首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The tongue of the Florida manatee (Trichechus manatus latirostris) was studied macroscopically, light and electron microscopically. The tongue was slender, muscular and firmly fixed in the oral cavity; only the cranial tip was free and mobile. Numerous filiform papillae were distributed over the dorsal surface of the rostral tongue. Multiple raised, round fungiform-like papillae were distributed over most of the dorsum. Typical fungiform papillae were restricted to the lateral margins of the tongue. Foliate papillae, presenting as multi-fossulate openings, were noted on the caudolateral margins. Open pits were located on the dorsocaudal surface and lateral walls. Microscopic examination showed that most of the lingual dorsum was covered with a thick stratified squamous epithelium. Open pits led to well-developed mucous salivary glands. Glands within the foliate papillae were mostly mucous, although some seromucous glands were present. Taste buds were restricted to the epithelium of the foliate papillae. Throughout the tongue, striated muscle was abundant below the epithelium. Blood vessels, lymph channels and nerve fibres were freely distributed throughout the intermuscular stroma. Nerve fibres reacted positively with neurone specific enolase (NSE) antibody throughout the tongue, including nerve bundles, glands and taste buds. Clear to translucent vacuoles were found juxtaposed to nuclei in the stratum spinosum in the foliate papillae epithelium.  相似文献   

2.
The study of lingual surfaces and the surface of interface epithelium-connective tissue of the tongue of Bradypus torquatus was performed by employing the light and scanning electron microscopy (SEM) techniques. The results revealed that the rostral part of the tongue presents a round apex and covered by filiform and fungiform lingual papillae and a ventral smooth surface. It was observed that the epithelial layer of the dorsal surface possesses the basal, spinosum, granular and cornified epithelial cells. The lamina propria is characterized by a dense connective tissue forming the long, short and round papillae. Numerous typical filiform papillae are located especially in the rostral part intermingled for few fungiform papillae, which were revealed in three-dimensional SEM images. Usually, the fungiform papillae are located in the border of rostral apex of the tongue exhibiting the rounded form. They are covered by keratinized epithelial cells. In the fungiform papillae, several taste pores were observed on the surface. The vallate papillae presented numerous taste buds in the wall of epithelial cells, being that the major number of taste buds is located on the superior half of vallate papilla. The taste pores are surrounded by several laminae of keratinized epithelial cells. The samples treated with NaOH solution and examined by SEM revealed, after removal of the epithelial layer, the dense connective core in original disposition, presenting different sizes and shapes. The specimens stained with Picrosirius and examined by polarized light microscopy revealed the connective tissue, indicating the collagen fibres type I and type III.  相似文献   

3.
This study described the morphological features of the Persian leopard (Panthera pardus saxicolor) tongue using light and scanning electron microscopy techniques. The keratinized filiform papillae were distributed all over the entire dorsal surface of the tongue and contained small processes. They were changed into a cylindrical shape in the body and conical shape in the root. The fungiform papillae were found on the apex and margin of the tongue. Few taste pores were observed on the dorsal surface of each papilla. The foliate papillae on the margins of the tongue were composed of several laminae and epithelial fissures. Taste buds were not seen within the non‐keratinized epithelium. The vallate papillae were six in total and arranged in a “V” shape just rostral to the root. Each papilla was surrounded by a groove and pad. Taste buds were seen within their lateral walls. Lyssa was visible on the ventral surface of the tongue tip and was found as cartilaginous tissue surrounded by thin connective tissue fibres. The core of the tongue was composed of lingual glands, skeletal muscle and connective tissue. These glands were confined to the posterior portion of the tongue and were composed of many serous cells and a few mucous cells. The results of this study contributed to the knowledge of the morphological characteristics of the tongue of wild mammals and provided data for the comparison with other mammals.  相似文献   

4.
This study was made on 24 camel fetuses of crown‐rump vertebral length (CVRL) ranging from 10.5 cm to 105 cm CVRL (94–352 days old). These camel fetuses were classified into three groups representing the three trimesters of prenatal life. During the first trimester (94–142 days), lingual papillae (circumvallate and lentiform papillae) were demonstrated on the lingual root, but lingual body and the apex were almost free of papillae except for some scattered epithelial projections especially near the lateral borders of the body. In the second trimester (152–229 days), the lentiform papillae covered the entire root of the tongue except for areas occupied by the circumvallate papillae. Taste buds with clear pores were observed for the first time in areas between the circumvallate gustatory furrow and surface epithelium of the tongue. In addition, short numerous filiform papillae were observed on the rostral part of the lingual body and the lateral parts of the apex. Fungiform papillae, however, were demonstrated amidst the filiform papillae. In this trimester, taste buds were also seen on the top of the fungiform papillae. In the third trimester (256–352 days), all lingual papillae were clearly demonstrated on the dorsum of the root, body and apex of the tongue. Both types of gustatory papillae (circumvallate and fungiform) had well‐developed taste buds. Mechanical papillae (filiform and lentiform) were well developed. Lentiform papillae occupied most of the dorsal aspect of the Torus linguae; they were larger in size with semicircular apices. Filiform papillae, however, were numerous and demonstrated heavily on the lateral and rostral parts of the body as well as on the apex of the tongue.  相似文献   

5.
The morphology of tongue in straw-coloured fruit bat from tropical forests was evaluated in relation to frugivorous diets and in comparison with other species that consumes other food types. Gross, stereomicroscopy, scanning electron microscope and histological methods were used. The tongue was relatively long with round tip, which closely fitted into oral cavity. Five types of mechanical papillae included crown-like and trifid filiform papillae. Also bulky, cone-shaped papillae and long conical papillae were identified. These mechanical types also showed variations in shape, size and number of processes of papillae. Transitional forms of these mechanical papillae were present. Fungiform papillae with taste pores were interposed amongst filiform types in apex and body; three ovoid-shaped vallate papillae were in triangular arrangement on root and displayed taste pores. Some bulky, cone-shaped papillae surrounded the vallate papillae. Histologically, mechanical filiform types showed highly keratinized stratified squamous epithelium and dense connective tissue core with secondary papillae. Taste buds appeared in fungiform and vallate papillae. Neutral and acidic secretions were identified in lingual glands of root. The presence of prominent filamentous processes of filiform papillae and conical papillae of the tongue in conjunction with gustatory papillae ensures adaptation to copious fruit diets. The gross morphometric and histometric parameters of the tongue did not differ remarkably from previous values obtained for some fruit bats with comparable weight. This investigation showed similarities with fruit bats such as large flying fox and Egyptian fruit bat and reflect common diet and feeding habits but varied from insectivorous and nectivorous bats.  相似文献   

6.
The African giant pouched rat is a nocturnal, fossorial and omnivorous wild rodent widely distributed in sub‐Saharan Africa. The morphology of lingual surface has not previously examined and was investigated by gross dissection, stereomicroscopy, scanning electron and light microscopy. Grossly, it was elongated and dorso‐ventrally flattened with rounded tip. It measured 3.48 ± 0.33 cm in length, with a median groove of 1.4 ± 0.1 cm in length and well‐developed lingual prominence. Stereomicroscopically, filiform, fungiform and vallate papillae were indicated in the apex, body and root. Fungiform papillae intermingled with filiform on the ventral and dorsal surface of the apex and body. Three vallate papillae were located in triangular arrangement on the root. The surface ultrastructural features distinguished four types of filiform which varied in size, shape and distribution: first type with long pointed process was preponderant on the apex and body of tongue; the second with robust base was located on central lingual prominence; the third (caudal body) was conically shaped with pointed process; and the fourth type (root) had forked filamentous process. Large oval‐shaped fungiform papillae were apparent. Each vallate was surrounded by a circumferential groove into which taste pores opened. Histologically, the tongue surface displayed moderately keratinized stratified squamous epithelium, and lamina propria that varied in places. Fungiform and vallate showed spindle‐shaped taste buds. Serous and mucous acini containing neutral and acidic mucins were observed in lamina propria of root. The structural adaptations of the tongue to omnivorous diet and food manipulation in oral cavity were comparatively discussed.  相似文献   

7.
The paper presents a comparison of the microscopic structure and morphometric traits of gustatory and mechanical lingual papillae in newborn and adult frugivorous Egyptian fruit bats ( Rousettus aegyptiacus ). All of the four types of lingual papillae found in adult animals were observed on the tongue surface in the newborn Egyptian fruit bats. After the birth, the gustatory papillae (fungiform and vallate papillae) were especially well-developed, as their structural characteristics, such as morphology of the epithelium and presence of the taste buds, indicate that they have reached almost complete functional traits. Mechanical papillae, particularly filiform papillae, in newborns are still fetal in character. Keratinization processes in the epithelium of these papillae are not advanced and specific structures, such as elongated processes, are missing. The morphometric analysis of the size of papillae and thickness of the mucosal epithelium showed that a complete development of keratinized structures in Egyptian fruit bats occurs at later stages of postnatal development.  相似文献   

8.
9.
The morphology of dorsal lingual papillae of the Bactrian camel (Camelus bactrianus) was studied by using light and scanning electron microscopy. Filiform and lenticular papillae were considered as mechanical papillae but fungiform and vallate papillae were considered as gustatory papillae. Filiform papillae were distributed mostly in the anterior two-thirds region of the tongue. Each filiform papilla consisted of one primary papilla and a few smaller secondary papillae. Lenticular papillae were distributed on the torus linguae. The larger papillae were arranged in two parallel lines medially whereas the smaller papillae were laterally located. Most of the fungiform papillae were found on the lateral margins of the anterior two-thirds of the tongue. These papillae were small and round. Intra-epithelial taste buds were located on the dorsal surface of each papilla. The vallate papillae were arranged in two rows on each rim of the torus linguae. Each round- and flat-shaped vallate papilla was surrounded by a prominent gustatory groove and an annular pad. A few taste buds were observed in the lateral epithelium of the papillae. The keratinization of the covering stratified squamous epithelium of the mechanical lingual papillae was relatively thicker than those of the gustatory papillae. The lingual papillae of the Bactrian camel exhibited some different characteristics from other domestic ruminants. These morphological characteristics of the tongue of the Bactrian camel might have evolved to assist the camel in prehension and manipulating of the inorganic stiff plants that grow in its environment and therefore might relate to the feed and feeding habits of the animal.  相似文献   

10.
The morphology of the tongue of the adult barking deer, Muntiacus muntjak, was examined by light and scanning electron microscopy. The result showed that the tongue of the barking deer was elongated with a rounded apex. Four types of lingual papillae were observed: filiform, fungiform, vallate and large conical papillae. The filiform papillae represented the most numerous types of lingual papillae. The fungiform papillae were distributed among the filiform papillae on the rostral and the body portions of the tongue. Ten to thirteen vallate papillae were distributed on both sides of the lingual prominence among the large conical papillae. Histologically, both the fungiform and vallate papillae contain taste buds in the epithelial layer. The distribution and types of lingual papillae found in the barking deer are similar to those in the other species that belong to the family Cervidae.  相似文献   

11.
对18只法比兔生后舌和食管进行组织学观察的结果表明,免出生时舌背侧粘膜上皮未角化,并含有大量丝状乳头(平均高为135.7μm)和少量菌状乳头。固有膜不发达。舌肌为纵向、横向及垂直方向排列的横纹肌。舌腹侧粘膜表面平滑。15日龄以后,舌背侧菌状乳头高为200~521μm,其顶部直径为93~221μm。1日龄时,兔食管粘膜上皮只有4~5层细胞(平均厚28.5μm)。60日龄时,已达30层左右(平均厚164.3μm)。固有膜与粘膜下层分界不清。肌层由内纵、中环、外纵3层组成。肌层随年龄增长而逐渐增厚,1日龄时平均厚度121.4μm,60日龄时平均厚度达750μm。  相似文献   

12.
The ocelot (Leopardus pardalis) is a Felidae of wide geographical distribution and food flexibility; therefore, it is essential to understand the morphology of the species. Thus, we aimed to describe its lingual morphology in order to gain information regarding the anatomy of this carnivore's digestive system. The tongues ??were removed for ex situ macroscopic and morphometric analyses, as well as for light microscopy and scanning electron microscopy, of fragments of the different lingual regions. The tongue of L. pardalis had an elongated form that was subdivided into the apex, body and root, in which four papillary types were observed: filiform, fungiform, circumvallate and conical. It presented with a stratified, keratinized squamous epithelium, followed by loose and dense connective tissues, as well as a skeletal striated musculature that comprised most of the organ. In addition, in scanning electron microscopy the filiform papillae showed a complex with multiple layers of keratin with triangular shape projected caudally in oral cavity. The fungiform papillae were distributed among the filiform and showed a rounded shape with some gustatory pores, and are keratinized but in a lower intensity if compared with filiform. The vallate papillae, located in lingual root, showed an oval format, had a deep groove surrounded the papillae and some gustatory pores. The conical papillae are located in lingual root and are similar to the filiform. The tongue of L. pardalis resembles other carnivorous species, mainly among felids. However, it differed in relation to the quantity of vallate papillae and the absence of foliate papillae.  相似文献   

13.
This study presents the histomorphological features of tongue in Eurasian teal (Anas crecca); the smallest extant dabbling duck. Heads of four adult males and four adult females were used in this study. The results illustrate a tongue with three different parts; the apex with a lingual nail in ventral surface, the body with a lingual prominence in caudal part and some large and small conical papillae in lateral sides and the root, that was covered with many conical papillae in different sizes. Histological results revealed two types of keratinized and non‐keratinized epithelium covering parts of the tongue. The lingual salivary glands were observed in the lamina propria of the body and root of the tongue showed strongly periodic acid–Schiff (PAS)‐positive reaction. The yellow adipose tissue was located under the lamina propria on the body and root of the tongue. The filiform papillae between the conical papillae of the body were arranged densely. The sensory organs, which contain sensory receptors (Grandry and Herbst corpuscles), were located in the lamina propria of the body of the tongue. In conclusion, the anatomical and histological structure of the Eurasian teal’ tongue was generally similar to its family members such as domestic goose and duck but showed some differences that may be adoptions to the bird's habitat and mode of feeding.  相似文献   

14.
The light and scanning electron microscopic structure of the filiform lingual papillae was studied in five adult porcupine (three males and two females). The tongue was characterised by a round tip, a rostral median sulcus and a deep lingual fossa which was situated just rostral to a prominent inter-molar eminence corresponding to a torus linguae. The filiform papillae were curved, enclosed a large connective tissue core and were separated by wide inter-papillary zones covered by a thick epithelium. Most filiform papillae had a cylindrical shape, but the rostral and central parts of the tongue contained a number of flat, comb-shaped papillae with rounded tips.  相似文献   

15.
This work was conducted to describe the morphological characters of the tongue of Egyptian water buffalo (Bubalus bubalis). The lingual root and the dorsal middle region of apex and body in addition to the dorsal and ventral surface of lingual tip were devoided from any fungiform papillae. The lingual tip contains conical papillae only. The ventral surface of lingual apex was divided into two portions by the U‐shaped fungiform line into papillary and non‐papillary region. Histological investigation on the lingual surface epithelium and lamina propria submucosa reflects differences in these layers in different parts of the tongue. By SEM, there are two subtypes of filiform papillae: caudally directed papillae on dorsal surface and rostrally directed papillae on the lateral region of ventral surface of lingual apex. There are two subtypes of conical papillae: small slightly rostrally directed papillae on dorsal and ventral surface of lingual tip and large posteromedially directed papillae on dorsal surface of lingual root. The rounded circumvallate papillae consisted of round bulb surrounded by deep circular groove, which surrounded by circular pad. Higher magnification of filiform papillae indicates the presence of microcrests separated by microgrooves, and these microgrooves consisted of microrodes. The fungiform surface having micropores on the tip of elevated tubercle for taste buds pores. All these observed structures (microcrests, microgrooves, microrodes, tubercles, microridges) in a higher magnification allow animals to transport food particles through the oral cavity and help in the defensive behaviour. There are strong correlations between the tongue anatomical characteristics and its functions.  相似文献   

16.
17.
On the root of the tongue in the rabbit there are two symmetrically located vallate papillae, covered by nonkeratinized stratified squamous epithelium. The epithelium is characterized by variable thicknesses, forming epithelial streaks of different length and irregular shape. Taste buds are found both in the epithelium covering the papillae and in the epithelium of the outer walls of the papillae from the side of the furrows. The outer wall of the vallate papillae is gradually transformed with no visible boundary into the surface of the root of the tongue devoid of papillae. The surface of the vallate papillae is uneven. The connective tissue core of the papillae is formed by numerous, irregularly shaped connective tissue papillae, between which epithelial streaks are arranged. Around the connective tissue core of the papillae there is a circular connective tissue fold, with a furrow located on its circumference and the core of the outer wall of the vallate papillae. Numerous excretory ducts of the posterior serous lingual glands (Ebner's glands) open on the fundus of the circular furrow of each vallate papilla. Sometimes excretory ducts of these glands open directly onto the surface of a vallate papilla and then in their vicinity taste buds are found. The results of this study show the structure of vallate papillae on the tongue of adult rabbits, at the same time indicating differences in their structure in comparison to the vallate papillae of other animal species.  相似文献   

18.
The dorsal surface of the tongue of the adult common shrew (Sorex araneus L.) was examined by scanning electron microscopy. As in the other insectivores, three types of lingual papillae were observed: filiform, fungiform and vallate papillae. The filiform papillae represented the most numerous type of lingual papillae. The characteristic feature of the filiform papillae, covering the apex and corpus of the tongue, is the two processes tilted to the root of the tongue. The filiform papillae on the lingual apex are reduced in size and structure. Five to six fungiform papillae are placed symmetrically along the left and right border of the corpus of the tongue. Two large oval vallate papillae are located on the radix of the tongue. The posterior surface of the tongue in common shrew is covered with a smooth mucosa with the openings of the serous glands.  相似文献   

19.
The morpho-functional and topographical features of the lingual papillae situated on the dorsal surface of the bovine tongue, were studied utilizing LM and SEM techniques. In the bovine species, the functional differentiation of the lingual papillae in their gustative and mechanical modes, seems to be related to the position of the papillae rather than to their morphological features. The gustative function predominates over the mechanical one on the caudal tract of the tongue body (lateral to the lingual torus and associated with circumvallate papillae). The gustative function also involves the conical papillae situated on the caudal tract of the tongue body. This gustative function is aided by additional anatomical structures: 1. The grooves situated on the rostro-lateral side of the conical papillae; 2. The microcraters located on the top of the fungiform papillae; and 3. The furrows of the circumvallatae papillae vallum. The contact between saliva soluble food particles and taste buds is aided and made more efficient by these structures. Furthermore, a large variety of conical papillae were observed, whereas no filiform papillae were noted.  相似文献   

20.
This study was conducted to examine the light microscopy (LM) and scanning electron microscopic (SEM) structures of mechanical papillae on the tongue in the Angora goat (Capra hircus). As study materials, the tongues of four adult female Angora goats were used. The samples were collected from the dorsal surfaces of the apex, body, root and torus of the tongue and the ventral surfaces of the lingual apex for light and scanning electron microscopic examinations. Three types of mechanical papillae were seen in Angora goat tongue: papilla filiformes, papilla lentiformes and papilla conicae.The filiform papillae were detected in the dorsal surface of the tongue from lingual apex to lingual torus, and in the ventro-lateral of the lingual apex and on both sides of the lingual torus. The morphological differences were observed in filiform papillae according to their location in the tongue. The lenticular papillae settled on the centre of the lingual torus. Two types of these papillae, irregular-round and pyramid-shaped were identified. The conical papillae were scattered all over the lingual torus, except for the central part and were also seen on the root of the tongue. In the light microscopic examination, it was found that mechanical papillae had a stratified squamous epithelium and a varying degree of keratin layer on epithelial surfaces. In this study, by examining the light and scanning electron microscopic structure of the mechanical papillae in the Angora goat tongue, their similarities and differences with other domestic and wild ruminant species were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号