首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary Septoria glume blotch, caused by Stagonospora nodorum, is an important disease of wheat (Triticum aestivum). Separate genetic mechanisms were found to control flag leaf and spike resistance. Genes for resistance to S. nodorum were located on different chromosomes in the few wheat cultivars studied. These studies only partially agree on the chromosome locations of gene in wheat for resistance to S. nodorum, and chromosomal arm locations of such genes are not known. The objectives of this study were to determine the chromosome and chromosomal arm locations of genes that significantly influence resistance to S. nodorum in wheat cultivar Cotipora. Monosomic analysis showed that flag leaf resistance was controlled by genes on chromosomes 3A, 4A, and 3B whereas the spike resistance was controlled by genes on chromosomes 3A, 4A, 7A, and 3B (P=0.01). Additionally, genes on chromosomes 6B and 5A influenced the susceptibility of the flag leaf and spike reactions, respectively (P=0.01). Telocentric analysis showed that genes on both arms of chromosome 3A, and the long arms of chromosomes 4A and 3B were involved in the flag leaf resistance whereas genes on both arms of chromosome 4A, the short arm of chromosome 3A, and the long arm of chromosome 3B conferred spike resistance.  相似文献   

2.
Summary A self-fertile trigeneric hybrid in the Triticeae involving species from the Hordeum, Triticum and Secale genera has been produced. The trigeneric hybrid was obtained by crossing octoploid triticale (x Triticosecale Wittmack) with octoploid tritordeum (H. chilense × T. aestivum amphiploid). The trigeneric hybrid presented a genome constitution AABBDDRHch and 2n=8X=56 chromosomes. The cytogenetical analyses showed no chromosome instability nor homeologous pairing between Hordeum and Secale chromosomes. In the F2 generation the chromosome number ranged from 42 to 52. Within this range, the plants with smaller numbers of chromosomes were more frequent. A preferential transmission of rye chromosomes could be inferred.  相似文献   

3.
Chromosome morphology was studied in diploid cultivars of Tulipa fosteriana and T. gesneriana (2n = 2x = 24) and triploid Darwin hybrids (2n = 3x = 36) developed from interspecific crosses of T. gesneriana and T. fosteriana. Chromosomes were arranged in the karyotype according to decreasing total length. Based on our karyotypic analysis, we propose that median chromosomes may serve as markers for diploid genotypes. Discriminant analysis with respect to total chromosome length and short arm length showed a significant difference between the size of the larger median chromosomes of T. gesneriana and T. fosteriana Comparison of median chromosome length in Darwin hybrid tulips showed that two larger chromosomes and one smaller chromosome were derived from T. gesneriana and T. fosteriana, respectively. This finding was clearly and unambiguously confirmed by simultaneous hybridization of differentially labeled genomic probes of T. fosteriana and T. gesneriana to metaphase chromosomes of the triploid cultivar ‘Yellow Dover’, thereby enabling us to distinguish between the 24 chromosomes derived from T. gesneriana and 12 chromosomes derived from T. fosteriana. Thus, genomic in situ hybridization and median chromosome analyses can be useful to identify the genome constitution of triploid Darwin hybrid tulips. In addition, their hybridity was readily verified by flow cytometry using vegetative tissue of Darwin hybrid tulips. Our results clarify the process of Tulipa cultivar formation and will be useful for interspecific hybridization breeding.The first and second author have contributed equally to this paper  相似文献   

4.
Taing Aung  Hugh Thomas 《Euphytica》1978,27(3):731-739
Summary The gene for mildew resistance has been succesfully transferred into the cultivated oat from the wild oat species Avena barbata by means of an irradiation-induced translocation. The translocation has been shown to involve the long arm of chromosome ST21 of A. sativa, the short arm, the centromere and a segment of the long arm of the barbata chromosome.The transmission of the translocation is normal in the cultivar Manod in which it was originally isolated. When the translocation was transferred into other cultivars of oats, transmission through the male gametes was found to be impaired in some genotypic backgrounds. However, there was no evidence that the translocation had any deleterious effect on development and fertility in a range of cultivars.The translocation was shown to involve an exchange between nonhomoeologous chromosomes.The behaviour of the translocation in diverse genotypes indicated that the translocation was a new source of mildew resistance that could be easily used in a breeding programme.  相似文献   

5.
A chromosome study of cucumber, C. sativus L., was performed using orcein and C-banding techniques. The diploid and tetraploid plants investigated here showed the somatic chromosome numbers 2n=14 and 28, respectively. The haploid chromosome complement was composed of five metacentric and two submetacentric chromosomes. All C. sativus chromosomes had clearly visible C-bands, and each chromosome could be identified unequivocally after C-banding staining, with 13 C-bands appearing in the haploid complement. The haploid complement had a 44.9% ratio of total C-band length to total chromosome length. Chromosomes 1, 2, 4, 5 and 7 had stable C-bands. Three large, dark C-bands appeared at the proximal regions of chromosomes 1 and 2. Chromosome I had quite a large C-band and with a 68.4% ratio of C-band length to short arm length. Chromosome 2 also had quite a large C-band in the pericentromeric region with a 57.6% ratio of C-band length to the full length of this chromosome and possessed an elongated primary constriction in early metaphase. In prometaphase, chromosome 2 showed that the long arm was completely separated from the short arm. The number of secondary constrictions could not be clearly observed because these chromosomes are small and they could not be counted in every metaphase cell. However, six chromosomes seemed to have secondary constrictions in the diploid plants. Two silver-stained bands were observed at primary constrictions of two of the large chromosomes.  相似文献   

6.
Giemsa N-banding pattern in cabbage and Chinese kale   总被引:1,自引:0,他引:1  
X. -H. Wang  P. Luo  J. -J. Shu 《Euphytica》1989,41(1-2):17-21
Summary In cabbage (Brassica oleracea var. capitata) and Chinese kale (B. oleracea alboglabra) four types of N-bands can be distinguished: pericentromeric, telomeric (terminal), intercalary and satellite bands. Typical NOR bands were not observed. The pericentromeric bands appear at the pericentric regions, possibly even at the centromeres of all chromosomes. Telomeric bands are observed on the short arms of chromosomes 1,5 and 6 in cabbage and chromosomes 1 and 5 in Chinese kale. Intercalary bands stained weakly in the long arms of chromosome 3 in cabbage and chromosome 2 in Chinese kale. Satellite bands cover the entire satellites in both Brassica species. The N-banding pattern is very similar in appearance to the C-banding pattern in both species and much more convenient to apply.  相似文献   

7.
J. H. Heering  J. Hanson 《Euphytica》1993,71(1-2):21-28
Summary The somatic chromosome number in Sesbania sesban var. nubica, S. goetzei and S. keniensis (Leguminosae; Papilionoidae) was found to be 2n=12. These findings were in agreement with earlier reports on S. sesban and S. keniensis. The chromosome number 2n=12 is a new record for S. goetzei. Similarities in karyotypes were found in the three species. All species had one pair of long metacentric chromosomes; the second pair was submedian, followed by four smaller pairs of metacentric chromosomes. Nucleolar organiser regions in the form of satellites were found on the short arm of the fourth chromosome pair in S. sesban and S. keniensis. Interspecific crosses in all possible combinations were carried out, resulting in pod and viable seed formation for the crosses S. sesban x S. goetzei, S. sesban x S. keniensis, S. goetzei x S. sesban and S. goetzei x S. keniensis. The two crosses with S. keniensis as a female parent were unsuccessful. The hybrid plants established normally and produced viable seeds.  相似文献   

8.
Summary Sexual polyploidization via the action of 2n gametes (gametes with the sporophytic chromosome number) has been identified as the most important evolutionary mode of polyploidization among plant genera. This study was conducted to determine whether 2n gametes are present in the tetraploid level of the genus Avena (2n=4×=28) Twenty tetraploid Avena lines, representing four species and one interspecific hybrid, were screened for pollen grain size in order to differentiate between n and 2n pollen. Avena vaviloviana (Malz.) Mordv. line PI 412767 was observed to contain large pollen grains at a 1.0% frequency. Cytogenetic analyses of pollen mother cells of PI 412767 revealed cells with double the normal chromosome number (i.e., 56 chromosomes at metaphase I and anaphase I). The mode of chromosome doubling was found to be failure of cell wall formation during the last mitotic division that preceded meiosis. The resulting binucleate cells underwent normal meiotic divisions and formed pollen grains with 28 chromosomes. Based on the formation and function of 2n gametes, three models involving diploid and tetraploid oat lines are proposed to describe possible evolutionary pathways for hexaploid oats. If stable synthetic hexaploid oat lines could be developed by utilizing 2n gametes from diploid and tetraploid oat species through bilateral sexual polyploidization, the resulting hexaploids could be used in breeding programs for transferring genes from diploids and tetraploids to cultivated hexaploids.  相似文献   

9.
B. H. Tan 《Euphytica》1978,27(1):317-323
Summary The genetic relationships between three known genes for resistance to Puccinia hordei in barley, Pa 3, Pa5 and Pa 7, were re-examined because of conflicting reports in the literature. PA 3 was found to be independent of Pa 5 and Pa 7, but the latter two are linked with an estimated recombination value of 7.6±1.4%. Trisomic analysis confirmed Pa 7 to be on chromosome 3, but Pa 3 could not be associated with chromosomes 3 to 7 and, therefore, is inferred to be either on chromosome 1 or 2  相似文献   

10.
A set of test crosses of diploid potatoes was used to identify QTLs for foliage resistance against Phytophthora infestans and QTLs for foliage maturity type, and to assess their genetic relationship. The most important locus for both traits was found on chromosome 5 near marker GP21: the allele of marker GP21 that is associated with resistance to late blight is also associated with late foliage maturity. An additional QTL with a small effect on foliage maturity type was identified on chromosome 3, and additional QTLs for late blight resistance were found on chromosomes 3 and 10. Another QTL was detected on chromosome 7 when resistance was adjusted for the effect of foliage maturity type. The additional QTLs for resistance against P. infestans on chromosomes 3 and 10 seem to be independent of foliage maturity type and are not affected by epistatic effects of the locus on chromosome 5. The effects of the additional QTLs for resistance are small, but early maturing genotypes that necessarily have the allele for susceptibility for late blight on chromosome 5 may benefit from the resistance that is provided by these QTLs on chromosomes 3 and 10.  相似文献   

11.
Summary The tolerance of aluminum (Al) of disomic substitution lines having the chromosomes of the D genome of Triticum aestivum L. cv. Chinese Spring individually substituted for their homoeologues in T. turgidum L. cv. Langdon was investigated by the hematoxylin method. The disomic substitution lines involving chromosome 4D were more Al tolerant than Langdon. The tolerance was found to be controlled by a single dominant gene, designated Alt2, that is in the proximal region of the long arm of chromosome 4D. The locus was mapped relative to molecular markers utilizing a population of recombinant chromosomes from homoeologous recombination between Chinese Spring chromosome 4D and T. turgidum chromosome 4B. Comparison of the location of Alt2 in this map with a consensus map of chromosomes 4B and 4D based on homologous recombination indicated that Alt2 is in a vicinity of a 4 cM interval delineated by markers Xpsr914 and Xpsr1051. The Alt2 locus is distal to marker Xpsr39 and proximal to XksuC2. The Altw locus is also proximal to the Knal locus on chromosome 4D that controls K+/Na+ selectivity and salt tolerance. In two lines, Alt 2 and Knal were transferred on a single 4D segment into the long arm of T. turgidum chromosome 4B.  相似文献   

12.
An interspecific cross was made to transfer leaf rust and stripe rust resistance from an accession of Aegilops ovata (UUMM) to susceptible Triticum aestivum (AABBDD) cv. WL711. The F1was backcrossed to the recurrent wheat parent, and after two to three backcrosses and selfing, rust resistant progenies were selected. The C-banding study in a uniformly leaf rust and stripe rust resistant derivative showed a substitution of the 5M chromosome of Ae. ovata for 5D of wheat. Analysis of rust resistant derivatives with mapped wheat microsatellite makers confirmed the substitution of 5M for 5D. Some of these derivatives also possessed one or more of the three alien translocations involving 1BL, 2AL and 5BS wheat chromosomes which could not be detected through C-banding. A translocation involving 5DSof wheat and the substituted chromosome 5M of Ae. ovata was also observed in one of the derivatives. Susceptibility of this derivative to leaf rust showed that the leaf rust resistance gene(s) is/are located on short arm of 5M chromosome of Ae. ovata. Though the Ae. ovatasegment translocated to 1BL and 2AL did not seem to possess any rust resistance gene, the alien segment translocated to 5BS may also possess gene(s) for rust resistance. The study demonstrated the usefulness of microsatellite markers in characterisation of interspecific derivatives. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Summary The meiotic pairing behaviour at metaphase I of a Triticum aestivum×Triticum monococcum hybrid has been studied by means of the C-banding technique to ascertain the homology between the chromosomes in the A genome of the two species. The technique allowed the A and B genome chromosomes and the 2D, 3D and 5D chromosomes to be identified. Differences in the level of chromosome pairing in the A genome were noted. The T. monococcum 4A chromosome did not pair with any of the T. aestivum chromosomes in any of the metaphase I cells analysed. Two reciprocal translocations between the 2B and 2D chromosomes on one side and the 2A and 3D on the other side have been identified. The usefulness of the C-banding technique in the study of chromosome homology among species related to wheat is discussed.  相似文献   

14.
Hugh Wallwork 《Euphytica》1989,40(1-2):103-109
Summary Fifteen triticale and wheat-triticale hybrid lines were evaluated for resistance to the take-all fungus Gaeumannomyces graminis var. tritici and compared with five wheat and two rye lines in inoculated field and pot trials. The triticale and wheat-triticale hybrid lines varied in rye chromosome number and degree of resistance expressed. One line, Venus with seven pairs of rye chromosomes consistently showed levels of resistance intermediate between wheat and rye. A trend was observed where increasing rye chromosome content led to greater resistance but exceptions showed that variation within triticales could not be ascribed to rye chromosome content alone.  相似文献   

15.
The distal region of the short arm of chromosome 3S from Aegilopslongissima, which carries the powdery mildew resistance gene Pm13, was introgressed into common wheat. Due to suppression of recombination between this region and corresponding wheat homoeologous segments, a possible strategy to construct a genetic map around the Pm13 gene was based on crosses between a wheat addition line carrying the Ae.longissima 3S chromosome and the corresponding 3S addition lines of Ae.searsii and Ae. variabilis. The efficiency of this strategy was evaluated by scoring recombination frequencies inprogenies derived from these crosses. Recombination between 3S chromosomes fromAe. searsii and Ae. longissimawas very low, whereas 26.5% recombinant alien chromosomes were obtained from the cross involving the Ae. variabilisand Ae. longissima 3S addition lines. These data were used to construct a3S chromosome map that resulted largely colinear to the consensus map of the homoeologous group 3 of wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Wheat varieties tend to be chromosomally unstable producing on average 2–3% of plants with abnormal chromosome numbers. A number of semi dwarf wheat varieties, carrying the gibberellic acid insensitive dwarfing genes Rht1 or Rht2, have been seen to produce distinct tall off types due to reduction in dosage of the chromosome carrying the dwarfing gene. The UK variety Brigand, carrying Rht2 on chromosome 4D, produced very distinct tall off types when this chromosome was reduced in dosage. The frequency of tall off types was sufficiently high to cause the variety to fail United Kingdom statutory uniformity tests. An attempt to prevent the loss of chromosome 4D was made by constructing translocation chromosomes involving the short arm of chromosome 4D, which carries Rht2, and the long arm of chromosome 4S l from Aegilops sharonensis, which carries a gene(s) conferring preferential transmission. The work in this paper describes the field evaluation of two lines carrying 4DS.4DL-4S l L translocations, and demonstrates their success in preventing spontaneously occurring monosomy of chromosome 4D in semi-dwarf wheats.  相似文献   

17.
Detailed karyotypes of Hydrangea macrophylla, Hydrangea paniculata and Hydrangea quercifolia were constructed on the basis of arm lengths and centromeric index, together with 45S rDNA fluorescence in situ hybridization. Although the chromosomes were small, they were well distinguishable for all species. Chromosome morphology and karyotypes were different for the three species. H. macrophylla had six metacentric (M), eight submetacentric (SM) and four subtelocentric (ST) chromosomes. The karyotype of H. paniculata contained seven M, 10 SM and one ST chromosomes and H. quercifolia had six M, 10 SM and two ST chromosomes. The variability among three species also was expressed by 45S rDNA signals. H. macrophylla had a nucleolar organizing region on chromosome 2, H. paniculata had 45S rDNA signals on chromosomes 2, 5 and 11 and H. quercifolia on chromosomes 3 and 8. Hybridization signal always was distally on the short arm but the strength of the signals was different for the three species. The chromosome portraits made in this study will be used to trace chromosome behaviour in interspecific hybrids resulting from breeding work between the three species.  相似文献   

18.
Summary Genetics of parthenocarpy in line RP 75/59 was tested under natural low temperature conditions, under which only seedless fruits were produced. Results were consistent with the hypothesis that three recessive genes with additive effects are responsible for parthenocarpy. Linkage studies, using 40 morphological marker genes located among all tomato chromosomes except chromosome seven, revealed linkage of one gene to diageotropica (dgt) located on chromosome 1 L site 152, and a second gene to yellow verescent (yv) located on chromosome 6 L site 34. Location of the third gene involved in parthenocarpy could not be determined. To calculate the power of the linkage tests, a simulation was carried out for three genetic models; the results are presented graphically in two figures.  相似文献   

19.
Tritordeum (X Tritordeum Ascherson et Graebner) is a synthetic amphiploid belonging to the Triticeae tribe, which resulted from crosses between Hordeum chilense and wheat. It presents useful agronomic traits that could be transferred to wheat, widening its genetic basis. In situ hybridisation with total genomic DNA from H. chilense and cloned, repetitive DNA sequences (pTa71 and pAs1) probes were used to discriminate the parental origin of all chromosomes, to analyse the chromosome pairing and to identify the chromosomes in pollen mother cells (PMCs) at metaphase I of the tritordeum line HT251 (HchHchDD, 2n = 4x = 28). The H. chilense total genomic DNA and the ribosomal sequence pTa71 probes, allowed the unequivocal discrimination of the 14 chromosomes of Hch genome-origin and the 14 chromosomes of D genome-origin. Chromosome pairing analysis revealed meiotic irregularities such as reduced percentage of PMCs with complete homologous pairing, high frequency of univalents, most of H. chilense-origin and a reduced frequency of intragenomic multivalents from both genomes. The H. chilense genome revealed high meiotic instability. After individual chromosome identification at metaphase I with the pAs1 probe, we found the occurrence of pairing between chromosomes of different homoeology groups. The possible interest of the tetraploid tritordeum in the improvement of other Triticeae species is also discussed.  相似文献   

20.
Summary Fluorescent in situ hybridization (FISH) of DNA to plant chromosomes has proved to be a powerful cytogenetic tool. The value of fluorescent in situ hybridization of total genomic DNA (GISH) of related species is demonstrated in the determination of wheat/alien chromosome pairing in hybrids. Its use for assessing the relative merits of the various genes that affect chromosome pairing is also shown.The ability of GISH to identify the presence in wheat of whole alien chromosomes or alien chromosome segments is illustrated. The potential of FISH for detecting repeated DNA sequences, low copy sequences and single copy genes is discussed.Abbreviations FISH fluorescent in situ hybridization - GISH genomic in situ hybridization - PRINS primer-induced in situ hybridization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号