首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用小麦族7个部分同源群的40个RFLP探针对小麦——纤毛鹅观草二体附加系进行分析,在证实了原有细胞学鉴定结果的基础上,又进一步提供了纤毛鹅观草染色体部分同源群的分子证据。即96K025,96K026中添加的一对纤毛鹅观草染色体B属于第2部分同源群;96K012, 96K013中添加的一对染色体E属于第5部分同源群。对以上株系的衍生株系  相似文献   

2.
大赖草7Lr#1S染色体上携带赤霉病抗性基因,将其导入普通小麦有助于增加赤霉病抗源多样性和选育抗赤霉病品种。利用染色体C-分带、荧光原位杂交和分子标记技术从普通小麦–大赖草7Lr#1单体异附加系的花粉辐射后代中,选育出易位系T7BS·7Lr#1S (NAU639)和T2AS·2AL-7Lr#1S (NAU640)。经连续3年大田、温室赤霉病接种鉴定,这2个易位系的赤霉病抗性均显著高于感病亲本中国春、感病对照绵阳8545和石麦4185,为赤霉病抗病育种提供了新的种质资源。  相似文献   

3.
Resistance to Pseudocercosporella herpotrichoides in five wheat cultivars, accession W6 7283 of Dasypyrum villosum, and ‘Chinese Spring’ disomic addition lines of the D. villosum chromosomes IV, 2V, 4V, 5V, 6V and 7V, was evaluated in seedlings by measuring disease progress 6 weeks after inoculation with a β—glucuronidase—transformed strain of the pathogen and by visual estimates of disease severity. D. villosum and the disomic addition line of chromosome 4V were as resistant as wheat cultivars ‘VPM—1’ and ‘Cappelle Desprez’, but less resistant than ‘Rendezvous’. Resistance of the chromosome 4V disomic addition line was equivalent to that of D. villosum.‘Chinese Spring’ and disomic addition lines of IV, 2V, 5V, 6V and 7V were all susceptible. These results confirm Sparaguee's (1936) report of resistance in D. villosum to P. herpotrichoides and establish the chromosomal location for the genes controlling resistance. The presence of chromosome 4V in the addition line and its homocology to chromosome 4 in wheat were confirmed by Southern analysis of genomic DNA using chromosome group 4-specific clones. This genetic locus is not homoeologous with other known genes for resistance to P. herpotrichoides located on chromosome group 7, and thus represents a new source of resistance to this pathogen.  相似文献   

4.
王林生  张雅莉  南广慧 《作物学报》2018,44(10):1442-1447
大赖草对赤霉病具有较好的抗性,将大赖草赤霉病抗性基因转入普通小麦,对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦–大赖草异附加系基础上,采用~(60)Co-γ射线(1200Rad,剂量率100Rad min~(-1))处理小麦–大赖草二体附加系DA7Lr,并用处理后的花粉授给去雄的普通小麦中国春,对其M_1代种子根尖细胞有丝分裂中期染色体进行GISH分析,获得1株具有一条普通小麦–大赖草易位染色体的植株,对其自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期I观察发现,2条易位染色体形成了稳定的环状二价体,表明该植株为纯合体。利用顺序GISH–双色FISH分析,结合C-分带、小麦D组专化探针Oligo-pAs1-2和B组专化探针Oligo-pSc119.2-2,进一步鉴定出该易位系为T5AS-7LrL·7LrS,同时筛选出可追踪该易位系的3个EST-STS分子标记,即BE591127、BQ168298和BE591737。该易位系的育成也为小麦赤霉病遗改良提供了新种质。  相似文献   

5.
A powdery mildew resistant double disomic wheat-rye substitution line carrying rye chromosomes 1R and 2R was crossed with normal bread wheats. The F2 generation was analysed cytologically by C-banding. Wheat-rye chromosome translocations involving both rye chromosomes 1R and 2R were frequent in F2. Lines with translocations of 1R and 2R were harvested separately. After four generations of selfing and selection for mildew resistance and fertility, fully fertile resistant lines were selected and analysed cytologically. Lines with 1BL/1RS and 2BS/2RL translocations were identified. The resistance on chromosome 1RS could not be shown to be different from control varieties carrying the same rye segment, while the resistance on 2RL is much broader than the earlier known 2RL derived resistance in the line Transec. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We developed a new disomic addition line M11028‐1‐1‐5 (2n = 44 = 21” + 1”) from a cross between wheat cv. ‘7182’ and octoploid Tritileymus M47 (2= 8x = 56, AABBDDN sNs ). Cytological observations demonstrated that M11028‐1‐1‐5 contained 44 chromosomes and formed 22 bivalents during meiotic metaphase I. The genomic in situ hybridization (GISH) investigations showed this line contained 42 wheat chromosomes and a pair of L. mollis chromosomes. SSR, EST and PCR‐based landmark unique gene (PLUG) markers were screened to determine the homoeologous relationships of the introduced L. mollis chromosomes in wheat background. Nine markers, i.e. Xwmc256, Xgpw312, Swes123, CD452568, BF483643, BQ169205, TNAC1748, TNAC1751 and TNAC1752, all of which were located on the homoeologous group 6 chromosomes of common wheat, amplified bands unique to L. mollis in M11028‐1‐1‐5. Gliadin analysis also confirmed that the added chromosomes in M11028‐1‐1‐5 were correlated with the sixth group chromosome. This indicated that M11028‐1‐1‐5 contained a pair of introduced L. mollis chromosome belonging to homoeologous group 6, which we designated it as Lm#6 Ns disomic addition line. This is the first report of a common wheat–L. mollis disomic addition line.  相似文献   

7.
Chromosome 7Hch from Hordeum chilense has potential for improving seed carotenoid content in wheat as it carries a Phytoene synthase 1 (Psy1) gene, which has a major role in this trait. Structural changes in chromosome 7Hch were obtained in common wheat background by crossing the wheat disomic substitution line 7Hch(7D) with a disomic addition line carrying chromosome 2Cc from Aegilops cylindrica in common wheat cv. ‘Chinese Spring’. Rearranged 7Hch chromosomes were cytologically characterized by FISH. A set of 24 molecular markers and the Psy1 gene were used to identify the H. chilense chromosome segments involved in the introgressions. Six structural rearrangements of chromosome 7Hch were identified. They included three homozygous wheat–H. chilense centromeric translocations, one involving the 7HchS arm (T‐7HchS·A/B) and two involving the 7HchL arm (T1‐7HchL·A/B and T2‐7HchL·A/B). In addition, one 7HchS arm deletion, one 7HchL·7HchL isochromosome and one 7HchS telosome were obtained in hemizygous condition. These genetic stocks will be useful for studying the effect of chromosome 7Hch on wheat flour colour.  相似文献   

8.
Leaf and stripe rusts are severe foliar diseases of bread wheat. Recently, chromosomes 5Mg from the related species Aegilops geniculata that confers resistance to both leaf and stripe rust and 5Ut from Ae. triuncialis conferring resistance to leaf rust have been transferred to bread wheat in the form of disomic DS5Mg(5D) and DS5Ut(5A) chromosome substitution lines. The objective of this study was to shorten the alien segments in these lines using Ph I-mediated, induced homoeologous recombination. Putativerecombinants were evaluated for their rust resistance, and by genomic in situ hybridization and microsatellite analyses. One agronomically useful wheat-Ae. geniculata recombinant resistant to leaf and stripe rust was identified that had only a small terminal segment of the 5MgL arm transferred to the long arm of an unidentified wheat chromosome. This germplasm can be used directly in breeding programs. Only one leaf rust-resistant wheat-Ae. triuncialis recombinant, which consists of most of the complete 5Ut chromosome with a small terminal segment derived from 5AS, was identified. This germplasm will need further chromosome engineering before it can be used in wheat improvement. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Wheat–Psathyrostachys huashanica Keng disomic addition line 12-3 was developed and characterized using genomic in situ hybridization (GISH), expressed sequence tag–sequence tagged site (EST–STS), and sequence characterized amplified region (SCAR) markers. Mitotic and meiotic GISH analyses indicated that it contained 42 wheat chromosomes and a pair of P. huashanica chromosomes. Eight EST–STS multiple-loci markers located on the homoeologous group 1 chromosomes of wheat amplified polymorphic bands in the 1Ns disomic addition line 12-3, which were unique to P. huashanica. These markers suggested that the introduced Ns chromosomes belonged to homoeologous group 1. Furthermore, diagnostic fragments of random amplified polymorphic DNA marker OPAG10986 and simple sequence repeat marker Xgwm601 135 were cloned, sequenced, and converted into SCAR markers, i.e., RHS153 and SHS10, respectively, which were validated using a range of distinct plant species and a complete set of wheat–P. huashanica disomic addition lines (1Ns–7Ns, 2n = 44 = 22 II). The results demonstrated that the SCAR markers targeted the Ns genome of P. huashanica and they were linked to the 1Ns chromosome. In addition, 12-3 was evaluated to test its leaf rust resistance in the adult stages and its agronomic traits. These newly developed EST–STS and SCAR markers will be powerful tools for wheat breeders who want to screen for genotypes containing the 1Ns chromosome, with low costs and high throughput.  相似文献   

10.
I. Leonova    A. Borner    E. Budashkina    N. Kalinina    O. Unger    M. Röuder  E. Salina 《Plant Breeding》2004,123(1):93-95
The tetraploid wheat Triticum timopheevii Zhuk (AtAtGG) is known as a source of genes determining resistance to many diseases. An introgressive line 842, with durable resistance to leaf rust was established by crossing T. aestivum cv. ‘Saratovskaya29’ with T. timopheevii ssp. viticulosum and used for mapping leaf rust resistance genes. Molecular analysis of the line 842 with polymorphic microsatellite markers detected introgressions of T. timopheevii into the homoeologous group 2 chromosomes of common wheat. Transloca‐tion breakpoints of introgressed fragments were localized between the markers Xgwm95 and Xgwm817 on chromosome 2A, as well as Xgwm1128 and Xgwm1067 on chromosome 2B. Linkage analysis demonstrated the association of disease resistance at the seedling stage with chromosome 2A. The gene was found to be linked with marker Xgwm817 at a genetic distance of 1.5 cM. The alien leaf rust resistance gene was temporarily designated as lrTt1.  相似文献   

11.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
用227对小麦微卫星引物进行PCR扩增,76对可在多枝赖草和耐黄矮病的普通小麦-多枝赖草二体异附加系Line24的小麦亲本中国春、丰抗13间检测到多态性。和多枝赖草相同而与Line24其他小麦亲本不同的扩增带。在这76对引物中,发现有4对引物能从Line24中扩增出进一步用Line24和普通小麦杂交得到的7个不同的单体异附加系进行验证,也得到同样的结果,说明这4对微卫星引物扩增出的特异带可以作为Line24中多枝赖草染色体的分子标记。根据这4对引物各自对应的微卫星标记位点在小麦染色体上的位置,说明Line24中附加的一对多枝赖草染色体是第3,5,6和7部分同源群多枝赖草染色体相互易位形成的。  相似文献   

13.
Z. S. Lin    D. H. Huang    L. P. Du    X. G. Ye    Z. Y. Xin 《Plant Breeding》2006,125(2):114-119
Among the regenerated plants derived from immature hybrid embryos of wheat–Thinopyrum intermedium disomic addition line Z6 × common wheat variety ‘Zhong8601’, a plant with a telocentric chromosome and barley yellow dwarf virus (BYDV) resistance was obtained. The telocentric chromosome paired with an entire Thinopyrum chromosome to form a heteromorphic bivalent at meiotic metaphase I. Genomic in situ hybridization showed that the telosome originated from Th. intermedium. Two ditelosomic additions and one disomic substitution were identified among the offspring of the plant. Two random amplified polymorphic DNA molecular markers were identified among 150 random primers used to detect the different arms of the alien chromosome. These might be useful for developing translocation lines with BYDV resistance.  相似文献   

14.
利用染色体C-分带和基因组原位杂交分析,从普通小麦-簇毛麦4V染色体二体异附加系(DA4V)与普通小麦农林26-离果山羊草3C染色体二体异附加系(DA3C)杂种后代中选育出小麦-簇毛麦纯合易位系T4VS·4VL-4AL。SSR和RFLP标记分析表明,该易位染色体包括4VS、4VL近着丝粒部分区段和4AL顶端区段;该易位系具有良好的细胞学稳定性,结实正常,为杀配子染色体诱发形成的补偿型易位;易位系T4VS·4VL-4AL高抗梭条花叶病,是小麦抗病育种新种质。  相似文献   

15.
应用GISH与STS标记鉴定小麦-中间偃麦草抗黄矮病端体系   总被引:3,自引:3,他引:0  
由大麦黄矮病毒引起的小麦黄矮病毒病是一个严重病害,至今在小麦属内还没有发现抗源。中间偃麦草2Ai-2染色体携带一个高抗黄矮病基因,对该基因的染色体臂定位将为制定抗病基因向小麦转移策略,筛选、开发特定的、与抗性连锁的分子标记的研究提供重要信息。本文对由小麦-中间偃麦草二体附加系Z6衍生的3个抗黄矮病端体系进行鉴定,通过分析端体的遗传构成、筛选与端体共分离的STS标记以确定端体在遗传上的染色体臂归属,从而明确BYDV抗病基因的染色体位置。以拟鹅冠草基因组[Pseudoroegneria strigosa (M. Bieb.) Löve,St]DNA为探针,中国春基因组(Triticum aestivum L., ABD) DNA作封阻分别对抗病亲本Z6及抗病端体系N530的根尖体细胞染色体进行原位杂交,结果表明,N530体细胞中有2个端体显示出与Z6中外源染色体2Ai-2短臂相似, 而与长臂不同的杂交信号。以小麦第2同源群的5个RFLP探针的DNA序列为基础,设计了6对PCR引物,对小麦-中间偃麦草二体异附加系、二体代换系和端体系进行扩增,结果表明,基于短臂探针psr126,psr131序列设计的2对引物,可在含有2Ai-2染色体及端体的抗黄矮病材料中特异扩增,而基于长臂探针psr112序列设计的1对引物,可在含有2Ai-2染色体的抗黄矮病材料中特异扩增,但不能在端体系进行特异扩增,证明外源端体为2Ai-2染色体的短臂。本研究不仅将黄矮病抗性基因定位于2Ai-2染色体的短臂上, 而且由RFLP探针psr126、psr131和psr112序列转化的标记STS126 (sequence tagged site) STS131和STS112还可分别作为追踪2Ai-2染色体短臂和长臂的分子标记,用于抗病易位系辅助选择。  相似文献   

16.
Two series of progenies were developed from hybrids between octoploid (AABBDDRR) and tetraploid triticale ((AB)(AB)RR). One arose from the successive selfing of the F1s, while the second was established after one backcross of the F1 hybrids with the respective 8 × triticale parent. Altogether, 250 F3 and BC1F2 lines were developed, of which 112 were karyotyped in the F4/F5 or in BC1F3/BC1F4 generations using C-banding and SDS-PAGE. The 112 lines represented 61 different karyotypes, of which 39 appeared to be stabilized, having pairs of homologous wheat chromosomes only, while 22 karyotypes exhibited 1—3 heterologous pairs. The frequency of karyotypically stabilized lines originating from the series with one backcrossing was much higher (79.5 %) than those derived from the successive selfing of the F1 hybrids (51.7%). Six lines had the pure hexaploid triticale chromosome constitution. The frequency of disomic substitutions of D genome chromosomes for their homoeologous A and/or B genome chromosomes ranged from one to six per line with an average of 1.7. Except for 3B and 6B all possible D(A/B) substitutions were obtained. Chromosomes ID and 3D substituted for their homoeologues with the highest frequency, while the substitution of chromosome 4D for 4A or for 4B was the least frequent. D(R) substitutions were found in eight lines only. A complete set of 6x triticale lines was established in which chromosome ID was present in all possible combinations, i.e. single 1D(1A/1B/1R) disomic substitutions as well as disomic ID addition.  相似文献   

17.
Previous studies showed that a T. aestivum-H. villosa disomic substitution line DS4V(4D) showed a high level of resistance to wheat spindle streak mosaic virus (WSSMV). By crossing DS4V(4D) with the common wheat variety Yangmai #5, plants were obtained that were double monosomic for chromosomes 4V and 4D. Univalents are prone to misdivision at the centromere, and fusion of the derived telocentric chromosomes leads to the production of Robertsonian whole-arm translocations. We screened the progenies of such double monosomic plants by C-banding and genomic in situ hybridization and identified one compensating translocation where the short arm of 4V was translocated to the long arm of 4D of wheat, T4VS⋅4DL. RFLP analysis using the group-4 specific probe BCD110 was used to confirm the translocation. The T4VS⋅4DL translocation stock, accessioned as NAU413, is highly resistant to WSSMV and is also of good agronomic type. The WSSMV resistance gene located on 4VS was designated Wss1.  相似文献   

18.
Durum or macaroni wheat (Triticum turgidum L., 2n = 4x = 28; AABB) is an allotetraploid with two related genomes, AA and BB, each with seven pairs of homologous chromosomes. Although the corresponding chromosomes of the two genomes are potentially capable of pairing with one another, the Ph1 (Pairing homoeologous) gene in the long arm of chromosome 5B permits pairing only between homologous partners. As a result of this Ph1-exercised disciplinary control, durum wheat and its successor, bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) show diploid-like chromosome pairing and hence disomic inheritance. The Ph mutants in the form of deletions are available in bread wheat (ph1b) and durum wheat (ph1c). Thus, ph1b-haploids of bread wheat and ph1c-haploids of durum wheat show extensive homoeologous pairing that has been shown by us and several others. Here we study the effect of ph1b allele of bread wheat on chromosome pairing in durum haploids, whereas we studied earlier the effect of ph1c allele in durum haploids that we synthesized. In durum wheat, the ph1b-haploids show much higher (49.4% of complement) pairing than the ph1c-haploids (38.6% of complement). Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA or imply approval to the exclusion of other products that also may be suitable.  相似文献   

19.
Agropyron cristatum exhibits resistance to Blumeria graminis f. sp. tritici. Disomic and ditelosomic chromosome addition lines of A. cristatum in ‘Chinese Spring’ wheat were utilized to determine which A. cristatum chromosomes carry resistance gene(s). Resistance is conferred by gene(s) on chromosome arms 2PL and 6PL. The availability of molecular markers capable of detecting these chromosome arms in a wheat background would be very useful for marker-assisted introgression of 2PL and 6PL chromatin into common wheat. With this aim, 170 wheat conserved orthologous set (COS) markers (92 and 78 from wheat homoeologous groups 2 and 6 respectively) were assessed for their utility in A. cristatum. A total of 116 (68.2%) COS markers successfully amplified product in A. cristatum and 46 (40.0%) of these markers were polymorphic between A. cristatum and common wheat. From marker loci mapping on wheat homoeologous group 2 chromosomes, 23 markers (34.9%) were polymorphic between A. cristatum and common wheat and from them 13 markers were assigned to chromosome arm 2PL and six markers were mapped to chromosome 4P of A. cristatum showing that this chromosome is related to wheat homoeologous group 2. From marker loci mapping on wheat homoeologous group 6 chromosomes, 23 (46.0%) markers were polymorphic between A. cristatum and common wheat and from them 17 markers were located on chromosome 6P, six of them were mapped to chromosome arm 6PS and five to chromosome arm 6PL, respectively. The specific COS markers allocated on the long arms of chromosomes 2P and 6P may have a role in marker-assisted screening in wheat breeding for powdery mildew disease resistance.  相似文献   

20.
为发掘和利用荆州黑麦所携抗梭条花叶病基因,综合利用分子细胞遗传学与分子标记技术结合多年抗性鉴定,从高感梭条花叶病小麦地方品种辉县红与荆州黑麦杂交后代(F7~F9)中选育出二体异附加系5个(分别添加1R、2R、R3、5R和R7)、5RS端二体异附加系1个和多重异附加代换系2个(染色体组成分别为20’’+2R(2D)’’+4R’’和19’’+1R(1B)’’+2R(2B)’’+4R’’)。鉴定表明,双二倍体荆辉1号高抗梭条花叶病,表明黑麦抗性基因可在小麦背景中稳定表达,2R、R7二体异附加系及2个含2R的多重异附加代换系均表现高抗,推测2R和R7上可能携带抗病基因。这些材料是研究荆州黑麦抗性基因遗传及小麦抗病育种的新种质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号