首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】探讨铅锌矿区周边土壤镉、铅和砷形态分布对水稻重金属影响,为当地土壤重金属修复治理提供参考。【方法】采集广西某铅锌矿区周边农田土壤和水稻根、茎、叶、籽粒等样品,分析土壤镉、铅和砷的全量和形态分布水稻重金属含量,通过单因素污染指数方法评价土壤重金属污染状况,通过富集系数评价水稻根、茎、叶、糙米对土壤重金属富集能力。【结果】水稻田土壤镉、铅和砷污染严重,土壤镉含量变化为0.42~2.68 mg/kg,平均值为1.52 mg/kg;铅含量变化为118~1180 mg/kg,平均值为472.59 mg/kg;砷含量为11.6~351.0 mg/kg,平均值为109.81 mg/kg。其中土壤镉主要以交换态和碳酸盐结合态为主;土壤铅以铁锰氧化结合态和有机物结合态为主;土壤砷以残余晶格态为主。土壤重金属的主要富集水稻根部位,其中水稻根富集土壤镉系数均大于1、富集铅系数介于0.38~3.53、富集砷系数均小于1,糙米镉和铅含量超标,砷未超标。【结论】铅锌矿区的周边土壤镉、铅、砷含量严重超标;水稻田土壤镉对农作物有一定风险;铅对农作物铅超标存在潜在危害;土壤砷主要残余晶格态为主;水稻籽粒镉全部超标、铅部分超标、砷不超标。  相似文献   

2.
为研究海雀稗对锅胁迫的生理响应及其镉积累特性,本研究采用土培法对海雀稗进行镉胁迫,探究了不同镉浓度对海雀稗生长、根系活力、叶片膜透性、膜脂过氧化、保护酶活性以及镉积累的影响.结果表明,镉浓度>50.00 mg/kg时,随镉浓度增加,CAT活性显著下降,SOD与CAT的协同作用降低,MDA大量积累和根活力下降,植物生长受到抑制;镉浓度为0~50.00 mg/kg时,海雀稗根系活力未显著下降,保护酶活性(SOD、CAT)增强,MDA积累量和细胞膜透性未明显增加,植物受镉毒害较小.海雀稗根系对镉具有极强的富集能力,镉浓度为200.00 mg/kg时,其地上部分和地下部分镉含量分别为39.15 mg/kg和1 097.38mg/lg.说明海雀稗对镉胁迫(0~50.00 mg/kg)能做出有效反应,并正常生长,可以作为修复土壤镉污染的备选种植植物.  相似文献   

3.
为研究海雀稗对镉胁迫的生理响应及其镉积累特性,本研究采用土培法对海雀稗进行镉胁迫,探究了不同镉浓度对海雀稗生长、根系活力、叶片膜透性、膜脂过氧化、保护酶活性以及镉积累的影响。结果表明,镉浓度>50.00 mg/kg时,随镉浓度增加,CAT活性显著下降,SOD与CAT的协同作用降低,MDA大量积累和根活力下降,植物生长受到抑制;镉浓度为0~50.00 mg/kg时,海雀稗根系活力未显著下降,保护酶活性(SOD、CAT)增强,MDA积累量和细胞膜透性未明显增加,植物受镉毒害较小。海雀稗根系对镉具有极强的富集能力,镉浓度为200.00 mg/kg时,其地上部分和地下部分镉含量分别为39.15 mg/kg和1 097.38mg/kg。说明海雀稗对镉胁迫(0~50.00 mg/kg)能做出有效反应,并正常生长,可以作为修复土壤镉污染的备选种植植物。  相似文献   

4.
大豆镉累积及吸收转运特性研究   总被引:2,自引:0,他引:2  
重金属污染已严重威胁人们的食品质量与安全,亟需对农作物的镉积累及吸收转运特征进行研究。在4种外源镉(Cd Cl2)添加量(0、1、2、3 mg/kg)条件下,探究3个品种大豆的农艺性状、镉积累量以及转运特征,对3种基因型大豆(HC6、HHN、HX3)在镉胁迫下的重金属抗性进行评价,为实际生产和理论研究提供依据。结果表明,当外源土壤镉含量为0~1.84 mg/kg时,镉对不同基因型大豆的农艺性状无显著影响,3种不同基因型大豆的耐镉性表现为HNHHC6HX3,大豆根、茎、叶、荚的镉含量随土壤镉含量增加而升高;在相同土壤镉含量条件下,大豆各器官的镉含量存在显著差异,表现为根茎叶荚籽粒。  相似文献   

5.
[目的]探讨重金属复合作用下水葫芦富集能力的变化情况。[方法]通过为期2个月的室内水培模拟试验研究水葫芦对重金属镉、铬长期富集效果。[结果]水葫芦有较强镉转运能力,叶片也是富集镉的主要部位,最高可达根含量的77%以上。水葫芦对铬转运能力较低,叶片铬含量仅为根的10%~22%。镉、铬复合作用下,铬对镉的表现为拮抗作用,尤其是在叶片中。相反,镉对铬的影响规律不明显,叶中低铬浓度下(1.00 mg/L)抑制铬积累,高铬浓度下(4.00 mg/L)则促进,而该2个浓度下对根均无显著影响,可能主要影响了铬的转运。[结论]水葫芦根系镉和铬最高含量可达6 600 mg/kg和7 300 mg/kg以上,表明其较强镉、铬污染修复能力在重金属污染水体修复上具有良好的应用价值。  相似文献   

6.
研究了板蓝根在不同浓度镉胁迫下的生理指标的变化和其根、叶片对重金属镉的积累状况.结果表明,在重金属镉浓度为0.3mg/kg时,板蓝根叶片中蛋白质含量、叶绿素含量都略高于对照,其他水平镉处理均低于对照.但板蓝根的生物量在镉浓度0.3、1.0mg/kg时高于对照,其中0.3 mg/kg水平下生物量最大,其他处理随镉浓度的增加生物量降低.板蓝根叶片和根对镉的吸收随镉浓度的增加而增加,研究还发现同一水平镉胁迫下,叶片对镉的吸收明显大于根.板蓝根吸收镉量与土壤中有效态镉含量呈正相关.  相似文献   

7.
水稻土镉污染与水稻镉含量相关性研究   总被引:23,自引:4,他引:19  
采用盆栽试验的方法,考察了水稻土中重金属镉(Cd)的浓度对水稻生长及Cd富集的影响以及Cd在水稻植株的分布情况,并进一步研究了糙米(可食部位)对Cd的富集量与土壤中Cd总量的关系.结果表明,在各个浓度Cd胁迫下,根、茎叶、稻壳、糙米相比,2个品种水稻都是根累积的Cd含量要高于茎叶和稻壳、糙米,即根>茎叶>稻壳>糙米;在水稻的茎叶细胞中,Cd主要分布在细胞壁,细胞可溶性成分,细胞器Cd的分布量较少,即细胞壁>可溶性部分>细胞器及膜部分;随Cd浓度增加,茎叶中的Cd积累量极显著增加,各细胞组分中的Cd含量均显著增加;根据国标GB 2762-2005对大米中Cd的限最标准(≤0.2 mg·kg~(-1)),水稻土土壤总Cd临界值分别为2.0mg·kg~(-1)(博优225)、3.1 mg·kg~(-1)(矮糯).因此,在污染土壤上宜选种食用部位重金属积累低的水稻品种,以减少人类吸收重金属的风险.  相似文献   

8.
【目的】探究外源纳米硒和亚硒酸钠对镉污染土壤中水稻的镉吸收、转运和积累的影响,为镉污染农田水稻的安全生产提供参考。【方法】采用盆栽试验,以不添加外源硒为对照(CK),设4个外源硒处理,分别为每千克土施用纳米硒0.5和2.5 mg/kg、亚硒酸钠(以硒计)0.5和2.5 mg/kg。于水稻灌浆期测定水稻剑叶叶绿素含量,收获前测定水稻光合指标,收获后测定水稻生物量、产量及水稻根、茎、叶、糙米中镉含量和土壤中镉的形态,计算镉在水稻各部位的分配率和水稻体内镉的迁移率。【结果】与CK相比,纳米硒和亚硒酸钠处理均显著提高收获期水稻剑叶的SPAD值和光合速率(P<0.05,下同);除0.5 mg/kg纳米硒处理对水稻产量无显著性影响外(P>0.05),其余处理的水稻产量均显著提高。外源纳米硒和亚硒酸钠处理均降低土壤中可溶可交换态镉的含量,0.5 mg/kg纳米硒处理效果最佳,可溶可交换态镉含量降低16.0%。外源纳米硒和亚硒酸钠处理能降低镉污染土壤中水稻对镉的吸收、运转和积累,2.5 mg/kg纳米硒处理效果最佳,水稻根镉含量降低26.8%,水稻糙米镉含量降低32.7%,镉从根到茎叶的转移率降低42.7%,差异均达显著水平。【结论】在镉污染土壤中施加适量纳米硒和亚硒酸钠可有效降低土壤中镉的有效性,减少水稻对镉的吸收、运转和积累。每千克土施用纳米硒2.5 mg/kg阻控水稻镉积累的效果较佳,可作为镉污染区水稻安全生产的推荐技术。  相似文献   

9.
石榴对镉、铅、锌复合污染土壤的修复效果   总被引:1,自引:0,他引:1  
以石榴为供试材料,通过盆栽试验研究石榴在不同浓度梯度的镉(Cd)、铅(Pb)、锌(Zn)复合污染土壤下对重金属的吸收、富集、转运规律。结果表明:低浓度的复合重金属污染(Cd~(2+)浓度≤5 mg/L,Pb~(2+)浓度≤500 mg/L,Zn~(2+)浓度≤500 mg/L)对石榴生长有明显的促进作用,大致表现为铅+锌镉+锌,镉+铅镉+铅+锌;石榴对镉的吸收能力较好,对铅和锌的吸收能力相对较弱;石榴在重金属复合污染下,其各个部位对重金属的富集受到抑制作用,在高浓度梯度下(Cd~(2+)浓度为50 mg/L,Pb~(2+)浓度为1 500 mg/L,Zn~(2+)浓度为1 500 mg/L)抑制作用更为明显,具体表现为镉铅锌;重金属污染对石榴从叶转运重金属到茎再到根有一定的促进作用。石榴在低浓度重金属污染(Cd~(2+)浓度≤5 mg/L,Pb~(2+)浓度≤500 mg/L,Zn~(2+)浓度≤500 mg/L)中生长旺盛,对镉、铅、锌吸收、富集及转运能力较好,可作为镉、铅和锌复合污染重金属土壤的修复植物。  相似文献   

10.
目的】研究不同程度镉污染土壤下棉花生长和镉富集的特征。【方法】采用盆栽模拟方法,添加外源镉,分析棉花种植后土壤pH和镉含量的变化,以及镉胁迫对棉花生长和镉积累量的影响。【结果】棉花根系具有酸化作用,使其根际土壤pH下降,随镉胁迫浓度的增加,酸化受到抑制,土壤有效态镉含量随之显著降低。棉花株高和地上部生物量随镉浓度增加逐渐降低,根系则相反。棉花各器官镉含量、转移系数与积累量随镉浓度的增加显著升高。在不同镉胁迫下,棉花根系镉富集系数均>1。在10 mg/kg镉胁迫下茎、叶和蕾富集系数分别达到0.98、0.33和0.63;镉富集量分别为74.01、39.5和98.623 μg/盆,表现出较强的积累能力。【结论】在镉胁迫下棉花根系生物量增加,地上部生物量降低,随镉浓度的增加,棉花镉积累量增大,在5和10 mg/kg镉胁迫下棉花地上部镉积累量显著高于地下部。  相似文献   

11.
镉胁迫对青菜生长和抗氧化系统的影响   总被引:1,自引:1,他引:1  
陆文妹 《安徽农业科学》2011,39(5):2703-2705,2833
[目的]了解镉胁迫对青菜生长的抑制作用。[方法]以青菜品种苏州青为材料,采用盆栽试验研究不同土壤镉浓度对青菜生长和抗氧化系统的影响。[结果]较高浓度(〉25 mg/kg)镉胁迫下青菜生长受到明显抑制,叶片抗氧化能力显著降低,使植株遭受严重的氧化胁迫,膜脂质过氧化加剧,膜透性加重;低浓度镉对青菜的生长影响不显著,但叶片镉含量显著提高。[结论]青菜对镉胁迫具有一定的抗性,在镉污染土壤中种植青菜供食用存在较高的安全风险。  相似文献   

12.
【目的】为筛选出新的用于农田镉污染修复的镉富集植物.【方法】通过盆栽试验,研究不同镉浓度处理下多茎鼠麴草对镉的富集特性.【结果】随土壤镉浓度的增加,多茎鼠麴草生物量、叶绿素含量及抗性系数都呈下降趋势,但根系和地上部分镉含量呈增加趋势.在土壤镉浓度为75 mg/kg时,多茎鼠麴草地上部分镉含量达到121.86mg/kg,超过镉超富集植物临界值(100mg/kg).在不同土壤镉浓度处理下,多茎鼠麴草根系和地上部分镉富集系数大于1,但转运系数小于1.在土壤镉浓度为50mg/kg时,多茎鼠麴草地上部分和整株镉积累量均最大,分别为183.93μg/盆和266.79μg/盆.小区试验研究表明,在土壤镉浓度为2.04~2.89mg/kg时,多茎鼠麴草地上部分镉积累量达到1.74~1.80mg/m~2.【结论】多茎鼠麴草是一种镉富集植物,可用于农田镉污染土壤的修复.  相似文献   

13.
以马铃薯费乌瑞它为材料,设水稻-马铃薯轮作氮零栽培模式(RP–N0)、水稻-马铃薯轮作传统栽培模式(RP–T)、水稻-马铃薯轮作高产栽培模式(RP–H)、水稻–马铃薯轮作超高产栽培模式(RP–SH)、玉米–马铃薯轮作高产栽培模式(MP–H)5个处理,研究了不同栽培模式对马铃薯植株镉积累和产量以及品质的影响。结果表明,同一处理不同时期马铃薯植株叶片的镉含量4.23~5.52 mg/kg,茎的镉含量4.85~5.02 mg/kg,显著高于块茎的镉含量(0.34~0.39 mg/kg);马铃薯茎叶的镉生物富集系数为10.15~13.25,显著高于块茎生物富集系数的(0.82~0.92);不同栽培模式的马铃薯产量和商品薯率以RP–N0处理的最低,为11.12 t/hm~2和71%,显著低于其他4个处理的产量及商品薯率,以MP–H处理的产量最高,达42.07 t/hm~2,淀粉含量以RP–N0最高(11.55 g/(100 g));马铃薯块茎的镉含量与土壤pH呈负相关(r=–0.65),块茎的镉生物富集指数与土壤p H呈显著负相关(r=–0.81)。  相似文献   

14.
外源镉在刺儿菜中的富集及对其生长的影响   总被引:1,自引:1,他引:0  
针对古浪县土门镇部分工业区出现的土壤镉污染,选择对当地适应性强的刺儿菜为试材,基质中添加外源镉进行盆栽试验,测定植株的生物量、镉累积量、提取率等,研究刺儿菜植株对重金属镉的富集特性。结果表明:刺儿菜对镉具有一定的富集性,土壤镉浓度为15μg/g时其转移系数和富集系数最大,分别为5.14、2.76。刺儿菜可用于镉污染小于15μg/g的地区进行土壤修复。  相似文献   

15.
采用土培盆栽试验,研究了施硅对抑制白菜吸收外源重金属镉的效应,结果表明:在试验条件下,土壤施硅有利于黑叶白菜增强抗重金属镉胁迫的能力,显著地提高白菜地上部的生物量,白菜生物量随施硅水平提高而递增;显著地提高了土壤pH值和有效硅含量;显著地降低较高外源镉浓度(0.6,0.9mg/kg)处理的土壤有效镉含量;显著地减少在土壤较高外源镉浓度(0.6,0.9mg/kg)污染下的白菜地上部对镉的吸收与累积,有效地降低了白菜地上部重金属镉的浓度和吸收总量。可见,施适量的硅(1.0g/kg)可有效减轻白菜重金属镉污染毒害。  相似文献   

16.
试验通过对五指山野菜对镉的积累及其机理研究,从而为利用五指山野菜对土壤进行植物修复这一技术提供理论基础.试验在盆栽的基础上进行了植物的地上部生物量和镉含量,可溶性蛋白、叶绿素,叶片质膜透性等生化指标的测定,以及分析上述指标与土壤中镉浓度的关系.通过试验,得出以下结果:随处理浓度的增加,根、茎和叶Cd含量逐渐上升,且根部变化趋势最突出;在土壤中处理浓度为50mg/kg时,植物根、茎和叶含量就已超过超积累植物临界值,且当处理浓度为400 mg/kg时,三者含量分别高达6566.00、948.46、520.39 mg/kg;但为800 mg/kg时,植株出现死亡;在处理浓度为0~50 mg/kg下,转移系数和累积系数均大于1,但在100~400 mg/kg之间,转移系数逐渐变小;在0~50 mg/kg下可溶性蛋白逐渐上升,质膜透性、生物量和叶绿素变化差异不显著(5%),但当处理浓度再增加时(100~400mg/kg),植物叶绿素、生物量、可溶性蛋白等呈现下降趋势,而质膜透性上升.以上结果说明五指山野菜是Cd超积累植物,且50 mg/kg时是五指山野菜正常生长的临界值,高于此浓度,将对其产生毒害,当浓度为800 mg/kg时,植株出现死亡;随处理浓度的增加,转移系数逐渐变小,说明植物在高Cd胁迫下阻止Cd向地上部分转移而产生更严重的毒害.  相似文献   

17.
商陆修复镉-锌复合污染土壤的潜力初探   总被引:1,自引:0,他引:1  
吴双桃 《安徽农业科学》2007,35(21):6579-6580,6616
为了解商陆修复镉-锌复合污染土壤的潜力。通过盆栽试验,研究了镉-锌复合污染发生时锌营养条件下镉污染对商陆生长及富集镉、锌能力的影响。商陆在镉-锌复合污染条件下,土壤中镉和锌的最大允许浓度分别建议为150和300 mg/kg。无论镉的单因子污染或是复合污染,商陆中镉的含量均随土壤中镉浓度的增加而增加。在商陆地上部镉-锌之间表现为协同作用,土壤中低浓度镉能促进植株吸收锌,而低浓度锌对植株吸收镉有激发作用。当土壤锌含量小于200 mg/kg时,镉-锌相互作用导致商陆根中镉的积累量随锌浓度增加而增加;大于200 mg/kg时表现为负相关。土壤中锌浓度为0~200 mg/kg时对商陆生长及富集镉总量有一定的促进作用。  相似文献   

18.
烟草积累与忍耐镉的品种差异   总被引:1,自引:0,他引:1  
通过盆栽试验研究了16个烟草品种吸收与忍耐镉的差异.结果表明:提高土壤镉水平,Xanthi根及地上部的生物量增高,对镉的耐性最强,贵烟11号根及地上部的生物量降低最多,对镉的耐性最弱,大多数烟草品种根的生物量降低,地上部的生物量增加,表现出一定的镉耐性.烟草地上部镉的积累量较根高,吸收的镉68%~88%分布于叶片,表明烟草向叶片运输镉的能力很强.烟草叶片镉含量较根、茎高,不同烟草品种根、茎和叶镉含量显著差异,在土壤添加镉浓度达10 mg/kg时,Xanthi、贵烟 11号、RG 17、云烟 87、CF 965、NC 82 叶片镉含量达100 mg/kgDW以上,具备超积累植物的特征.由于烟草的生物量大,叶片容易收获,在镉污染土壤的植物修复中有很大的应用潜力.  相似文献   

19.
通过盆栽试验,研究了球序卷耳在不同镉含量处理下的生长状况及镉积累特征,以期筛选出新的用于农田镉污染修复的镉富集植物。结果表明,随着土壤中镉含量的增加,球序卷耳的生物量及其叶片光合色素含量呈降低的趋势。从镉含量来看,球序卷耳的根系、地上部分的镉含量均随着土壤中镉含量的增加而升高,在镉含量为75 mg/kg时,球序卷耳根系镉含量为684.78 mg/kg,地上部分镉含量为110.02 mg/kg,超过了镉超富集植物的临界值。球序卷耳根系和地上部分镉富集系数均大于1,但转运系数小于1。因此,球序卷耳是一种镉富集植物。就镉积累量而言,球序卷耳根系、地上部分及整株的镉积累量均与土壤中镉含量呈显著或极显著的线性正相关。综上所述,球序卷耳能够用于农田镉污染土壤的修复。  相似文献   

20.
【目的】为了探明土壤中镉含量与低累积玉米品种(会单4号)富集镉间的关系。【方法】以玉米为试验材料,设置不同浓度Cd处理的土壤盆栽试验,幼苗生长一个月后采集玉米地上部和地下部,测定玉米生物量、根系形态、叶片渗透率、脯氨酸积累量及镉富集特征。研究镉胁迫对玉米生理特性及其镉累积的影响。【结果】结果表明:当土壤中镉浓度为2 mg/kg时,玉米的地上部生物量显著增加了8.79%,浓度增加到12 mg/kg时,玉米地上部与地下部的生物量分别显著下降了55.65%、58.92%;对玉米幼根生长的抑制作用逐渐增大;叶片渗透率和脯氨酸含量与镉浓度呈正相关;玉米体内的镉含量明显增加,并且地下部含量明显高于地上部含量;随着镉浓度增加,富集系数和转运系数都小于1,这说明玉米累积镉含量不随土壤镉含量增加,但对玉米植株的毒害越来越严重。【结论】2 mg/kg的镉促进玉米生物量的增加,大与4 mg/kg时抑制玉米生物量的增加,会单4号是低富集品种,富集系数与转运系数不会随镉浓度的增加而增加,但会使玉米受到的毒害越来越严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号