首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】 养殖废水中含有丰富的养分,但也含有一定的重金属。本文研究了生物质炭和果胶对养殖废水灌溉下的土壤–植物系统养分和重金属迁移规律的影响,以利用养殖废水中的养分,并对其重金属进行调控。 【方法】 选取新乡市郊区农田土壤为供试土壤,采用根箱试验方法种植玉米。设置根箱土壤中添加1%的生物质炭和果胶,分别灌溉蒸馏水和养殖废水发酵产生的沼液。测定了土壤中养分和重金属的含量,探讨了其在土壤–植物系统的迁移规律。 【结果】 沼液灌溉的植株地上部生长与蒸馏水灌溉无显著差异。果胶相比于生物质炭可以促进植株生长。沼液灌溉时,果胶处理的根系和地上部生物量分别比对照增加了25.38%和31.21%。沼液灌溉普遍降低了根际和非根际土壤的pH,生物质炭处理和果胶处理与对照根际和非根际土壤的pH均无显著差异。沼液灌溉增加了非根际土壤的电导,生物质炭相比于果胶增加了土壤的电导。沼液灌溉增加了土壤全氮、有效磷、速效钾和有机质含量。果胶根际土壤的全磷、碱解氮、有效磷、有效Fe、有效Mn均高于生物质炭处理,生物质炭处理根际和非根际土壤的全钾和速效钾含量均高于果胶处理。沼液灌溉相比于蒸馏水灌溉,增加了植株根、茎中N含量和Ca含量。生物质炭处理植株根茎叶N含量、根茎P含量、茎K含量、根茎叶Ca含量、根茎Mg含量高于果胶处理,但果胶处理养分的转运系数较高。养殖废水灌溉增加了根际和非根际土壤中有效Cu和Zn尤其是Zn的含量。与对照相比,生物质炭降低了根际土壤Cu、Pb、Ni的含量,而果胶增加了它们的含量。沼液灌溉增加了植株根茎叶中Cu、Zn、Pb含量,果胶处理植株根系Cu、Zn、Pb、Cd、Ni含量最高,但向地上部转运较少。 【结论】 在北方碱性土壤灌溉养殖废水发酵产生的沼液时,施用生物质炭和果胶可以提高土壤肥力和植株养分含量,生物质炭通过减少土壤中有效态重金属含量以减少重金属在植物体内累积,果胶虽然增加土壤有效态重金属含量,但可以降低其向地上部的转运,避免了重金属在植物体内的累积。   相似文献   

2.
Vertical distribution and plant availability of soil P under subsurface irrigation were investigated in a 5‐year tomato‐grown‐greenhouse experiment. Irrigation was applied when soil water condition reached the predefined maximum allowable depletion (MAD) for different treatments, e.g., –10 kPa, –16 kPa, –25 kPa, –40 kPa, and –63 kPa. Results show that P distribution with soil depth was significantly affected by irrigation schedules. The general trend is that concentrations of soil total P and inorganic P were greater in topsoil than in subsoil, whereas the concentrations of soil organic P were larger at the depths of 0–10 cm, 30–40 cm, and 40–60 cm than at other soil depths. Comparison of different irrigation schedules indicates that more soil organic P was retained in the soils under the MAD of –25 kPa, –40 kPa, and –63 kPa, implying that irrigation of relatively low frequency and large water quantity of each irrigation event favored the accumulation of organic P in soils. In addition, we found that the concentrations of plant‐available P decreased with soil depth and were largest under the MAD of –16 kPa and –25 kPa. This result suggests that irrigation of relatively high frequency and low water quantity of each irrigation event led to greater P availability for plant uptake. Overall, this study suggests that the transformation and plant availability of soil P can be manipulated, to some degree, by soil‐water management. Maximum allowable depletion controlled between –16 kPa and –25 kPa could result in high availability of soil P in clay‐textured soils.  相似文献   

3.
Microbial activity levels of two soil materials, excavated from a wetland and irrigated with municipal wastewater effluent or Missouri River water, were compared. The wastewater had twice the electrical conductivity and four times the sodium concentration as river water. We performed activity assays on the soils before leaching, immediately after leaching, and after harvesting plants. Gas chromatography was used to measure carbon dioxide (CO2) evolved in soil samples incubated for 7 d. Activity was significantly reduced in preleached wastewater–irrigated soils compared with river water–irrigated soils. Immediately after leaching, activity significantly increased and was similar to river water–irrigated soils. Activity decreased slightly after plant harvest in postleached treatments. Increased activity after leaching may be related to decreased salinity and sodicity, which probably lowered osmotic pressure in the soil. Our study demonstrated that soil salinity and sodicity induced by wastewater irrigation decreased microbial activity, which may impact nutrient cycling and glycophytic vegetation communities in wetlands.  相似文献   

4.
废水灌溉下有机物料对重度盐渍土养分及芦苇生长的影响   总被引:2,自引:0,他引:2  
在山东滨州含盐量为16.7 g.kg 1的重度退化滨海盐碱湿地,研究了造纸废水灌溉条件下添加有机物料对盐渍土养分和芦苇生长的影响,以期为重度退化滨海盐碱湿地的生物修复提供依据。试验从春季开始进行,共设4种处理:翻耕对照(CK)、翻耕+废水灌溉(FF)、翻耕+废水灌溉+秸秆(FFJ)以及翻耕+废水灌溉+污泥(FFW),测定了不同处理下土壤养分、呼吸强度、含盐量及芦苇株高和生物量的变化。结果表明,与对照相比,各处理土壤有机质显著提高,10月末时FFJ、FFW和FF处理土壤有机质含量分别是对照的1.34倍、1.29倍和1.22倍;碱解氮和有效磷含量也高于对照,依次为FFW>FFJ>FF>CK;各处理土壤呼吸强度高于对照,其中FFJ处理显著高于对照,比试验初期提高96%;各处理表层土壤含盐量均出现不同程度降低,以FFJ和FFW降低幅度最大,分别比对照降低22.6%和16.3%;FFW、FFJ和FF处理的芦苇株高显著高于对照,8月末分别是对照的3.1倍、2.7倍和2.2倍;FFJ和FFW处理的芦苇生物量、根冠比和平均叶面积都显著高于对照,而FF处理与对照没有显著差异;FF处理芦苇株高、生物量与土壤有效氮含量相关最为显著,FFJ和FFW处理与土壤有机质含量相关性最为显著。结果表明,废水灌溉为重度盐渍化土壤提供了充足的水分,有机物料能有效提高土壤养分含量,解决了重度盐碱化土壤水分胁迫和养分胁迫的问题,促进芦苇生长,但秸秆和污泥两种有机物料之间没有显著差异。  相似文献   

5.
以气候变暖为主要特征的全球变化已经对人类的生产和生活产生重要影响。作物物候及产量对气候变化的响应和适应是研究气候变化对农业生产影响的重要内容。本文选择位于华北平原的4个典型农业气象试验站(唐山、惠民、商丘和驻马店),利用详细的物候和产量观测资料,在站点尺度上研究了冬小麦物候及产量对过去30年(1980—2009)气候变化的响应及其敏感性。结果表明:过去30年冬小麦出苗期推迟,而抽穗期和成熟期呈提前趋势。物候期的提前或推迟导致冬小麦不同生长发育阶段历时发生变化,出苗—抽穗阶段(营养生长阶段)呈缩短趋势,而抽穗—成熟生长阶段(生殖生长阶段)呈延长趋势。相关性研究表明:在4个研究站点,温度和辐射是制约冬小麦产量的主要气候因子;但不同生长阶段,冬小麦产量对气象因子的响应不同。利用多元回归统计方法研究冬小麦产量对不同生长阶段气候因子(温度、辐射和降雨)的敏感性发现:在出苗—抽穗生长阶段,除驻马店站点外,温度升高对冬小麦产量有正效应;而在抽穗—成熟阶段,温度升高会给产量带来负面影响。冬小麦产量与辐射呈正相关,辐射降低给冬小麦产量产生负效应。  相似文献   

6.
Soil‐quality parameters, such as soil organic matter (SOM) and plant‐available nutrient contents, microbial properties, aggregate stability, and the amounts of heavy metals were carried out in arable soils of different rotation schedules applied with a total of 50 Mg dry mass ha–1 biowaste compost relative to an untreated control. This was investigated during a 10 y period from 1994 to 2004. Overall, soil‐quality parameters studied appeared to be promoted by biowaste‐compost application. This was evidenced for example by a remarkable increase of SOM and total N content of ≈ 15%–20% relative to the control. Subsequently, amounts of soil microbial biomass and alkaline phosphatase activity were significantly increased as well. In addition, biowaste‐compost application revealed an increase of plant‐available P and K contents and aggregate stability in soil. There was, however, no treatment effect for net N‐mineralization rates. Moreover, in soils of maize and sugar beet rotation schedule a slight decrease was found. Heavy‐metal contents of Pb and Zn were significantly increased in all compost‐treated soils, whereas no significant increase of Cd and Cu contents was measured. However, the investigated amounts were far below of the limits of the German Biowaste Ordinance. It is finally recommended, that biowaste compost may sustain and improve soil quality in agriculture when N nutrition will be considered.  相似文献   

7.
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

8.
Enhanced phytoextraction of heavy metals (HMs) using chelating agents and agricultural crops is widely tested as remediation technique for agricultural soils contaminated with less mobile HMs. Nutrients are complexed by chelating agents simultaneously to HMs. In this study, the effect of EDTA (ethylenediaminetetraacetic acid) application on nutrient mobility in the soil and nutrient contents of Zea mays was tested on the laboratory and on the field scale. EDTA effectively increased the mobility of total water‐soluble macronutrients (Ca, K, Mg, P) and micronutrients (Fe, Mn) in the soil solution. Thereby nutrient co‐mobilization did cause competition to target HMs during the phytoextraction process. Mobilization was caused by complexation of nutrient cations by negatively charged EDTA and by dissolution of oxides and hydroxides. Increased concentrations of negatively charged P indicate the dissolution of metal phosphates by EDTA. Higher total water‐soluble nutrient concentrations enhanced bioavailability and plant contents of all determined nutrients especially that of Fe. Mobilization of nutrients may result in leaching and loss of soil fertility.  相似文献   

9.
Currently, potassium (K)‐ and phosphate (P)‐fertilizer recommendation in Germany is based on standardized soil‐testing procedures, the results of which are interpreted in terms of nutrient availability. Although site‐specific soil and plant properties (e.g., clay and carbon content, pH, crop species) influence the relation between soil nutrient content and fertilizer effectiveness, most of these factors are not accounted for quantitatively when assessing fertilizer demand. Recent re‐evaluations of field observations suggest that even for soil nutrient contents well within the range considered to indicate P or K deficiency, fertilizer applications often resulted in no yield increase. In this study, results from P‐ and K‐fertilization trials (in total about 9000 experimental harvests) conducted during the past decades in Germany and Austria were re‐analyzed using a nonparametric data‐mining procedure which consists of a successive segmentation of the data pool in order to elaborate a modified recommendation scheme. In addition to soil nutrient content, fertilizer‐application rates, nutrient‐use efficiency, and site properties such as pH, clay content, and soil organic matter, have a distinct influence on yield increase compared to an unfertilized control. For K, nutrient‐use efficiency had the largest influence, followed by soil‐test K content, whereas for P, the influence of soil‐test P content was largest, followed by pH and clay content. The results may be used in a novel approach to predict the probability of yield increase for a specified combination of crop species, fertilizer‐application rate, and site‐specific data.  相似文献   

10.
Because of the important role of soil organic carbon (SOC) in nutrient cycling and global climate changes, there has been an interest in understanding how different fertilizer practices affect the SOC preservation and promotion. The results from this study showed that long‐term application of manure (21 years) could increase significantly the content of SOC, total nitrogen (N) and soil pH in the red soil of southern China. The chemical structure of SOC was characterized by using solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy, and the aromatic C, ratio of alkyl C : O‐alkyl C, aromaticity and hydrophobicity of mineral fertilizers N, P and K plus organic manure (NPKM) and organic manure (M) treatments were less than those of mineral fertilizer nitrogen (N) and mineral fertilizers N, P and K (NPK) treatments. Both poorly crystalline (Feo) and organically complexed (Fep) iron contents were influenced significantly (P < 0.05) by different fertilizers, and it was observed that NPKM and M treatments increased the non‐crystalline Fe (Feo‐Fep) content. There was a significant (P < 0.01) positive correlation between soil organic C and non‐crystalline Fe in both the surface (0–20 cm) and subsurface (20–40 cm) soils. The results suggested that non‐crystalline Fe played an important role in the increase of SOC by long‐term application of organic manure (NPKM and M) in the red soil of southern China.  相似文献   

11.
This study evaluated fertilizer contribution of municipal wastewater on potato (Solanum tuberosum L.) cultivation in a split-plot experiment having two factors: water quality with 5 levels and fertilizer with 2 levels. Irrigation by raw wastewater supplied 16, 13, 13, 23, 1.7, and 83% of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), zinc (Zn), and boron (B) requirement of potato, respectively. Wastewater compared to freshwater, improved plant height, vigority, area coverage, leaf area index (LAI), stem per plant, number and weight of tuber per plant, above-ground dry matter (ADM), and tuber yield of potato. Averaged over 3 years, irrigation by 75 and 100% (raw) wastewater with recommended standard fertilizers produced the maximum, but identical, tuber yield. Wastewater raised N, P, and K contents in potato plants and tubers. Irrigation by wastewater could reduce the fertilizer requirement of potato by 10–15%. However, it caused high accumulation of total coliform (TC) and faecal coliform (FC) on potato skin, restricting the use of the produce.  相似文献   

12.
Crop growth in sandy soils is usually limited by plant‐available nutrients and water contents. This study was conducted to determine whether these limiting factors could be improved through applications of compost and biochar. For this purpose, a maize (Zea mays L.) field trial was established at 1 ha area of a Dystric Cambisol in Brandenburg, NE Germany. Five treatments (control, compost, and three biochar‐compost mixtures with constant compost amount (32.5 Mg ha–1) and increasing biochar amount, ranging from 5–20 Mg ha–1) were compared. Analyses comprised total organic C (TOC), total N (TN), plant‐available nutrients, and volumetric soil water content for 4 months under field conditions during the growing season 2009. In addition, soil water‐retention characteristics were analyzed on undisturbed soil columns in the laboratory. Total organic‐C content could be increased by a factor of 2.5 from 0.8 to 2% (p < 0.01) at the highest biochar‐compost level compared with control while TN content only slightly increased. Plant‐available Ca, K, P, and Na contents increased by a factor of 2.2, 2.5, 1.2, and 2.8, respectively. With compost addition, the soil pH value significantly increased by up to 0.6 (p < 0.05) and plant‐available soil water retention increased by a factor of 2. Our results clearly demonstrated a synergistic positive effect of compost and biochar mixtures on soil organic‐matter content, nutrients levels, and water‐storage capacity of a sandy soil under field conditions.  相似文献   

13.
The effects of two types of treated wastewater on soil biological activity were studied in a pot experiment. Four irrigation treatments were tested on both soils sown with barley and unsown soils: distilled water (DW), half-strength Hoagland nutrient solution (NS), treated wastewater from a conventional treatment plant (CWW), and treated wastewater from a lagoon (LWW). Three types of soils were used: Chromic Luvisol, Calcaric Regosol, and Calcaric Arenosol. The greatest barley production was obtained under NS treatment in the three soils, whereas the least was produced by the DW treatment. Soil biological activity was strongly correlated to plant production, whereas no effect of treated wastewater irrigation was observed in the unsown soils. The greatest soil biological activity was found in the Luvisol. In conclusion, both soil type and the presence of plant root systems were found to have more influence on soil biological activity than irrigation water type.  相似文献   

14.
Abstract

Soluble salts found in wastewater can be toxic when used for irrigation of forages. Thus, two greenhouse experiments were conducted to investigate effects of saline [CaCl2NaCl (3:1, w:w)] treatments on soil chemical properties and ‘Dekalb FS‐5’ forage sorghum [Sorghum bicolor(L.) Moench]. Treatments for the first experiment consisted of a nonsaline control or 500 mL of a solution with an electrical conductivity (EC) of 10 dS m?1 applied once. In the second experiment, treatments were salinity levels of 1.7,3.5,5.2,8.5, and 12.2 dS m?1, applied in non‐nitrogenous Hoagland's solution as the sole source of irrigation. Both experiments were replicated four times. For both experiments forage sorghum was seeded in pots containing 7 kg of air‐dried Amarillo fine sandy loam soil. Sorghum survivability and plant height were measured. In the second experiment, water use by sorghum was also measured. Plants were harvested 7 wk after seeding, weighed, dried at 55°C, weighed, and ground for subsequent mineral analysis. After harvest, soil salinity, pH, and in the second experiment, extractable soil elements were determined. Soil salinity increased, while soil pH decreased, with the salinity treatments. Extracted soil calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), manganese (Mn), and cadmium (Cd) increased while sulfur (S), iron (Fe), and copper (Cu) decreased, and aluminum (Al) and zinc (Zn) exhibited no change with increasing salinity. Sorghum aerial plant and root production decreased with increasing salinity. Plant Ca, strontium (Sr), Mn, and Cd levels increased with increasing salinity. In contrast, sorghum K, P, and S levels declined with increasing salinity.  相似文献   

15.
The purpose of this study was to investigate the influence of soil geochemistry on the concentrations of Ca, K, Mg, P, Co, Ni, Zn, Mn, Cu, and Fe in cabbage (Brassica oleracea L. var. capitata) grown on acid sulfate (AS) soils in Western Finland. A total of 11 topsoil (0–20 cm) and corresponding cabbage samples and three whole‐soil profiles (≈ 0–260 cm) were collected on three agricultural fields. The concentrations of Co and Zn in cabbage were correlated with the NH4Ac‐extractable (easily available) concentrations in the topsoil, indicating that the uptake of these elements in cabbage is largely governed by soil geochemistry. Yet, the concentrations of Co and Zn in cabbage were not in general elevated relative to that of Finnish average values, although some AS soils showed enriched concentrations of these metals in the soil and cabbage. Significant geochemical differences (e.g., oxidation depth, organic‐matter and S content, pH) were observed among the studied AS soils, while, on the other hand, the concentrations of Ca, K, Mg, P, Ni, Mn, Cu, and Fe in cabbage were relatively similar. The hydroxylamine‐extractable concentrations of these elements in the topsoil were not correlated to those in cabbage, suggesting that uptake is not governed by the oxide‐bound fraction of these elements in the soil. Similarly, the easily available concentrations of Ca, P, Ni, Mn, Cu, and Fe in the topsoil were not correlated to those in cabbage, indicating that uptake is independent of the easily available concentrations in the soil. Hence, it is suggested that cabbage can regulate and thus optimize its concentrations of Ca, P, Ni, Mn, Cu, and Fe. Oxidation depth affected neither the easily available concentrations of Co, Ni, Zn, and Mn in the topsoil nor the concentrations in cabbage. However, the subsoil with a lower oxidation depth, which is to a smaller extent affected by leaching, may partly be enriched in these metals. Nevertheless, these showed no increased concentrations in cabbage. Based on these findings, it is suggested that the large amounts of metals mobilized in AS soils are easily lost to drains, subsequently contaminating nearby waterways and estuaries whereas they are only partly enriched in cabbage and other previously studied crops (oat).  相似文献   

16.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

17.
Our understanding of how mineral nutrition affects productivity and composition of bioenergy crops grown on marginal lands remains fragmented and incomplete despite world‐wide interest in using herbaceous biomass as an energy feedstock. Our aim was to determine switchgrass (Panicum virgatum L.) biomass production and maize (Zea mays L.) grain yield on marginal soils used previously to evaluate the effect of soil phosphorus (P) and potassium (K) fertility on alfalfa (Medicago sativa L.) forage production. Grain yield of maize was reduced on P‐ and/or K‐limited plots that also impaired alfalfa forage yield, whereas switchgrass biomass yields were high even in plots possessing very low available P (4 mg kg–1) and K (< 70 mg kg–1) levels. Linear‐plateau regression models effectively described the relationship of soil test P and K to tissue P and K concentrations, and tissue P and K concentrations accurately predicted removal of P and K in harvest biomass. However, neither soil‐test P and K, nor tissue P and K concentrations were effective as diagnostics for predicting switchgrass biomass yield nor could soil tests and their change with cropping predict nutrient removal. Concentrations of cellulose, hemicellulose, lignin, and ash were not influenced by P and K nutrition. Predicted bio‐ethanol production was closely associated with biomass yield whereas high biomass K concentrations reduced estimated bio‐oil production per hectare by as much as 50%. Additional research is needed to identify diagnostics and managements to meet the bioenergy production co‐objectives of having high yield of biomass with very low mineral nutrient concentrations (especially K) while sustaining and improving the fertility of marginal soils.  相似文献   

18.
水分调控对盐碱地土壤盐分与养分含量及分布的影响   总被引:6,自引:4,他引:2  
为给新疆地区盐碱地开发利用提供合理的灌溉指导,该文研究了滴灌条件下内陆干旱区重度盐碱地水分调控对土壤盐分与养分的影响,2008-2010年连续3 a设置了滴头正下方20 cm处5个土壤基质势下限控制灌溉:-5 kPa(S1)、-10 kPa(S2)、-15 kPa(S3)、-20 kPa(S4)和-25 kPa(S5),每个处理重复3次,按随机区组布置,于2008年试验前和2008-2010年试验后采集土壤样品(0~5、5~10、10~20、20~30和30~40 cm),测定土壤盐分(电导率、钠吸附比)以及土壤养分(速效N、P、K,全N、全P,有机质)含量。结果表明:3 a试验结束后,各处理0~40 cm土层土壤电导率与钠吸附比均显著(p0.05)降低,其中-5 kPa(S1)处理土壤电导率降至5.3 dS/m,降低幅度最大,为89%;速效N、P、K,全N、全P以及有机质含量较试验前均有显著升高,升高幅度均在20%以上,且与土壤基质势下限成正比。各处理速效养分均在滴头周围形成累积区,且随与滴头距离的增加而减少,养分全量与有机质含量在土壤剖面垂直分布差异显著。各处理土壤C/N均较第1年播种前降低,且降低率(4.3%~13.5%)随土壤基质势下限的降低而升高。综合土壤盐分的淋洗效果以及土壤养分的改良程度,滴头正下方20 cm处土壤水基质势控制下限-5 kPa可以作为内陆干旱区前3 a盐碱地水分调控的指导灌溉制度。  相似文献   

19.
Phosphorus (P)‐solubilizing bacteria and fungi can increase soil‐P availability, potentially enhancing crop yield when P is limiting. We studied the effectiveness of Bacillus FS‐3 and Aspergillus FS9 in enhancing strawberry (Fragaria × ananasa cv. Fern) yield and mineral content of leaves and fruits on a P‐deficient calcareous Aridisol in Eastern Anatolia, Turkey. The 120 d pot experiment was conducted in three replicates with three treatments (Bacillus FS‐3, Aspergillus FS9, control) and five increasing rates of P addition (0, 50, 100, 150, and 200 kg P ha–1). Fruit yield and nutrient content of fruits and leaves and soil P pools were determined at the end of the experiment. Phosphorus‐fertilizer addition increased all soil P fractions. Strawberry yield increased with P addition (quadratic function) reaching a maximum of 94 g pot–1 at 200 kg P ha–1 in the absence of P‐solubilizing microorganisms. At this yield level, Bacillus FS‐3 and Aspergillus FS9 inoculation resulted in P‐fertilizer savings of 149 kg P ha–1 and 102 kg P ha–1, respectively. Both microorganisms increased yields beyond the maximum achievable yield with sole P‐fertilizer addition. Microorganism inoculation increased fruit and leaf nutrient concentrations (N, P, K, Ca, and Fe) with the largest increases upon addition of Bacillus FS‐3. We conclude that Bacillus FS‐3 and Aspergillus FS9 show great promise as yield‐enhancing soil amendments in P‐deficient calcareous soils of Turkey. However, moderate additions of P fertilizer (50–100 kg ha–1) are required for highest yield.  相似文献   

20.
The purpose of this study was to investigate the influence of soil geochemistry on the concentrations of Ca, K, Mg, P, Co, Ni, Zn, Mn, Cu, and Fe in cabbage (Brassica oleracea L. var. capitata) grown on acid sulfate (AS) soils in Western Finland. A total of 11 topsoil (0–20 cm) and corresponding cabbage samples and three whole‐soil profiles (≈ 0–260 cm) were collected on three agricultural fields. The concentrations of Co and Zn in cabbage were correlated with the NH4Ac‐extractable (easily available) concentrations in the topsoil, indicating that the uptake of these elements in cabbage is largely governed by soil geochemistry. Yet, the concentrations of Co and Zn in cabbage were not in general elevated relative to that of Finnish average values, although some AS soils showed enriched concentrations of these metals in the soil and cabbage. Significant geochemical differences (e.g., oxidation depth, organic‐matter and S content, pH) were observed among the studied AS soils, while, on the other hand, the concentrations of Ca, K, Mg, P, Ni, Mn, Cu, and Fe in cabbage were relatively similar. The hydroxylamine‐extractable concentrations of these elements in the topsoil were not correlated to those in cabbage, suggesting that uptake is not governed by the oxide‐bound fraction of these elements in the soil. Similarly, the easily available concentrations of Ca, P, Ni, Mn, Cu, and Fe in the topsoil were not correlated to those in cabbage, indicating that uptake is independent of the easily available concentrations in the soil. Hence, it is suggested that cabbage can regulate and thus optimize its concentrations of Ca, P, Ni, Mn, Cu, and Fe. Oxidation depth affected neither the easily available concentrations of Co, Ni, Zn, and Mn in the topsoil nor the concentrations in cabbage. However, the subsoil with a lower oxidation depth, which is to a smaller extent affected by leaching, may partly be enriched in these metals. Nevertheless, these showed no increased concentrations in cabbage. Based on these findings, it is suggested that the large amounts of metals mobilized in AS soils are easily lost to drains, subsequently contaminating nearby waterways and estuaries whereas they are only partly enriched in cabbage and other previously studied crops (oat).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号