首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
潮土磷素累积流失风险及环境阈值   总被引:4,自引:3,他引:1  
潮土是中国分布比较广、施肥强度大的典型耕作土壤,潮土中磷素累积与流失对区域水环境的污染风险不容忽视。该研究在潮土面积最大的河南省采集磷素水平不同的典型潮土作为供试土壤,采用人工模拟降雨及土柱模拟试验方法,通过测定土壤中Olsen-P和溶解态活性磷CaCl2-P含量以及径流或淋滤液中各形态磷浓度,研究了潮土中磷素随地表径流和下渗流失特征,并通过分段线性模型对潮土的磷素环境阈值进行拟合。结果表明:1)不同形态磷在潮土土壤剖面中均有一定程度的累积,土壤Olsen-P和CaCl2-P含量表现为高磷最大,中磷次之,低磷最小,而磷吸持指数值表现为低磷最大,中磷次之,高磷最小。从磷素的剖面分布来看,低磷和中磷水平潮土Olsen-P和CaCl2-P含量随着土壤深度的增加而降低,而高磷水平的潮土Olsen-P和CaCl2-P含量在20~40 cm土层含量最高。2)不同磷水平潮土径流中总磷(TP)、可溶性总磷(TDP)和颗粒磷(PP)浓度和流失量大小表现为高磷最高,中磷和低磷水平土壤次之,潮土径流流失以PP为主。3)低磷和中磷水平潮土淋滤液中的各形态磷浓度和流失量随着土层深度的增加而降低,而在高磷水平的潮土淋滤液中,20~40 cm土层淋滤液中磷浓度和流失量要显著高于其他土层,在整个土壤剖面磷素浓度随着土层深度的增加呈现先上升后下降的趋势,潮土淋滤流失以TDP为主,其中,高磷和低磷水平潮土以可溶性有机磷占主导,而中磷水平潮土以钼酸盐反应磷(MRP)占主导。4)通过分段回归模型将不同含磷水平潮土的水溶性磷与土壤中Olsen-P含量进行拟合,得出潮土土壤磷素环境阈值为24.65 mg/kg,研究还表明径流和渗漏液中TP浓度与土壤CaCl2-P含量呈显著正相关,因此可通过测定CaCl2-P来预测并判断土壤磷素流失风险。  相似文献   

2.
土壤磷素流失已成为地表水富营养化的重要威胁,红壤在我国分布范围广、分布面积大,研究红壤磷素累积与流失特征可为红壤区农业面源污染控制、防止区域地表水污染提供科学依据。选取红壤区牧草地、休闲地、玉米地、菜地、大棚5种常见土地利用方式,采用人工模拟降雨方法,研究了红壤区不同土地利用方式下磷素累积状况、形态组成和随地表径流的迁移特征及其环境阈值。结果表明:(1)供试土壤Olsen-P含量的范围为6.81~178.17 mg/kg,土壤溶解态活性磷(CaCl_2-P)含量的范围为0.29~8.26 mg/kg,藻类可利用总磷(NaOH)的变化范围为30.34~369.81 mg/kg,不同利用方式红壤中均存在一定程度的磷素累积;(2)不同利用方式红壤的磷吸持指数PSI范围为31.95~47.05,均值大小表现为牧草地玉米地菜地休闲地大棚;(3)红壤地表径流中TP的浓度范围为0.245~2.073 mg/L,TDP浓度范围为0.023~0.308 mg/L,PP浓度范围为0.223~1.826 mg/L,不同场次降雨地表径流中TP和PP平均浓度和流失量大小与土壤表层Olsen-P含量分布规律一致,TDP平均浓度表现为大棚菜地旱地玉米牧草地休闲地,而TDP流失量却表现为大棚菜地牧草地休闲地旱地玉米;径流输出以PP为主,占TP的比例为82.46%~90.15%;(4)土壤Olsen-P与NaOH-P和CaCl_2-P存在极显著正相关,随着Olsen-P含量的增加,NaOH-P和CaCl_2-P提高,且Olsen-P与NaOH-P之间存在一个明显的"突变点",确定36.17 mg/kg为红壤磷素流失的环境阈值,同时还指出,径流TP浓度或流失量与土壤NaOH-P含量呈显著正相关。  相似文献   

3.
有机肥对稻田土壤磷素潜在环境风险的影响   总被引:4,自引:0,他引:4  
采用灭菌和非灭菌相结合的室内淹水培养方法,在施用有机肥后,测定土壤及水层磷含量动态变化特征,以探明有机肥对稻田土壤磷素潜在环境风险的影响。结果表明:两处理土壤速效磷(Olsen-P)、水溶性磷(CaCl2-P)含量均随有机肥施用量增加而显著升高;水层总磷(TP)浓度与土壤Olsen-P(r=0.957**)、CaCl2-P(r=0.871**)含量呈显著正相关关系。水稻土施用有机肥后,土壤磷素有效性提高,磷素潜在环境风险增强,在6~18 d达到高峰,磷素流失潜能最大。低量施用有机肥(0.5%、1%)时,磷素环境风险增强主要由于有机酸对磷素的活化作用;高量施用有机肥(2.5%、5%)时,主要由于有机质对磷素的活化作用,两者作用比例分别为35%~50%、50%~65%。  相似文献   

4.
《土壤通报》2014,(6):1471-1476
随着磷肥施用量增加,土壤磷素累积,由此所引起的土壤磷素流失越来越成为水体磷素的重要来源。本研究采集湖北省主要类型土壤,土壤风干过2 mm筛后,加入不同量的K2HPO4(0,30,40,60,100,160,200,240,300,400 mg P/kg土)进行室内培养,测定土壤M-3P、CaCl2-P和Fe、Al含量,计算土壤磷吸持饱和度(DPS),利用Split-line模型,预测不同土壤类型磷素流失风险。结果表明:土壤M-3P与Fe、Al含量间关系符合y=y0+axb方程(P0.05);土壤DPS与CaCl2-P含量关系,存在一个明显的突变点,即土壤磷素流失环境临界值,超过该值时,CaCl2-P含量急剧增加,但不同土壤类型其临界值差异较大,潮土、红壤和水稻土土壤磷素流失DPS临界值分别为18.8、12.9和13.3%,相对应的CaCl2-P含量分别为2.21、0.92、0.60 mg kg-1,根据以上临界值判断,红壤、水稻土极易发生流失。从区域角度考虑,土壤磷素流失DPS临界值为18.80%,该值能够给当地农业生产过程中的土壤磷素区域环境管理提供指导。  相似文献   

5.
以山东寿光集约化设施菜田为研究对象,分析了不同种植年限设施菜田土壤磷素投入和土壤磷素累积的差异,比较不同种植年限土壤剖面中无机磷、有机磷、Olsen-P和CaCl2-P含量的变化特征。结果表明:磷素过量积累是设施菜田的显著特征,主要由于有机肥以粪肥投入为主,复合肥中P素比例偏高,收获作物带走量仅占磷素投入的7.2%;随着种植年限增加,P素累积现象明显,过量的磷素盈余导致了土壤剖面中不同形态磷含量的上升,其中以无机磷尤其明显;用来表征土壤有效磷指标的Olsen-P与CaCl2-P有显著的相关性,研究区域中当土壤(Olsen-P)达到80.7mg·kg-1时,土壤CaCl2-P开始显著升高,增大了设施菜田磷素淋溶风险。  相似文献   

6.
山西省菜园土壤磷素积累特征及流失风险分析   总被引:4,自引:0,他引:4  
为了解山西省不同区域菜园土壤磷素积累以及流失情况, 本文分析了菜园土壤磷饱和度(DPS)、Mehlich3-P、Olsen-P与水溶性磷(Pw)的积累特征.结果表明: 山西各地菜园土壤4种磷素(土壤全磷、水溶性磷、Olsen-P和 Mehlich3-P)积累明显, 已经远远超过作物需求量; 土壤表层水溶性磷含量随着土壤磷饱和度(DPS)、Olsen-P、Mehlich3-P含量的增加而增加; 且Mehlich3-P与Olsen-P、水溶性磷与Olsen-P、水溶性磷与Mehlich3-P之间具有极显著相关性, 相关系数分别为0.976 6、0.923 2、0.962 0 (P<0.01); 当磷饱和度大于46.64%、Olsen-P大于81.88 mg·kg-1、Mehlich3-P大于164.59 mg·kg-1时, 水溶性磷含量上升幅度迅速增大, 由此将土壤磷饱和度为46.64%、Olsen-P 为81.88 mg·kg-1、Mehlich3-P为164.59 mg·kg-1和水溶性磷为8.05 mg·kg-1初步确定为山西省菜园土壤磷素流失的临界值.该结果将为探讨山西农田土壤磷素的养分管理和环境风险评估提供重要的理论依据.  相似文献   

7.
紫色土磷素流失的环境风险评估-土壤磷的“临界值”   总被引:10,自引:0,他引:10  
李学平  石孝均  刘萍  隋涛 《土壤通报》2011,(5):1153-1158
采用室内培养的方法,研究了3种类型的紫色土旱地和淹水土壤磷素流失的环境阈值。结果表明:无论是淹水土壤或旱地生境,3种紫色土Olsen-P与CaCl2-P之间都存在一个"临界值",酸性、中性和钙质紫色土磷素淋失临界点的Olsen-P含量分别为67.2、85.8和113.8 mg kg-1。淹水土壤磷素环境敏感值在酸性、中性和钙质紫色土上,Olsen-P含量分别为49.2、77.9和92.1 mg kg-1。3种紫色土在淹水还原条件下土壤磷环境敏感临界值比旱地低,淹水还原条件提高了紫色土磷向水体释放的风险。淹水土壤Olsen-P含量与田表水TP、DP浓度之间存在"临界值",酸性、中性和钙质土临界值处土壤Olsen-P含量分别为(65±1.41)mg kg-1(、96.7±2.7)mg kg-1和(105.5±1.1)mg kg-1。土壤0.01 mol L-1 CaCl2-P与田表水TP、DP之间呈极显著的线性关系。可以利用这些指标对紫色土区域土壤磷环境风险进行评价,并确定区域磷肥的最佳管理策略。  相似文献   

8.
通过对黄土旱塬地区长期(26a)定位施肥条件下的不同施肥处理的土壤磷素及其吸持参数的测定,以及通过室内模拟试验对土壤磷素淋失突变点的测定,研究了土壤磷素吸持参数、土壤磷素淋失突变点和部分土壤性质之间的关系。结果表明,经过26年的长期施肥,M75P60和M75N120P60处理的Olsen-P含量比CK处理的提高了10.7和9.8倍,全磷(T-P)含量比CK处理的提高了60.4%和57.7%。长期磷肥和有机肥投入可以减低土壤磷素的最大吸附量(Qm),而提高土壤磷素的吸附饱和度(DPSS),M75N120P60处理的Qm比CK的减低了49.92%,而DPSS比CK的提高了21.5倍。相关分析表明,黄土旱塬土壤的Qm与Olsen-P、T-P和CaCl2-P呈极显著的负相关关系(P<0.01),与土壤有机质呈显著负相关关系(P<0.05)。零净吸附浓度磷(EPC0)与Olsen-P和CaCl2-P呈极显著正相关关系,与T-P和SOM也达到显著正相关,而与pH值的关系不显著,但土壤磷最大缓冲能力(MBC)与pH值的关系达到极显著。DPSS与Olsen-P、T-P、CaCl2-P和SOM呈极显著正相关关系。土壤磷素淋失的Olsen-P突变点值与土壤吸持参数Qm呈极显著正相关,与MBC也达到显著正相关,与DPSS、Olsen-P、T-P和CaCl2-P呈极显著负相关关系。该地区土壤磷素淋失的Olsen-P突变点值与DPSS15%的值极为吻合,即可以用DPSS15%值作为该地土壤磷素淋失的突变点值。  相似文献   

9.
洞庭湖区不同利用方式下耕作土壤的磷素状况   总被引:2,自引:0,他引:2  
通过对湖南省沅江市典型区域高密度采样分析和农户基本情况调研,研究了洞庭湖区4种主要利用方式下的土壤磷素状况。结果表明,4种主要利用方式下的土壤磷素都呈盈余状态,盈余量为旱地>双季稻水田>水旱轮作地>一季稻水田。不同利用方式下土壤的全磷含量没有差异,平均1.00 g.kg-1;土壤提取磷(Olsen-P,下同)含量为旱地>双季稻水田>水旱轮作地>一季稻水田。成土母质(长江冲积物)是洞庭湖区土壤全磷和Olsen-P含量较高的主要原因,不同利用方式下磷肥施用和磷素平衡的不同是Olsen-P差异的决定因素。土壤微生物量磷(MB-P,下同)含量规律为双季稻水田>水旱轮作地>一季稻水田>旱地,其差异主要是由投入的有机物料量(双季稻水田>一季稻水田>旱地>水旱轮作地)引起的,而水旱轮作地的土壤MB-P偏高与采样时间正值油菜花期有关。  相似文献   

10.
长期施肥对旱地红壤团聚体磷素固持与释放能力的影响   总被引:12,自引:2,他引:10  
在中国科学院红壤生态试验站26年的旱地红壤长期肥料定位试验中,选取无机肥试验区的NPK、NK处理,有机无机肥配施试验区的对照(CK)、CK+稻秆(RS)、CK+花生秸秆还田(PS)、CK+绿肥(FR)及CK+猪厩肥(PM)等7个肥料处理土壤,采用湿筛法逐级提取并得到粒级依次为2 mm、2~1 mm、1~0.25 mm与0.25~0.053 mm的团聚体土壤样品;通过室内分析获得了土壤及各粒级团聚体的全磷(TP)、有效磷(Available P)、水溶性磷(CaCl_2-P)、土壤磷素吸持指数(PSI)及土壤磷素饱和度(DPS)等指标值,并探讨了上述测定指标间的相关关系。结果表明:长期施用磷肥可有效保持旱地红壤的供磷水平,配施猪厩肥可显著增加旱地红壤及大小团聚体的TP、有效磷及CaCl_2-P含量、降低土壤PSI并显著增大旱地红壤DPS,加大了旱地红壤磷素的流失风险;随着土壤中1 mm粒级团聚体数量的增多,旱地红壤磷素储量显著增加,磷素固持能力显著下降,土壤磷释放潜能随之增大。由DPS、有效磷及CaCl_2-P的分段线性拟合方程可以推断得出,当旱地红壤中有效磷为168~260 mg kg~(-1)时或DPS28%,土壤磷素具有潜在流失风险;当有效磷≥260 mg kg~(-1)或DPS≥28%,土壤磷素具有极高的流失风险,应立即停止施用磷肥尤其是有机磷肥,并重新调整施肥方案,以避免土壤磷素流失及其对水体环境的污染。  相似文献   

11.
长期施肥下黄壤旱地磷对水环境的影响及其风险评价   总被引:23,自引:1,他引:23  
通过对贵州中部黄壤旱坡地进行采样以及采用无界径流小区法收集地表径流样品 ,探讨长期施肥下旱地磷素水平与地表径流磷浓度的变化及其对水环境的影响。结果表明 :长期施肥下黄壤旱地的磷素水平不断提高 ,CaCl2 浸提磷 (溶解态活性磷 )和NaOH浸提磷 (藻类可利用的土壤总磷 )与土壤全磷或有效磷之间存在显著的相关性 ,土壤富磷化的同时 ,旱地磷对水环境影响的潜能明显提高。黄壤旱坡地中CaCl2 浸提磷、Olsen P、NaOH浸提磷、土壤磷吸持指数、土壤磷饱和度与地表径流中颗粒态磷、生物有效性磷和溶解态活性磷之间的相关性均达显著水平 ,以这些参数作为评价指标 ,初步将黄壤旱地磷对水环境的潜在影响程度分为 3个等级  相似文献   

12.
陶其骧  魏向文 《土壤通报》2001,32(3):136-138
对江西 1 1种母质发育的有代表性的水稻土、旱作地、自然土壤 ,61个剖面 ,4 1 2个土样的可溶态稀土元素分析测定 ,统计结果表明 :江西土壤稀土元素的强度因素处于较高水平 ,平均值为 1 9 0mg/kg ,有 4 2 80 %的样点处于丰富级 ;有由南向北 ,由东向西逐渐降低的趋势 .其含量最高的地区是赣南由花岗岩、泥质岩、第四纪红粘土、酸性紫色土、碳质岩类风化物等母质发育的土壤 ,较低的为赣西北由石英岩 ,第三纪红砂岩、石灰岩、下蜀系黄土等母质发育的土壤 ;在土壤剖面分布中 ,旱作地表层低于底层 ,水稻土表层有生物富集作用高于底层 ;影响土壤中可溶态稀土元素含量的主要因子有 :成土母质 ,气候条件 (温度 ,降水量 ) ,土壤 pH ,土壤质地和耕作类型  相似文献   

13.
灌溉方式对保护地土壤磷素淋失风险的影响   总被引:2,自引:0,他引:2  
刘畅  张玉龙  孙伟 《土壤通报》2012,(4):923-928
自连续12年以相同试验方案、不同灌溉方式进行灌溉试验的保护地采集土壤样品,对不同灌溉处理土壤磷素淋失风险进行评价,并对影响土壤磷素淋失临界值大小的因素进行了探讨。灌溉处理设滴灌、沟灌和渗灌三种灌溉方式,采样深度为0~80 cm。结果表明,0~20 cm沟灌、渗灌和滴灌处理土壤的磷素淋失临界值Olsen-P含量分别为59.44 mg kg-1、65.39 mg kg-1和68.57 mg kg-1;而20~40 cm层次的土壤淋失值分别为60.61 mg kg-1,66.8 mg kg-1和70.58 mg kg-1;40~80cm土层则无临界值存在。影响土壤磷素淋失临界值Olsen-P含量的主要因素有土壤pH和有机质、活性Fe、活性Al、有效磷含量;土壤pH值越大、有机质、活性铁、活性铝和Olsen-P含量越高,磷素淋失临界值越大。对三种灌溉处理表层土壤磷素淋失风险进行综合评价,其风险大小顺序为沟灌、渗灌和滴灌,这提示人们在保护地生产中要充分注意土壤磷素有效性,通过选择合理的灌溉方式、改善施肥技术以加强保护地土壤水肥管理,保证作物生产高效、优质和降低环境风险。  相似文献   

14.
太湖水网地区不同种植类型农田磷素渗漏流失研究   总被引:3,自引:0,他引:3  
采用田间原位小型土壤渗漏计法研究了太湖流域水网地区不同种植类型农田土壤中的速效磷累积量与渗漏水中磷素含量之间的关系。结果表明:研究区菜地、果园高的年均磷肥施用量分别为946.8 kg/hm2和832.6 kg/hm2,显著高于水田的年均磷肥施用量(83.6 kg/hm2),约为水田的10~12倍。施入农田中的磷肥主要累积在土壤表层,0—5 cm土层中的Olsen-P含量最高,菜地、果园和水田的平均含量分别高达161.75 mg/kg、143.88 mg/kg和23.77 mg/kg,菜地和果园显著高于水田,约为水田的6~8倍。随着土层深度的增加,土壤中Olsen-P的含量显著降低。农田浅层渗漏水中的可溶态磷在总磷中所占的比例远高于颗粒态磷所占的比例。本研究结果显示,农田浅层渗漏水中溶解性正磷酸盐(DRP)含量与土壤中速效磷(Olsen-P)含量之间具有极显著的指数相关关系,表明伴随着农田施肥量的增加和土壤中速效磷含量的增加,浅层渗漏水中的溶解性正磷酸盐含量会显著增加,大大提高了农田磷素的渗漏淋失风险,造成对农业面源污染的巨大潜在压力。  相似文献   

15.
长期不施肥条件下几种典型土壤全磷和Olsen-P的变化   总被引:8,自引:3,他引:5  
研究了11个不同气候条件、不同耕作制度、典型土壤类型长期定位试验不施肥处理土壤全磷和Olsen-P变化及其影响因素。结果表明,在长期不施肥条件下耕作,土壤Olsen-P含量下降比全磷的明显;在试验进行5年左右,土壤全磷含量都有所降低,以后各点表现不尽相同,新疆灰漠土、长沙水稻土和郑州潮土全磷含量随时间延长呈显著直线下降,其它试验点全磷的变化不明显;作物携出磷与土壤全磷下降之间,无论绝对含量或相对含量都不成比例。土壤Olsen磷下降率比全磷高几倍。Olsen-P下降趋势与起始土壤Olsen磷含量有关:起始土壤Olsen-P磷大于20 mg/kg时,25年内一直呈现明显下降趋势,降低40.5 mg/kg,特别是前5年下降更快,降低30 mg/kg;起始土壤Olsen-P为10~20 mg/kg时,下降趋势比前者缓慢,15年内一直呈明显下降趋势,下降19 mg/kg, 前5年下降15 mg/kg,15年后几乎不变;起始土壤Olsen-P小于10 mg/kg时,25年内无明显变化。Olsen-P下降量与起始Olsen-P占全磷的比例成显著直线关系。  相似文献   

16.
不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估   总被引:14,自引:3,他引:11  
【目的】对南方赤红壤区不同施磷量下稻田土壤的磷素平衡及其潜在环境风险进行评估,为该地区合理施磷、 减轻农业面源污染提供依据。【方法】采用大田定位监测试验,3个不同年份(2011~2013年)早、 晚稻分别设置4个施磷水平(施磷范围为P2O5 0、 63~81、 126~162、 252~324 kg/hm2,分别用P0、 P1、P2、P3表示),连续3年测定早、 晚稻的稻谷和稻秆产量,分析其磷养分含量,以施磷水平与水稻地上部磷素累积量间的差值表示土壤磷素表观盈余量。同时,采集施基肥和穗肥后1、 2、 3、 5、 7和9 d的田面水,测定总磷含量,利用Split-line模型对2011~2012年每造水稻收获后小区耕层土壤Olsen-P含量和所有监测时间点的田面水总磷平均浓度进行分段回归,并对二者之间的相关关系进行分段回归拟合。【结果】 施磷量P2O5 63~81 kg/hm2的处理稻谷产量显著提高,但磷肥施用量增至2倍时,稻谷产量无明显增加,继续增至4倍时,前3造水稻稻谷的产量增加也不明显。施磷可不同程度地提高水稻地上部的磷素累积量、 土壤表观磷素盈余量和Olsen-P含量,且三者均随施磷量的增加而增加。在施肥后1~3 d内无磷处理田面水总磷浓度较高,是磷素流失的高危险期; 施磷量P2O5 63~81 kg/hm2的处理显著提高了施肥后2 d内田面水的总磷浓度,而P2O5 252~324 kg/hm2的处理在监测期间田面水总磷浓度均显著高于无磷处理。 Split-line模型模拟土壤Olsen-P与田面水总磷的关系,得出在本试验区土壤环境条件下,可能导致田面水中磷激增的土壤Olsen-P临界含量为19.0 mg/kg,对应的施磷量为P2O5 63 kg/hm2,与土壤磷素持平的施磷量一致。【结论】综合考虑水稻产量效应、 土壤磷素表观平衡和磷素环境风险,在本研究区域目前的土壤环境条件下,P2O5 63 kg/hm2为水稻产量较高、 环境风险较小的推荐施磷量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号