首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A glasshouse investigation was undertaken to evaluate the natural potential of fenugreek (Trigonella foenumgraecum L.), spinach (Spinacia oleracea L.), and raya (Brassica campestris L.) for cleanup of chromium (Cr)–contaminated silty loam and sandy soils. Four kilograms of soil per treatment in earthen pots was treated with five levels of chromium [0, 1.25, 2.5, 5.0, and 10.0 mg Cr kg?1 soil through dipotassium chromate (K2Cr2O7], equilibrated for 21 days at field-capacity moisture content, and then fenugreek, spinach, and raya were grown for 60 days after seeding. The concentration of diethylene triamine pentaacetic acid (DTPA)‐extractable Cr increased significantly with increasing rate of Cr application in both soils, but the increase was higher in sandy soil than in silty loam soil. The DTPA‐extractable Cr in both soils decreased after harvesting of crops compared to its concentration in soil before sowing of the crops. The decrease in DTPA‐extractable Cr concentration was highest in soil growing raya and least in the fenugreek‐growing soil. The percent reduction in dry‐matter yield (DMY) with increasing levels of added Cr in comparison to the zero‐Cr control was highest for fenugreek (49 and 52%) followed by spinach (36 and 42%) and lowest for raya (29 and 34%) in silty loam soil and sandy soil, respectively. Also, the percent reduction in mean shoot yield of all crops was higher in sandy soil (41%) compared to silty loam soil (36%), when the rate of applied Cr was increased from 0 to 10 mg Cr kg?1 soil. The DMY of both shoot and root was highest for raya and lowest for fenugreek. The Cr concentration in fenugreek, spinach, and raya increased with increasing level of added Cr in both soils. The concentration of Cr in both shoot and root was highest in raya, followed by spinach and fenugreek. The overall mean uptake of Cr in shoot was almost four times and in root was about two times higher in raya compared to fenugreek. The findings indicated that family Cruciferae (raya) was most tolerant to Cr toxicity, followed by chenopodiacea (spinach) and Leguminosae (fenugreek). Because raya removed the highest amount of Cr from soil, it could be used for pytoremediation of mildly Cr‐contaminated soils.  相似文献   

2.
ABSTRACT

Long-term irrigation with untreated industrial sewage effluents causes accumulation of high concentrations of chromium (Cr) and other heavy metals in soil and subsequently in crop plants (especially leafy vegetables), which can be phytotoxic to plants and/or a health hazard to animals and humans. Greenhouse experiments were conducted to determine the effects of Cr application on the growth of spinach (Spinacia oleracia L.) and to develop critical toxic ranges of Cr in plants and in soil. The study involved growing of spinach variety ‘Punjab Green’ in a greenhouse on silty clay loam and sandy soils equilibrated with different levels of applied Cr (0, 1.25, 2.5, 5, 10, 20, 40, 80, 160, and 320 mg Cr kg? 1 soil). Plants were harvested at: three growth stages 45, 60, and 90 days after sowing (DAS). Critical toxic ranges were estimated by regressing and plotting data on ammoniumbicarbonate-diethylenetriaminepenta-acetic acid (AB-DTPA) extractable Cr in soil or Cr concentration in plants versus dry-matter yield (DMY) of spinach at the three growth stages. Toxic ranges, i.e., slightly toxic (80%–90%), moderately toxic (70%–80%), and extremely toxic (< 70%) in terms of DMY relative to the attainable maximum DMY, were established for both soils and for plants at all three growth stages. There was no germination of spinach with applied Cr at 320 mg Cr kg? 1 rate in silty clay loam soil and at 40 mg Cr kg? 1 rate in sandy soil due to Cr toxicity. Roots accumulated more Cr in comparison with shoots. Chromium concentrations of 0.47–1.93 mg Cr kg? 1 soil in silty clay loam soil, 0.13–0.94 mg Cr kg? 1 soil in sandy soil, 1.08–5.40 mg Cr kg? 1 plant DM in silty clay loam soil and 0.54–11.7 mg Cr kg? 1 plant DM in sandy soil were found to be toxic. The critical toxicity ranges of Cr thus established in this study could help in demarcating Cr toxicity in soils and in plants such as spinach and other leafy vegetables due to irrigation of soils with untreated sewage water contaminated with chromium.  相似文献   

3.
ABSTRACT

Chromium (Cr) is an environmental pollutant and its accumulation up to toxic levels in the soil and plants by applying irrigation with untreated industrial effluents has become a major problem throughout the world, especially in developing countries like India. Various inorganic as well as organic compounds are known for their ability to reduce mobilization of heavy metals in soils for plant uptake and leaching to ground water. The present study was undertaken under controlled glasshouse conditions to assess the effectiveness of farm yard manure (FYM) applications (equivalent to 0, 1, and 2% organic matter on w/w basis) to ameliorate Cr toxicity in spinach grown in two texturally different soils (silty loam and sandy) contaminated artificially with five levels of Cr (0, 1.25, 2.5, 5.0, and 10.0 mg Cr kg? 1 soil as K2Cr2O7). The diethylene triamine pentaacetic acid (DTPA)-extractable Cr in soil (before seeding and after harvest), Cr concentration, and its uptake by shoots and roots of spinach increased with increasing level of applied Cr. Roots accumulated more Cr than shoots, which depicts limited translocation of Cr from roots to shoots. A significant decrease was observed in dry matter yield (DMY) of shoots as well as roots by raising levels of applied Cr (0 to 10 mg Cr kg? 1 soil) in both soils, but the extent of the DMY decrease was higher in the sandy loam soil. Application of FYM showed mitigating effects on Cr toxicity. The DMY was higher in the presence of FYM, than its absence, at all rates of applied Cr in both soils. The FYM application caused decline in the DTPA-extractable Cr in soil, and concentration of Cr and its uptake by shoots and roots of spinach at a given level of applied Cr. The magnitude of Cr toxicity and its amelioration by FYM application was higher in sandy soil compared to silty loam soil. The results of this study indicated that FYM application to the soil could be used as an effective measure for reducing Cr toxicity to crop plants in Cr-contaminated soils irrigated by untreated industrial effluents.  相似文献   

4.
Summary The aim of this study was to provide manageable data to help establish permissible limits for the pollution of soil by heavy metals. Therefore the short-and long-term effects of heavy metal pollution on phosphatase activity was studied in five different soil types. The results are presented graphically as logistic dose-response curves. It was possible to construct a curve for sand and silty loam soil but it was more difficult to establish a curve for sandy loam and clay soil and nearly impossible (except for Cu) for peat. The toxicity of the various metals can be compared on the basis of mmol values. In clay soils, for Cd, Cr, Cu, and Zn, the 50% effective ecological dose (ED50) values were comparable (approximately 45 mmol kg–1), but the ED10 values were very different, at 7.4, 41.4, 15.1, and 0.55, respectively. At the ED50 value, toxicity did not decrease with time and, in sandy soils, was approximately 2.6 mmol kg –1 dry soil for Cd, Cu, and Zn. In four out of five soils, the Cd toxicity was higher 1.5 years after the addition of heavy metal salts than after 6 weeks. Toxicity was least in the sandy loam, silty loam, and clay soil, and varied in general between 12 and 88 mmol kg–1. In setting limits, the criteria selected (no-effect level, ED10 or ED50) determine the concentration and also the toxicity of the sequence. It is suggested that the data presented here could be very useful in helping to set permissible limits for heavy metal soil pollution.  相似文献   

5.
Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop was irrigated with water containing Cd and Pb at 20 mg L?1, thereby adding 260 mg pot?1 of each metal. Amendments included calcium carbonate at 6 or 12%, gypsum at 50 or 100% of the soil gypsum requirement, farm manure at 7.50 or 15.00 g kg?1 soil, and a control. Amendments decreased ammonium bicarbonate diethylenetriaminepentaacetic acid (AB-DTPA)–extractable Cd and Pb concentrations and uptake by wheat. Dry matter, concentration, uptake, and extractability of Cd and Pb were greater in sandy loam soil compared with those in sandy clay loam soil irrespective of amendments. Sequential extraction showed that more metals were extracted from the control in all fractions and that predominantly metals were found in the carbonate fraction.  相似文献   

6.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

7.
We investigated the effects of different P fertilizers on the yields and Cd contents of oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.). These crops were grown in the greenhouse using soils treated with lime to achieve three pHs ranging from 4.77 to 5.94 for a sandy soil and 4.97 to 6.80 for a loam soil. The crop yields were generally not affected by liming or application of different kinds of P fertilizers, with a few exceptions. Application of Cd-containing NPK fertilizers in all cases tended to increase the Cd concentrations in crops, and the highest Cd concentrations in crops were obtained when the high-Cd NPK fertilizer was applied (adding 12.5 μg Cd kg?1 soil). Cadmium concentrations in crops in most cases decreased with increasing soil pH. The highest percent recovery of the added Cd by plant species in the sandy soil was found for inorganic Cd-salt and in the loam soil for low-Cd NPK fertilizer. Phosphate rock resulted in the lowest recovery of the added Cd by all the plant species in both soils, but was also an insufficient P-source of its low solubility.  相似文献   

8.
ABSTRACT

A greenhouse experiment was conducted to determine the bioavailability of copper (Cu) in clay loam and sandy clay loam soil. Lettuce (Lactuca sativa) and spinach (Spinacia oleracea) were grown in pots for 45 d. When mature, plants were treated for 15 additional days with 0, 100, 250, 500, or 1000 mg Cu kg?1 as CuSO4·5H2O. After harvest, Cu in soils and plant tissues was determined. In soils, applied Cu raised total and EDTA-extractible Cu. Results also revealed that the amounts of Cu extracted from sandy clay loam soil (80%) were higher than those extracted from clay loam soil (70%). In plants, increasing soil Cu concentration increased plant concentration of the metal. Plant species vary in their capacity for Cu accumulation: Lettuce has a relatively higher potential for Cu uptake and translocation than does spinach. Cu accumulation also differs among plant organs. In lettuce, metal accumulation is higher in roots than in shoots, where 60% to 80% of the total Cu of the plant is located in the roots. However, in spinach, there is no significant difference in Cu content between roots and shoots. The transfer of the metal from soil to plant is higher for plants grown on sandy clay loam soil. For a given rate of applied Cu, metal content in plant tissues is higher on sandy clay loam soil due to its higher transfer coefficient (CT) from soil to plant. Nevertheless, all crops studied showed a positive linear relationship between extractible soil Cu and plant Cu.  相似文献   

9.
In a greenhouse experiment, effects of different phosphate fertilizer applications on soil Cd extracted by DTPA and NH4NO3 in relation to plant uptake of Cd were investigated. The soils used were a sand and a loam treated with lime to achieve three pHs ranging from 4.77 to 5.94 for the sandy soil and 4.97 to 6.80 for the loam soil. Oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.), were used as test species. Application of the high-Cd NPK fertilizer (adding 12.5 μg Cd kg?1 soil) significantly increased the extractable soil Cd, especially the DTPA-extractable Cd. Use of phosphate rock adding as much Cd as the high-Cd NPK fertilizer did not increase the extractable Cd in either of the soils. Both DTPA- and NH4NO3-extractable Cd decreased with the increases in soil pH. The Cd concentrations and total Cd uptake of plants were significantly correlated with the soil Cd extracted by DTPA and NH4NO3.  相似文献   

10.
A pot experiment was conducted in a greenhouse to evaluate the effects of different levels of cadmium (Cd) on Cd accumulation and their effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) Czern.]. Cadmium accumulation in shoots and interactions among other metals [manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn)] were investigated. Ten levels of Cd ranging from 0 to 200 mg kg–1 soil were tested. The crop was grown for 60 days in a loamy sand soil with adequate basal fertilization of nitrogen (N), phosphorus (P), and potassium (K), and dry-matter yield (DMY) was recorded. The plants were analyzed for total Cd and micronutrients, and the soil was analyzed for diethylenetriaminepentaacetic acid (DTPA)–extractable Cd. Experimental results showed that the DTPA-extractable Cd in the soil increased consistently and significantly with increase in rates of Cd application up to 200 mg Cd kg–1 soil. Significant reduction in the DMY of Indian mustard occurred with application of 5 mg Cd kg–1 soil and greater. The content as well as uptake of Cd by Indian mustard increased significantly over the control at all rates of its application. It increased from 5.95 μg pot–1 in the control to 150.6 μg pot–1 at Cd application of 200 mg kg–1 soil. Application of Cd to soil though decreased the content of micronutrients in plants, but significant reduction occurred only for Fe at rates beyond 50 mg Cd kg–1 soil. However, the total removal of Fe, Zn, and Cu registered a significant decline over the control at and above Cd application of 10 mg kg–1 and that of Mn beyond 10 mg kg–1. In loamy sand soil, a DTPA-extractable Cd level of 3.8 mg kg–1 soil and in plant content of 28.0 μg Cd g–1 DMY was found to be the upper threshold levels of Cd for Indian mustard. Considerable residual content in the soil suggests that once the soil is contaminated by Cd it remains available in the soil for decades, and food crops grown on these soils may be a significant source of Cd toxicity to both humans and grazing animals.  相似文献   

11.
Distribution and plant uptake of soil Cd as influenced by organic matter and soil type were investigated in a greenhouse experiment. Three soils (a sand, sandy loam and clay loam) were used. The rates of organic matter in its moist state added were 0,20,40, 80, 160 and 320 g kg-1 of the air-dried soil on mass basis. Ryegrass (Lolium multörum L.) was used as a test crop. Soil Cd was analysed by a sequential extraction technique and by extraction with 1 M NH4NO3 and 0.005 M DTPA. The exchangeable fraction of Cd as determined by 1 M MgCl2 in the sequential extraction procedure increased, whereas the Fe-Mn oxidebound fraction decreased, with increasing levels of organic matter addition in all three soils. The dry matter yields of ryegrass were not affected by the addition of organic matter, but the Cd concentrations in both cuts of ryegrass decreased with increasing amounts of organic matter added. The plant Cd was highly but negatively correlated to soil CEC. At any level of organic matter addition, the decrease in Cd concentration of ryegrass was in the order: sand > sandy loam > clay loam.  相似文献   

12.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

13.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

14.
The concern for groundwater pollution by agrichemicals through solute movement within the soil is widespread. Zeolite is a type of soil amendment that is utilized to improve physical properties of soil and ameliorate polluted soil. The high negative charge of the zeolite and its open space structure allows adsorption and access of heavy metals and other cations and anions. The objectives of this research were (i) to determine the effects of different application rates of zeolite (0, 2, 4, and 8 g kg?1) on the immobile water content and mass exchange coefficient in a loam soil and then (ii) to determine the effects of optimum application rate of zeolite on the immobile water content and mass exchange coefficient of sandy loam and clay loam soils in saturated conditions by a mobile and immobile (MIM) model. In a disturbed soil column, a method was proposed for determination of MIM model parameters, that is, immobile water content (θim), mass exchange coefficient (α), and hydrodynamic dispersion coefficient (Dh). Breakthrough curves were obtained for different soil textures with different zeolite applications in three replicates, by miscible displacement of chloride (Cl?1) in disturbed soil column. Cl?1 breakthrough curves were evaluated in terms of the MIM model. The results showed that the pore water velocity calculated based on the total soil volumetric water content (θim+ θm) and real pore water velocity calculated based on the mobile water content (θm) increased in the loam soil with an increase in zeolite application rate, so that, between these different rates of zeolite application, the maximum value of pore water velocity and real pore water velocity occurred at zeolite application rates of 8.6 and 11.5 g kg?1, which are indicated as the optimum application rates. However, the comparison between different soils showed that the zeolite application rate of 8 g kg?1 could increase pore water velocity of sandy loam and loam soils by 31% more than that of clay loam soil. The immobile water content and mass exchange coefficient of loam soil were correlated with the zeolite application rate and reduced with an increase in the rate of applied zeolite. In a comparison between different soils at zeolite application rate of 8 g kg?1, the immobile water contents of the zeolite-treated soil decreased by 57%, 60%, and 39% on sandy loam, loam, and clay loam soils, respectively, compared with the untreated soil. Furthermore, zeolite application could reduce mass exchange coefficient by 9%, 43%, and 21% on sandy loam, loam, and clay loam soils, respectively. A positive linear relationship was found between θim and α. Zeolite application increased real pore water velocity of sandy loam soil by 39% and 46% compared with loam and clay loam soils, respectively. In other studies there was a decrease in ammonium and nitrate leaching due to the zeolite application, and therefore, an increase in real pore water velocity due to zeolite application in sandy loam soil, as compared with the loam and clay loam soils, may not show more rapid movement of solute and agrichemicals to the groundwater.  相似文献   

15.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

16.
Cadmium (Cd) accumulation and distribution was studied in sunflower (Helianthus annuus L., public line HA‐89) plant. From an uncontaminated sandy loam brown forest soil with 162 μg kg‐1 HNO3/H2O2 extractable Cd the HA‐89 sunflower public line accumulated 114 ug kg‐1 Cd in its kernels under open field conditions. This value is rather low as compared to data found by others. Sandy loam brown forest soil was treated with 0, 1 or 10 mg kg‐1 of Cd to study the interaction of this heavy metal with young sunflower plants in a greenhouse pot experiment. The fresh weight and dry matter accumulation of sunflower plant organs (roots, shoots, leaves or heads) was unaffected by cadmium treatment of soil. The nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), or zinc (Zn) uptake of sunflower plant organs was not influenced by lower or higher Cd‐doses, except sunflower heads where 10 mg kg‐1 of Cd treatment of soil significantly reduced the uptake of Ca, Fe, and Mn. Although Cd reduced the Zn uptake of roots, its rate was statistically not significant. Cadmium was accumulated prevalently in roots (1.21 mg kg‐1,4.97 mg kg‐1, or 13.69 mg kg‐1 depending on Cd‐dose), and its concentration increased also in shoots or leaves. In spite of the short interaction time, elevated concentrations of cadmium (0.78 mg kg‐1, 1.34 mg kg‐1, or 3.02 mg kg‐1 depending on Cd‐dose) were detected in just emerged generative organs (heads) of young sunflower plants.  相似文献   

17.
A pot experiment evaluated the growth of lettuce (Lactuca sativa L.) and barley (Hordeum vulgar) and accumulation of molybdenum (Mo) in plants and soils following amendments of Mo compost (1.0 g kg?1) to a Truro sandy loam. The treatments consisted of 0 (control), 12.5, 25, and 50% Mo compost by volume. The Mo compost did not affect dry‐matter yield (DMY) up to 25% compost, but DMY decreased at the 50% compost treatment. The 50% compost treatments increased the soil pH an average of 0.5 units and increased the nitric acid (HNO3)–extractable Mo to 150 mg kg?1 and diethylenetriaminepentaacetic acid (DTPA)–extractable Mo to 100 mg kg?1 in the growth medium; the same treatment increased tissue Mo concentration to 569 and 478 mg kg?1 in the lettuce and barley, respectively. Plants grown in the 25% compost produced about 55 mg kg?1 of total Mo in the growth medium; this resulted in tissue Mo concentration of 348 mg kg?1 in lettuce and 274 mg kg?1 in barley without any phytotoxicity. Our results suggested that 55 mg Mo kg?1 soil would be an appropriate limit for Mo loading of soil developed from compost additions, a value which is presently greater than the Canadian Council for Ministers of the Environment (CCME) Guidelines for the use of type B compost in Canada.  相似文献   

18.
Zinc deficiency in calcareous soils is a serious problem, which may be ameliorated by the application of some soil amendments. A completely randomized factorial experiment was done to investigate the effect of zeolite, vermicompost, zeolite + vermicompost, and Zn application to a calcareous soil on Zn availability, dry weight of spinach (Spinacia oleracea L.), and Zn concen-tration in spinach. Results indicated that zeolite had no effect on soil Zn availability, dry weight, and Zn concentration in spinach. Vermicompost significantly increased dry weight (1.33 g pot?1) and decreased Zn concentration in spinach (16 mg kg?1). Application of zeolite + vermicompost significantly increased dry weight (by 2.8 times) and Zn uptake in spinach and it also decreased Zn concentration in spinach less than vermicompost. Zinc application increased Zn concentration in spinach (up to 496 mg kg?1), but did not affect dry weight except in soils treated with zeolite + vermicompost. Generally, application of zeolite + vermicompost is recommended instead of separate zeolite or vermicompost application for improvement of soil Zn fertility and Zn uptake by spinach.  相似文献   

19.
A laboratory experiment was carried out to study the influence of 100 mg phosphorus pentoxide (P2O5) kg–1 soil from various phosphate sources on ammonia losses from soils amended with urea at 200 mg nitrogen (N) kg–1 soil. Irrespective of soil type, ammonia (NH3) loss was significantly greater from untreated soil (control) than from the soil treated with phosphorus (P) sources. A maximum decrease in ammonia loss (56%) was observed by applying phosphoric acid followed by triple and single superphosphate. Ammonia losses were significantly greater from sandy clay loam than from clay. Rate of ammonia volatilization was maximum during the first week of incubation and became undetectable for both soils at 21 days after incubation. The addition of phosphate sources significantly decreased pH in the sandy clay loam, but in the clay a significant decrease was observed only with the phosphoric acid addition. Addition of phosphate fertilizers was beneficial in reducing NH3 losses from urea.  相似文献   

20.
Polyphosphate‐based fertilizers are worldwide in use, and their effect on crop yield is often reported to be similar to orthophosphate products, although some studies showed higher yields with polyphosphate applications. However, information on how these fertilizers may influence plant P acquisition is very limited. A pot experiment was carried out under controlled conditions with corn (Zea mays L.) growing on a sandy soil (pH 4.9) and a silty‐loam soil (pH 6.9) differing in P‐sorption properties. The objective was to evaluate phosphorus fertilizer–use efficiency (PFUE) of several polyphosphate (poly‐P) compounds (pyrophosphate [PP], tripolyphosphate [TP], and trimetaphosphate [TMP]) using orthophosphate (OP) as a reference. Focus was put on evaluating plant parameters involved in plant P acquisition, i.e., root length and P uptake per unit of root length. Furthermore, soil P availability was characterized by measuring ortho‐P and poly‐P concentrations in soil solution as well as in CAL (calcium‐acetate‐lactate) extracts. The P availability was differentially influenced by the different P sources and the different soils. In the silty‐loam soil, the application of poly‐P resulted in higher ortho‐P concentrations in soil solution. In the same soil, CAL‐extractable ortho‐P was similar for all P sources, whereas in the sandy soil, this parameter was higher after OP application. In the silty‐loam soil, poly‐P concentrations were very low in soil solution or in CAL extracts, whereas in the sandy soil, poly‐P concentrations were significantly higher. Phosphorus fertilizer–use efficiency was significantly higher for poly‐P treatments in the silty‐loam soil and were related to a higher root length since no differences in the P uptake per unit of root length among poly‐P and OP treatments were found. However, in the sandy soil, no differences in PFUE between OP and poly‐P treatments were observed. Therefore, PFUE of poly‐P compounds could be explained by better root growth, thereby improving plant P acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号