首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management of grape powdery mildew (Erysiphe necator) and other polycyclic diseases often relies on calendar‐based pesticide application schedules that assume the presence of inoculum. An inexpensive, loop‐mediated isothermal amplification (LAMP) assay was designed to quickly detect airborne inoculum of E. necator to determine when to initiate a fungicide application programme. Field efficacy was tested in 2010 and 2011 in several commercial and research vineyards in the Willamette Valley of Oregon from pre‐bud break to véraison. In each vineyard, three impaction spore traps were placed adjacent to the trunk. One trap was maintained and used by the grower to conduct the LAMP assay (G‐LAMP) on‐site and the other two traps were used for laboratory‐conducted LAMP (L‐LAMP) and quantitative PCR assay (qPCR). Using the qPCR as a gold standard, L‐LAMP was comparable with qPCR in both years, and G‐LAMP was comparable to qPCR in 2011. Latent class analysis indicated that qPCR had a true positive proportion of 98% in 2010 and 89% in 2011 and true negative proportion of 96% in 2010 and 64% in 2011. An average of 3·3 fewer fungicide applications were used when they were initiated based on spore detection relative to the grower standard practice. There were no significant differences in berry or leaf incidence between plots with fungicides initiated at detection or grower standard practice plots, suggesting that growers using LAMP to initiate fungicide applications can use fewer fungicide applications to manage powdery mildew compared to standard practices.  相似文献   

2.
A specific and sensitive PCR assay for the detection of Phytophthora infestans , the cause of late blight of potato, in soil and plant tissues was developed. A P. infestans -specific primer pair (INF FW2 and INF REV) was designed by comparing the aligned sequences of rDNA internal transcribed spacer regions of most of the known Phytophthora species. PCR amplification of P. infestans DNA with primers INF FW2 and INF REV generated a 613 bp product, and species specificity was demonstrated against DNA from nine other Phytophthora species and seven potato-blemish pathogens. In a single-round PCR assay, 0·5 pg pure P. infestans DNA was detectable. Sensitivity was increased to 5 fg DNA in a nested PCR assay using Peronsporales-specific-primers in the first round. As few as two sporangia or four zoospores of P. infestans could be detected using the nested assay. Procedures are described for detection of P. infestans in leaves, stem and seed potato tubers before expression of symptoms. A soil assay in which 10 oospores per 0·5 g soil were detectable was developed and validated using samples of field soil. The PCR assay was used to examine the long-term survival of sexual (oospores) and asexual (sporangia and mycelium) inoculum of P. infestans in leaf material buried in a replicated experiment under natural field conditions. Oospores were consistently detected using the PCR assay up to 24 months (total length of the study) after burial in soil, whereas the sporangial inoculum was detected for only 12 months after burial. Sporangial inoculum was shown to be nonviable using a baiting assay, whereas leaf material containing oospores remained viable up to 24 months after burial.  相似文献   

3.
ABSTRACT A polymerase chain reaction (PCR) assay employing species-specific primers was developed to differentiate Erysiphe necator from other powdery mildews common in the northwest United States. DNA was extracted from mycelia, conidia, and/or chasmothecia that were collected from grape leaves with a Burkard cyclonic surface sampler. To differentiate E. necator from other erysiphaeceous fungi, primer pairs Uncin144 and Uncin511 were developed to select unique sequences of the internal transcribed spacer regions of E. necator. Using these primers in PCR amplifications, a 367-bp amplicon specific to E. necator was generated, but no amplicons were generated from other erysiphaceous species collected from 48 disparate hosts representing 26 vascular plant families. The PCR limit of detection was one to five conidia of E. necator placed directly into reaction mixtures or 100 to 250 conidia placed on glass rods coated with silicon grease. During field studies, this PCR assay facilitated the detection of E. necator inoculum in air samples within hours of sample rod collection and prior to disease onset. Amplification of E. necator DNA did not occur when the PCR assay was conducted on vineyard air samples collected while grapes were dormant or during periods when vine growth occurred but E. necator remained dormant. The initial PCR detection of E. necator of the season occurred during seasonal ascospore releases caused by precipitation events between bud burst and the prebloom period during the 3 years of the study. Detection ceased for 7 to 11 days following ascospore release and then resumed several days prior to the observance of microscopic symptoms and signs of powdery mildew in the field. Results of this study represent the initial step toward the goal of incorporating an inoculum availability component into current and future grapevine powdery mildew risk assessment models.  相似文献   

4.
In order to better understand the epidemiology of Puccinia triticina and the relationship between airborne inoculum and disease severity, a method for quantifying airborne inoculum was developed using volumetric Burkard 7-day spore traps and real-time PCR. The method was applied using a spore trap network from 1 March to 30 June over a 5-year period. At one site, the inoculum was quantified continuously over 3 years, during which it showed a seasonal distribution, with the highest quantities and detection frequencies occurring between May and June. High mean daily quantities (65.8–121.2 spores/day) and detection frequencies (±20 % of days) were also reported after harvest from September to December. In the coldest months of the year, almost no detection was recorded (1–6 % of days). The study results indicate that the absence of inoculum in the air when upper leaves are emerging could be a limiting factor for the risk of epidemics. Mean daily quantities of airborne inoculum (0–131.4 spores/day) were measured from the beginning of stem elongation (GS30) to the flag leaf stage (GS39). These values were well correlated with the disease severity levels measured during grain development. A multiple regression analysis showed that total rainfall in late summer and autumn and mean minimum temperature in winter positively influence spore density between GS30 and GS39 in the following spring (R2 = 0.73). This relationship and the patterns of airborne inoculum observed in fields strongly suggest the existence of a ‘green bridge’ phenomenon in Belgium. Our study also showed that the quantification of airborne inoculum or its estimation using a weather-based predictive model could be useful for interpreting disease severity models and avoiding over-estimates of disease risk.  相似文献   

5.
This study investigated the value of using real‐time monitoring of Phytophthora infestans airborne inoculum as a complement to decision support systems (DSS). The experiment was conducted during the 2010, 2011 and 2012 potato production seasons in two locations in New Brunswick, Canada. Airborne sporangia concentrations (ASC) of P. infestans were monitored using 16 rotating‐arm spore samplers placed 3 m above the ground. The first cases of late blight (2010 and 2011) were detected 6–7 days after the first ASC peak, and all samplers captured their first sporangia within the same week (at 3‐ and 9‐day periods). The cumulative ASC curve and the risk curves from two DSS (PLANT‐Plus and Pameseb Late Blight) had the same shape but different magnitudes. In both locations, the negative binomial distribution fitted the data better than the Poisson distribution, which is indicative of heterogeneity, and based on Taylor's power law, the heterogeneity increased with increasing ASC. Therefore, the present results suggest that spore‐sampling network devices may be a suitable approach for early detection of incoming inoculum and, when combined with DSS, represent a potential aid for targeting the optimal time to apply a disease‐control product. In this context, cumulative ASC can be a counterweight to the DSS risk estimate: a high risk combined with significant ASC will trigger fungicide spraying. Moreover, spore sampling can be used to assess the efficiency of management strategies by means of examining the area under the inoculum progress curve.  相似文献   

6.
This paper reports the development of a new specific diagnostic technique to accurately quantify airborne inoculum of Sclerotinia sclerotiorum and discusses its potential use in disease-forecasting schemes, using examples of three contrasting epidemic seasons: 2007, when there was a severe epidemic of sclerotinia stem rot (SSR) in England and high numbers of airborne ascospores were trapped at Rothamsted, and, in contrast, 2003 and 2004, when the incidence of SSR in England was low and low numbers of airborne ascospores were trapped at Rothamsted. DNA was extracted from wax-coated plastic tapes, such as those used in Burkard (Hirst-type) spore traps and rotating-arm traps. A SYBR-green quantitative PCR (qPCR) method produced a linear relationship between ascospore numbers and S. sclerotiorum DNA (mean 0·35 pg DNA per spore) and was able to detect DNA representing as few as two ascospores. The technique was insensitive to DNA of the host plant, Brassica napus , and other plant pathogens, including Sclerotinia minor , S. trifoliorum and Botrytis cinerea , and common airborne fungal genera such as Cladosporium and Penicillium . There was no relationship between rainfall and numbers of airborne ascospores of S. sclerotiorum present at Rothamsted during the period of infection in the severe SSR season (2007).  相似文献   

7.
ABSTRACT A means for determining the rate of release, Q (spores per square meter per second), of spores from a source of inoculum is paramount for quantifying their further dispersal and the potential spread of disease. Values of Q were obtained for Phytophthora infestans sporangia released from an area source of diseased plants in a potato canopy by comparing the concentrations of airborne sporangia measured at several heights above the source, with the concentrations predicted by a Lagrangian Stochastic simulation model. An independent estimate of Q was obtained by quantifying the number of sporangia per unit area of source at the beginning of each sampling day by harvesting diseased plant tissue and enumerating sporangia from these samples. This standing spore crop was the potential number of sporangia released per area of source during the day. The standing spore crop was apportioned into time segments corresponding to sporangia concentration measurement periods using the time trace of sporangia sampled above the source by a Burkard continuous suction spore sampler. This apportionment of the standing spore crop yielded potential release rates that were compared with modeled release rates. The two independent estimates of Q were highly correlated (P = 0.003), indicating that the model has utility for predicting release rates for P. infestans sporangia and the spread of disease between fields.  相似文献   

8.
The potential use of DNA-based methods for detecting airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae , both damaging pathogens of oilseed rape, was investigated. A method for purifying DNA from spores collected using Hirst-type spore samplers and detecting it using polymerase chain reaction (PCR) assays is described. For both pathogens, the sensitivities of the DNA assays were similar for spore-trap samples and pure spore suspensions. As few as 10 spores of L. maculans or P. brassicae could be detected by PCR and spores of both species could be detected against a background of spores of six other species. The method successfully detected spores of P. brassicae collected using spore traps in oilseed rape crops that were infected with P. brassicae. Leptosphaeria maculans spores were detected using spore traps on open ground close to L. maculans -infected oilseed rape stems. The potential use of PCR detection of airborne inoculum in forecasting the diseases caused by these pathogens is discussed.  相似文献   

9.
Little is known about inoculum dynamics of late blight caused by Phytophthora infestans in tropical/subtropical areas, particularly in Brazil. The objectives of the present study were to assess (i) the survival of the pathogen on stems, leaflets and tomato fruits, either buried or not in soil; (ii) the pathogenicity of P . infestans to mostly solanaceous plant species commonly found in Brazil that could act as inoculum reservoir; and (iii) the temporal dynamics of airborne sporangia. Phytophthora infestans survived in tomato plant parts for less than 36 days under greenhouse and field conditions. In greenhouse tests, pathogen structures were detected earlier on crop debris kept in dry than in wet soil conditions. Isolates of two clonal lineages of P. infestans , US-1 from tomato, and BR-1 from potato, were inoculated on 43 plant species. In addition to potato and tomato, Petunia  ×  hybrida and Nicotiana benthamiana were susceptible to the pathogen. Airborne inoculum was monitored with Rotorod and Burkard spore traps as well as with tomato and potato trap plants. Sporangia were sampled in most weeks throughout 2004 and in the first two weeks of 2005. Under tropical/subtropical conditions, airborne inoculum is abundant and is more important to late blight epidemics than inoculum from crop debris or alternative hosts.  相似文献   

10.
A technique for relating the progress of plant diseases caused by airborne fungal pathogens to cumulative numbers of trapped spores is proposed. The relationship involves two epidemiological parameters—a disease asymptote and the infection efficiency (disease units/spore) of inoculum. The technique was evaluated using data on apple powdery mildew and scab epidemics in sprayed and unsprayed apple orchard plots. For powdery mildew, the observed relationships were close to those proposed in the unsprayed plot, but changed after or during the period of fungicide application in sprayed plots. Parameter estimates gave useful comparative information on the epidemics. The technique was not useful for scab because of the discontinuous patterns of infection.  相似文献   

11.
This study investigated conidial dispersal in the field, and effects of simulated wind and rain on the dispersal of A. brassicicola on Chinese cabbage ( Brassica pekinensis ). Spores were sampled using a Burkard volumetric spore sampler and rotorod samplers in a Chinese cabbage crop. Disease incidence in the field was well fitted by a Gompertz curve with an adjusted r 2 of >0·99. Conidia of A. brassicicola were trapped in the field throughout the growing season. Peaks of high spore concentrations were usually associated with dry days, shortly after rain, high temperature or high wind speed. Diurnal periodicity of spore dispersal showed a peak of conidia trapped around 10·00 h. The number of conidia trapped at a height of 25 cm above ground level was greater than that at 50, 75 and 100 cm. Conidial dispersal was also studied under simulated conditions in a wind tunnel and a rain simulator. Generalized linear models were used to model these data. The number of conidia caught increased significantly at higher wind speeds and at higher rain intensities. Under simulated wind conditions, the number of conidia dispersed from source plants with wet leaves was only 22% of that for plants with dry leaves. Linear relationships were found between the number of conidia caught and the degree of infection of trap plants.  相似文献   

12.
Methods to assess light leaf spot ( Pyrenopeziza brassicae ) on winter oilseed rape cultivars were compared in laboratory, controlled-environment and field experiments. In controlled-environment experiments with seedling leaves inoculated at GS 1,4, the greatest differences in percentage area affected by P. brassicae sporulation were observed with inoculum concentrations of 4 × 103 or 4 × 104 spores mL−1, rather than 4 × 102 or 4 × 105 spores mL−1, but older leaves had begun to senesce before assessment, particularly where they were severely affected by P. brassicae . In winter oilseed rape field experiments, a severe light leaf spot epidemic developed in 2002/03 (inoculated, September/October rainfall 127·2 mm) but not in 2003/04 (uninoculated, September/October rainfall 40·7 mm). In-plot assessments discriminated between cultivars best in February/March in 2003 and June in 2004, but sometimes failed to detect plots with many infected plants (e.g. March/April 2004). Ranking of cultivar resistance differed between seedling experiments done under controlled-environment conditions and field experiments. The sensitivity of detection of P. brassicae DNA extracted from culture was greater using the PCR primer pair PbITSF/PbITSR than using primers Pb1/Pb2. P. brassicae was detected by PCR (PbITS primers) in leaves from controlled-environment experiments immediately and up to 14 days after inoculation, and in leaves sampled from field experiments 2 months before detection by visual assessment.  相似文献   

13.
Six Salix clones were inoculated with urediniospores of four isolates of Melampsora larici-epitea at five inoculum levels using a leaf-disc method. Disease reactions were recorded using a digital camera; the number and size of uredinia were examined using image analysis software; and spore yield per leaf disc was measured. In three Salix / Melampsora combinations, S.  ×  mollissima 'Q83'/Q1 (LET4); S. viminalis '78183'/V1 (LET1); and S.  ×  stipularis /V1, pustule numbers increased as inoculum density became higher. In the remainder, S. viminalis 'Mullatin'/V1; S.  ×  calodendron /DB (LET3); and S. burjatica 'Korso'/K (LR1), pustule numbers initially increased, then decreased as inoculum densities exceeded 140–360 spores per disc. Calculated infection efficiency ranged from 0·11 to 0·20 on the three willows inoculated with V1: 0·16–0·68 for S.  ×  calodendron /DB; 0·20–0·55 for 'Q83'/Q1; and 0·07–0·48 for Korso/K. In single-spore inoculations, up to 10% of spores produced single uredinia. Infection efficiency increased sharply between inoculum densities of 1–40 spores per leaf disc. Spore yield was more closely correlated to pustule area (accounting for 61·2% variance for the combined data) than to the number of pustules (42·7% variance). For spore yields in relation to pustule numbers, clone-specific individual lines having different intercepts and slopes fitted significantly better than either a single line for all the tested willows, or parallel lines fitted to each clone ( P  < 0·001). For spore yields in relation to pustule area, clone-specific individual parallel lines were significantly better than a single line ( P  < 0·001).  相似文献   

14.
The risk of between‐field spread of disease is typically omitted from crop disease warning systems, as it is difficult to know the number and location of inoculum sources and thus predict the abundance of inoculum arriving at healthy crops. This study explores the utility of a simple approach to predicting risk of between‐field spread, based on the estimated probability that inoculum will survive the transportation process. Using potato late blight as a case study, the effect of solar radiation on the viability of detached Phytophthora infestans sporangia was assessed. A model to estimate the probability of spore survival was derived using a binomial generalized linear mixed model (GLMM), and receiver operating characteristic (ROC) curve analysis and cross‐validation were used to evaluate the global performance of the model as a binary classifier for discriminating between viable and nonviable sporangia. The model yielded an area under the ROC curve of 0.92 (95% CI = 0.90–0.93), signifying an excellent classification algorithm. Inspection of the curve provided a number of suitable decision threshold (or cut‐off) probabilities for discriminating between viable and nonviable sporangia. The classifier was tested as a forecasting system for potato late blight outbreaks using 10 years of outbreak data from across Great Britain. There was a marked differentiation among the cut‐offs, but the best prediction outcome was an accuracy of 89% with an alert frequency of 1 in 7 days. This model can be easily modified or the methodology replicated for other pathosystems characterized by airborne inoculum.  相似文献   

15.
The most economically important plant pathogens in the genus Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora cubensis and P. humuli, causal agents of downy mildew on cucurbits and hop, respectively. Recently, P. humuli was reduced to a taxonomic synonym of P. cubensis based on internal transcribed spacer (ITS) sequence data and morphological characteristics. Nomenclature has many practical implications for pathogen identification and regulatory considerations; therefore, further clarification of the genetic and pathogenic relatedness of these organisms is needed. Phylogenetic analyses were conducted considering two nuclear and three mitochondrial loci for 21 isolates of P. cubensis and 14 isolates of P. humuli, and all published ITS sequences of the pathogens in GenBank. There was a consistent separation of the majority of the P. humuli isolates and the P. cubensis isolates in nuclear, mitochondrial, and ITS phylogenetic analyses, with the exception of isolates of P. humuli from Humulus japonicus from Korea. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. humuli descended from P. cubensis. Host-specificity experiments were conducted with two reportedly universally susceptible hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. P. cubensis consistently infected the hop cultivars at very low rates, and sporangiophores invariably emerged from necrotic or chlorotic hypersensitive-like lesions. Only a single sporangiophore of P. humuli was observed on a cucurbit plant during the course of the studies. Together, molecular data and host specificity indicate that there are biologically relevant characteristics that differentiate P. cubensis and P. humuli that may be obfuscated if P. humuli were reduced to a taxonomic synonym of P. cubensis. Thus, we recommend retaining the two species names P. cubensis and P. humuli until the species boundaries can be resolved unambiguously.  相似文献   

16.
Apple scab caused by the fungus Venturia inaequalis can result in significant crop losses if not managed effectively. Sanitation as part of an integrated management strategy aims to significantly reduce primary inoculum to lower the disease pressure. This study evaluates the possibility of molecular detection and quantification of ascospore discharge and the use of this method to test for efficacy of orchard sanitation treatments. A method to detect and quantify airborne ascospores was developed using volumetric spore traps (VSTs). V. inaequalis specific primers were tested on daily VST samples from two orchard sections (leaf litter removed compared to leaf litter left) during spring. A molecular method to detect and quantify ascospores was tested by amplifying genomic regions of the mitochondrial CYP51A1 gene, and the ITS region using SYBR® green. Timing of ascospore discharge was compared to predicted infection risk and a degree day model using weather data. The average spore detection limit was estimated to be at levels of 1 pg μl?1 DNA (approximately 37 ascospores) per daily spore trap reading using CYP51A1 primers. Using the CYP51A1 primer pair, primary inoculum was estimated to be 51 % lower in the orchard sections where leaves had been removed, indicating that this method could be used to evaluate the efficacy of alternative control strategies such as leaf removal to reduce potential ascospore dose. This is the first report of combining VSTs and quantitative PCR to monitor airborne V. inaequalis ascospores.  相似文献   

17.
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real‐time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore‐trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain‐splashed conidia rather than putative ascospores.  相似文献   

18.
Benthiavalicarb is a new fungicide active against Oomycetes fungal plant pathogens. The present study shows that benthiavalicarb is effective for controlling the Oomycete fungal pathogen Plasmopara viticola, which causes downy mildew in grapevines. The fungicide did not affect zoospore discharge from sporangia of P. viticola, but strongly inhibited zoospore encystment, cystospore germination in vitro and mycelial growth, together with sporangial production in vivo. Benthiavalicarb showed strong prophylactic and local activity in intact plants or detached leaves and low translaminar activity. The compound was not translocated from leaf to leaf in either a acropetal or basipetal direction. Benthiavalicarb applied at 1, 3 and 6 days post-inoculation protected grapevine plants against downy mildew and inhibited sporulation of the pathogen. Similar results were obtained on leaf disks if benthiavalicarb was applied up to 96 h post-inoculation. Benthiavalicarb diminished the sporulation of P. viticola when applied to established disease in the tissue. Benthiavalicarb remained active on leaves for a period up to 28 days. Two foliar applications of benthiavalicarb, 2 weeks apart, to field-grown grapevines inhibited downy mildew development and were as effective as the standard metalaxyl-Cu treatment in controlling the disease. A formulated mixture of benthiavalicarb + Folpet was similar or superior in performance to metalaxyl-Cu and the new strobilurin trifloxystrobin in controlling downy mildew. The effectiveness of benthiavalicarb makes it well suited for integration into a control programme against downy mildew disease in vineyards, and as a component to delay resistance buildup.  相似文献   

19.
For wheat, the optimum time to apply fungicide to control disease on a given leaf layer is usually at, or shortly after, full leaf emergence. Data from field experiments on barley were used to investigate whether the same relationship was applicable to control of leaf blotch on barley. Replicated plots of winter barley were sown in the autumns of 1991, 1992 and 1993 at sites in southwest England with high risk of Rhynchosporium secalis infection. Single fungicide treatments at four doses (0·25, 0·5, 0·75 or 1·0 times the label rate) were applied at one of eight different spray times, starting in mid-March in each year, with intervals of 10–11 days between spray timings. Disease was assessed every 10–11 days and area under the disease progress curve (AUDPC) values were used to construct fungicide dose by spray time response surfaces for each of the upper four leaves, for each year. Spray timings shortly before leaf emergence were found to minimize the AUDPC for each year and leaf layer, and also the effective dose (the dose required to achieve a specified level of control), similar to wheat. Fungicide treatments on barley were effective for a longer period before leaf emergence than afterwards, probably because treatments before emergence of the target leaf reduced inoculum production on leaves below. This partly explains why fungicides tend to be applied earlier in the growth of barley compared with wheat.  相似文献   

20.
In an area of Nigeria where downy mildew of maize is present, histological assessment of maize seed revealed the presence of mycelium and oospores of Peronosclerospora sorghi in the kernels. Seed transmission of downy mildew of maize was demonstrated when grain purchased at local markets gave mean seedling infection rates of 12·3% (untreated seeds) and 10·0% (in metalaxyl-treated seeds) within 7 days of emergence, after storage in a desiccator for 30 days. When untreated seeds taken from nubbin ears of systemically infected plants from four states in southern Nigeria were planted at 9 days (17–22% moisture content) and 27 days (9–22% moisture content) after harvest, 20·0% infected seedlings resulted in both trials. Seeds from Borno state in northern Nigeria had 26·6% systemic seedling infection after 9 months of storage at 11% moisture content. When seeds harvested from maize plants inoculated with P. sorghi through silks were examined histologically, hyphae of P. sorghi were observed mostly in the scutellum of the embryo. Transmission of disease to seedlings was observed when the silk-inoculated seeds (9% moisture content) were planted in pots in a greenhouse; however, no disease transmission was observed when such seeds were planted in the field. The epidemiological significance of seed transmission is discussed with particular reference to survival of inoculum and development of epidemics. Also noteworthy is the overall significance of seed transmission in Nigeria, where the major source of seed is that saved by farmers from their grain crop, occasionally supplemented by seed bought from the local market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号