosses between weed-competitive but low-yielding African rice, Oryza glaberrima, and improved Oryza sativa tropical-japonica rices, might reduce tradeoffs between competitiveness and yield potential. Parallel field studies under moist upland conditions were conducted during the 1996 and 1997 wet seasons at Mbe in Cote d'Ivoire to (1) characterize canopy properties, growth vigor and yield for O. glaberrima, O. sativa and interspecific progenies under monoculture, and (2) determine their competitiveness when grown in single rows in competition with natural weed growth, maize (removed 50 days after sowing [DAS]), the highly weed-competitive O. glaberrima IG10, and with themselves. In the monoculture study with 21 lines, dry matter, leaf area index (LAI), PAR extinction coefficient (Kdf), mean tip elevation angle (MTA) and specific leaf area (SLA) were measured 31, 46 and 64 DAS. Across lines, LAI was positively correlated with SLA, dry matter partitioning to leaves (31 and 46 DAS) and Kdf (46 DAS); and negatively with MTA (46 and 64 DAS). Plant height was negatively correlated with tiller number. In the competition study with 16 lines, the O. glaberrima landraces had superior relative yield (yield under interspecific competition/yield under intraspecific competition). Some breeding lines were competitive with specific competitors. Correlations between canopy characteristics under monoculture and competition indicated that LAI, SLA and tillering ability were predictive of competitiveness regardless of the competing species, whereas partitioning, Kdf and MTA were correlated with competitiveness only for specific growth stages and/or competitors. Competitiveness was negatively but weakly correlated with yield potential, and positively, with crop duration. The authors conclude that SLA and tillering ability, which are major determinants of vegetative vigor, and crop duration, which affects the ability to recover from early competition, are useful traits in the selection of weed-competitive rices, particularly in breeding programs that use O. glaberrima. The traits are compatible with high yield potential if cultivars have large SLA during early developmental stages and small SLA during advanced stages. Major knowledge gaps remain on weed competitiveness under drought- and flood-prone conditions, which are frequently associated with weed problems.  相似文献   

9.
Positive correlations between plant height and grain yield have been reported for sorghum. The introduction of stay-green in sorghum, and the associated reduction in lodging, has opened the possibility to exploit this positive association. The aim of this study was to analyse the direct effects of the dwarfing gene dw3 (and therefore plant height) on shoot biomass, grain yield, and yield components in pairs of 3-dwarf genotypes and their isogenic 2-dwarf tall mutants. Isogenic pairs with different genetic backgrounds were grown in three field experiments under nutrient and water non-limiting conditions. Tall mutants were significantly taller and produced more shoot and stem biomass than their shorter counterparts. Generally, tall types yielded more grain than short types, but significant interactions between experiment, genetic background and stature affected the consistency of the results. dw3 only affected grain size and not grain number. Increased grain mass of tall types was associated with significantly greater stem mass per grain at anthesis and greater shoot biomass per grain accumulated between anthesis and maturity. The increased biomass of tall plants was therefore important for increased grain yield under optimum conditions. Potential implications of increased biomass production for drought adaptation are discussed.  相似文献   

10.
《Plant Production Science》2013,16(3):381-389
Abstract

Scarcity of water and N fertilizer are major constraints to rice production, particularly in developing countries where rainfed upland condition dominates. Improvement of genetic adaptability to inadequate water and N fertilizer is one option to maintain productivity in these regions. NERICAs are expected to yield higher under low input conditions, but growth and yield responses of the cultivars to different ecosystems and N levels remain unknown. The objectives of this study were to characterize the growth and yield performance of NERICAs, in comparison with selected Japanese rice cultivars. The two NERICAs (NERICA 1 and NERICA 5), two Japanese upland cultivars (Toyohatamochi and Yumenohatamochi), and a Japanese lowland cultivar Hitomebore were grown under two ecosystems (irrigated lowland (IL) and rainfed upland (RU)) with two N levels (high (H) and low (L)) for two years. The cultivar difference in the aboveground dry weight and grain yield was the largest in the in RU × L plot, where the values of NERICAs were similar to those in the other plots, but the values of other cultivars were substantially reduced. Regardless of cultivar, N contents of the plants at maturity correlated significantly with the aboveground dry weight at maturity, spikelet number and grain yield per area. These results indicate that NERICAs, compared with the selected Japanese upland cultivars that were bred for drought tolerance, have a higher ability to absorb N under upland conditions, which may contribute to higher biomass production and sink formation, resulting in increased gain yield.  相似文献   

11.
Water shortage in drought-prone rice-growing areas of the world is threatening conventional irrigated rice production systems, in which rice is transplanted into fields where standing water is maintained until harvest. Aerobic rice production systems, in which rice is grown as a direct-seeded upland crop without flooding, require less water than conventional systems, but the transition to aerobic rice systems is impeded by severe weed infestation. An environmentally friendly and less labor-intensive weed control method needs to be introduced to aerobic rice farmers. A study was conducted at the International Rice Research Institute in the 2003 wet season and 2004 dry season to evaluate the effects of genotype, seeding rate, seed priming and their interactions on vegetative growth, yield and weed suppression. Three contrasting aerobic rice genotypes differing in yield and weed-suppressive ability (WSA) were grown at three seeding rates (100, 300 and 500 viable seeds m−2) with or without seed priming under two weed management treatments (weed-free and weedy) in a split-plot design. In 2004, the overall weed pressure was higher than in 2003, and consequently treatment effects in this year were more distinct than in 2003. No significant interactions among the experimental factors were found for crop yield, weed biomass, leaf area index, tiller number and vegetative crop biomass. Raising seeding rate from 100 to 300 viable seeds m−2 resulted in a significant increase in yield and a decrease in weed biomass, whereas a further increase from 300 to 500 viable seeds m−2 did not result in a further improvement in yield and weed suppression. The stronger WSA of genotype Apo than that of genotypes IR60080-46A and IRAT 216 related to a stronger competitive ability of individual plants and a faster canopy closure (0.5–6 days earlier). The WSA of weakly competitive genotypes was partially compensated for by a higher seeding rate. Seed priming, which was only evaluated in 2003, accelerated emergence by 2 days and slightly enhanced early crop growth, but had no significant effect on yield and weed suppression. The present study suggests that combining a weed-suppressive genotype with an optimum seeding rate can serve as a tool to manage weeds.  相似文献   

12.
The holoparasitic weed Orobanche cumana (sunflower broomrape) constrains sunflower (Helianthus annuus) production in many countries. The development of efficient control strategies requires an understanding of the processes underlying the complex environment–host–parasite interrelations. Growth and development of O. cumana and sunflower were quantified under field conditions in southeastern Romania. Sunflower hybrid Florom 350 was sown at two dates, in plots infested with 0, 50, 200 and 1600 viable O. cumana seeds kg−1 dry soil, under low-input (rainfed, low nitrogen supply) and high-input (irrigated, high nitrogen supply) conditions. Sunflower shoot biomass reached peak values of 760–1287 g m−2 between the end of anthesis and physiological maturity. Seed yield varied from 221 to 446 g m−2. Sunflower biomass and yield were affected by all experimental factors. Seed yield responded positively to delaying sowing from early April to late May as well as to irrigation and fertilisation, and negatively to O. cumana infestation. Yield reductions, which were a product of reduced seed number and size, amounted to 13%, 25% and 37% at parasite seed densities of 50, 200 and 1600 viable seeds kg−1 soil, respectively. Maximum O. cumana attachment numbers, recorded in late-sown high-input crops in 2004, ranged from 11 m−2 in plots with 50 parasite seeds kg−1 soil to 188 m−2 with 1600 seeds kg−1 soil. Parasite attachment number was a function of crop sowing date, water and nutrient supply, seedbank density, and sunflower biomass and root length density, via mechanisms of parasite seed stimulation, host carrying capacity and intraspecific competition. Delayed sowing and improved water and nitrogen supply were associated with increases in parasite number that neutralised yield-boosting effects of irrigation and fertilisation at the highest infestation level. Sunflower shoot biomass was significantly reduced by O. cumana infection, with reductions affecting organs in the order head > stem > leaves. Most of the discrepancy between infected and non-infected plants was accounted for by O. cumana biomass. Parasites mainly acted as an extra sink for assimilates during sunflower generative growth and impaired host photosynthesis to a much lesser degree. Results suggest that similar mechanisms govern infection level and host–parasite biomass partitioning across different Orobanche–host systems.  相似文献   

13.
A large proportion of the rice in West Africa is produced in rainfed lowland ecosystems, mainly in inland valleys. The hydrological conditions (duration and intensity of flooding) vary with the toposequence position between the fringe and the centre of the valley. Production methods tend to evolve from the currently predominant unbunded plots without external input use, to input-intensive production in bunded plots. Agronomic management interventions co-evolve and may include varietal choice, herbicide use, and mineral N fertilizer application. The response of rice and the associated weeds to such interventions is likely to vary with the prevailing hydrological regime. A 2-year field experiment was conducted in northern Ivory Coast to determine the impact of water regime (plot position in the valley, presence of bunds) and input use (mineral N fertilizer and herbicide) on the productivity (yield and N use efficiency) of traditional and modern rainfed lowland rice cultivars and the biomass and composition of the associated weeds. Installing field bunds reduced seasonal variations in ponded water depth and resulted in a mean increase in rice grain yield of 30–40% (p < 0.005). This increase was associated with a 25% lower cumulative weed biomass and a several-fold increase in the agronomic use efficiency of applied mineral N in bunded than unbunded plots. Under low input management, traditional varieties tended to out-yield modern varieties in unbunded plots. Improved crop management such as herbicide and fertilizer application, and the construction of field bunds was more effective to increase the yield and N use efficiency in the flooded valley centre than in the drought-prone valley fringes. There is a need for site-specific targeting of modern cultivars, land development and improved production methods in the inland valleys of the West African savanna zone.  相似文献   

14.
《Plant Production Science》2013,16(3):151-163
Abstract

Oryza glaberrima has mostly been used as a source to improve stress resistance of Oryza sativa. Improvement of this species could be an approach to use its adaptability to local environments in Africa such as multiple resistance to several indigenous constraints. The yield of O. glaberrima was inferior to that of O. sativa under favorable growth conditions but not under unfavorable conditions. Moreover, spikelet number before grain shattering was no less in O. glaberrima than in O. sativa at any fertilizer input levels, suggesting that the yield potential of O. glaberrima is as high as that of O. sativa. Inferior yield of O. glaberrima reported in favorable environments could result from grain shattering enhanced by such growth environments where higher incidence of lodging, which is another undesirable character of O. glaberrima, can occur. Regarding characteristics associated to yield generation, O. glaberrima seemed to possess: higher dry matter production and greater leaf area than O. sativa at least until heading; a lower photosynthetic rate per leaf area but a higher rate against the same leaf nitrogen content in a low content range; higher responsiveness of dry matter, leaf area and leaf photosynthesis to increases in nitrogen inputs; lower water-use efficiency on dry matter accumulation and gas exchange bases; faster progress of leaf senescence during maturity; and faster completion of grain filling during maturity than O. sativa.  相似文献   

15.
Prolonged submergence is a major constraint to rice production, affecting over 15 million ha in South and Southeast Asia and causing an annual yield loss of over US$ 600 million. This is because all the modern high-yielding rice varieties are sensitive to complete submergence. A major quantitative trait locus (QTL), SUB1, associated with submergence tolerance, was mapped on chromosome 9 and recently bred into popular rainfed lowland rice varieties sensitive of complete submergence, using marker-assisted backcrossing (MABC). Here, we assessed the impact of introgressing SUB1 into three rice varieties popular in farmers’ fields of South and Southeast Asia, Swarna, Sambha Mahsuri, and IR64, under control conditions as well as following submergence in the field. Under control conditions, no differences were observed between Sub1 introgression lines and their recurrent parents in grain yield or quality aspects. Submergence substantially delayed flowering and maturity, and reduced grain yield, shoot biomass, harvest index, and yield components across cultivars. The reduction in yield was more drastic in the sensitive varieties, particularly when submerged for longer duration (17 d). The significant decline in grain yield was mainly attributed to reductions in grain filling, number of grains per panicle, and grain weight. The SUB1 QTL is effective in conferring tolerance of submergence for about 12–17 d, depending on floodwater conditions. Sub1 introgression lines showed a yield advantage of up to 3.8 t ha−1 and slightly better grain quality after submergence compared with their parents. Apparently, the introgression of SUB1 into popular varieties did not have any negative impact on their performance under control conditions but considerably enhanced their yield and grain quality following short-term submergence.  相似文献   

16.
Water scarcity threatens sustainable rice production in many irrigated areas around the world. To cope with the scarcity, aerobic rice culture has been proposed as a promising water-saving technology. The objective was to elucidate the physiological attributes behind the performance of rice introgression lines in water-saving culture. We evaluated yield potential and physiological adaptation traits to water deficit of BC3-derived lines with the genetic background of an elite indica cultivar, IR64, in the field and in pot experiments. One line, YTH183, had 26% higher yield than IR64 under non-stress conditions (895 vs. 712 g m−2 on average). This was attributed to enlarged sink capacity due to large grain size, which contributed to more efficient use of assimilates and hence a higher harvest index. YTH183 also showed better dehydration avoidance under intermittent soil drying, due to the adaptive response of deep rooting to water deficiency. The grain yield of YTH183 exceeded that of IR64 by 92-102% under moderate water deficit caused by limited irrigation in aerobic rice culture (143 vs. 72 g m−2). Two introgressed segments on chromosomes 5 and 6 might, at least in part, confer the higher yield potential and greater dehydration avoidance in YTH183 simultaneously. Advanced backcross breeding combined with molecular genetics and physiological characterization of introgressed segments would be effective for developing new rice cultivars with high yield potential and drought adaptation traits.  相似文献   

17.
Weed management in Romaine lettuce (Lactuca sativa L. var. longifolia) is an economic challenge for organic farmers. This study evaluated the effect of weed-free durations on crop yield and quality, weed densities and biomass, and weeding time in two growing seasons. Treatments included weedy entire-season; weed-free for 7 days after transplanting (DAT), 14 DAT, 21 DAT, 28 DAT, 35 DAT, 42 DAT; and weed-free entire season (49 DAT). Weeds were removed by hand-hoes and the time taken to weed each plot was recorded. Weed densities were recorded prior to each weeding and weed biomass was recorded at crop harvest. Total and marketable lettuce heads were recorded and crop quality was estimated. Weed interference up to 21 DAT resulted in approximately 45% total and 58% marketable yield loss. Weed control beyond this period did not result in significant (p < 0.05) increases in crop yield and quality. However, weed densities at the end of the season were 4- to 15-fold and weed biomass approximately 18-fold greater in plots kept weed-free only for 21 DAT compared with plots kept weed-free season-long. This suggested that weed seed-return may be a concern if late-season weeding is not conducted. To minimize weed seed-return, the plots would have to be kept weed-free for about 35 DAT. However, labor costs must be taken into consideration because the time required to hand-hoe was approximately 87 hr ha?1 person?1 greater in plots kept weed-free for 35 DAT compared with plots kept weed-free for 21 DAT.  相似文献   

18.
Row spacing and weed control timing affect yield of aerobic rice   总被引:2,自引:0,他引:2  
Field experiments were conducted during the wet season of 2009 and dry season of 2010 to determine the effects of row spacing and timing of weed control on weed growth and yield of aerobic rice. Ten weed management treatments were used to identify critical periods of weed competition with aerobic rice grown in three different row spacings (15-cm, 30-cm, and as paired rows 10-20-10-cm). Dominant weed species during both growing seasons were Rottboellia cochinchinensis, Digitaria ciliaris, Echinochloa colona, and Eleusine indica. Rice grown in 30-cm rows had greater weed biomass and less grain yield than in 15-cm and 10-20-10-cm rows; weed growth and grain yields were similar between 15-cm and 10-20-10-cm rows. Rice yields in the wet season ranged from 170 kg ha−1 where weeds were not controlled throughout the crop duration to 2940 kg ha−1 in weed-free treatment, indicating a 94% yield loss with uncontrolled weed growth. Similarly in the dry season, plots with no weed control (140 kg ha−1) compared to weed-free plots (3640 kg ha−1) indicate a 96% yield loss with no weed control. Gompertz and logistic equations were fitted to yield data resulting from increasing durations of weed control and weed interference, respectively. Critical periods for weed control in the wet season, to obtain 95% of a weed-free yield, were estimated as between 18 and 52 days after sowing (DAS) for crops in rows at 15-cm, 20-51 DAS at 10-20-10-cm, and 15-58 DAS at 30-cm. These intervals in the dry season were 17-56 DAS for crops in rows at 15-cm and 17-60 DAS at 10-20-10-cm and 15-64 DAS at 30-cm. Durations of the critical periods in the wet season were 31 days at 10-20-10-cm, 34 days at 15-cm and 43 days at 30-cm, while in the dry season, these were 43 days at 10-20-10-cm, 39 days at 15-cm and 49 days at 30-cm. In both seasons, crops in the wider spacing (30-cm) were vulnerable to weed competition for the longest period. The information gained from this study suggests that the aerobic rice yields better in 15-cm rows and 10-20-10-cm arrangements than in 30-cm rows and there is very little benefit of weed control beyond 8 weeks after sowing.  相似文献   

19.
In the low-input rice–wheat production systems of Nepal, the N nutrition of both crops is largely based on the supply from soil pools. Declining yield trends call for management interventions aiming at the avoidance of native soil N losses. A field study was conducted at two sites in the lowland and the upper mid-hills of Nepal with contrasting temperature regimes and durations of the dry-to-wet season transition period between the harvest of wheat and the transplanting of lowland rice. Technical options included the return of the straw of the preceding wheat crop, the cultivation of short-cycled crops during the transition season, and combinations of both. Dynamics of soil Nmin, nitrate leaching, nitrous oxide emissions, and crop N uptake were studied throughout the year between 2004 and 2005 and partial N balances of the cropping systems were established. In the traditional system (bare fallow between wheat and rice) a large accumulation of soil nitrate N and its subsequent disappearance upon soil saturation occurred during the transition season. This nitrate loss was associated with nitrate leaching (6.3 and 12.8 kg ha−1 at the low and high altitude sites, respectively) and peaks of nitrous oxide emissions (120 and 480 mg m−2 h−1 at the low and high altitude sites, respectively). Incorporation of wheat straw at 3 Mg ha−1 and/or cultivation of a nitrate catch crop during the transition season significantly reduced the build up of soil nitrate and subsequent N losses at the low altitude site. At the high altitude site, cumulative grain yields increased from 2.35 Mg ha−1 with bare fallow during the transition season to 3.44 Mg ha−1 when wheat straw was incorporated. At the low altitude site, the cumulative yield significantly increased from 2.85 Mg ha−1 (bare fallow) to between 3.63 and 6.63 Mg ha−1, depending on the transition season option applied. Irrespective of the site and the land use option applied during the transition season, systems N balances remained largely negative, ranging from −37 to −84 kg N ha−1. We conclude that despite reduced N losses and increased grain yields the proposed options need to be complemented with additional N inputs to sustain long-term productivity.  相似文献   

20.
Drought is the most important constraint reducing rice yield in rainfed areas. Earlier efforts to improve rice yield under drought mainly focused on improving secondary traits because the broad-sense heritability (H) of grain yield under drought stress was assumed to be low, however gains in yield by selecting for secondary traits have not been clearly demonstrated in rice. In present study, the effectiveness of direct selection for grain yield was assessed under lowland reproductive stage stress at Raipur in eastern India and under upland reproductive stage drought stress at IRRI. The selection under severe stress (in both upland and lowland trials) resulted in greater gains under similar stress levels (yield reduction of 65% or greater under stress) in evaluation experiments than did selection under non-stress conditions, with no yield reduction under non-stress conditions. We observed similar H of grain yield under stress and non-stress conditions, indicating direct selection for yield under drought will be effective under both lowland and upland drought stresses. None of the secondary traits (panicle exsertion, harvest index, leaf rolling, leaf drying) included in our study showed a higher estimate for H than grain yield under stress. Secondary traits as well as indirect selection for grain yield under non-stress situation were predicted to be less effective in improving yield under drought in both lowland and upland ecosystem than direct selection for grain yield under the respective stress situations. The low, but positive values observed for genetic correlation (rG) between yield under stress and non-stress indicated that it is possible to combine drought tolerance with high-yield potential but low values also indicated that selection for grain yield needs to be carried under stress environments. The study also indicated that under lowland drought stress, the use of highly drought-tolerant donors, as parents in crosses to high yielding but susceptible varieties resulted in a much higher frequency of genotypes combining high-yield potential with tolerance than did crosses among elite lines with high-yield potential but poor tolerance. Breeding strategies that use drought-tolerant donors and that combine screening for yield under managed drought stress with screening for yield potential are likely to result in the development of improved cultivars for drought-prone rainfed rice producing areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号