首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 56‐day experiment was conducted to investigate the effect of no carbohydrate addition applied to control water quality in water‐reusing biofloc systems for tilapia (GIFT Oreochromis niloticus) cultivation. Reusing water‐contained flocs was initially inoculated into six 300 L indoor tanks. Thirty fish (average individual weight 99.62 ± 7.34 g) were stocked in each tank. Glucose was extra added into three tanks (GLU‐tanks) according to biofloc technology, while other tanks were no carbohydrate added (NCA‐tanks). Concentrations of total ammonia nitrogen in GLU‐tanks and NCA‐tanks were fairly consistent and below 4.74 ± 0.35 mg/L. Nitrite concentrations in NCA‐tanks were significantly lower than GLU‐tanks, which were below 0.59 ± 0.10 mg/L during the later culture period. NCA‐tanks achieved a low relative abundance of denitrifiers and high concentrations of nitrate. Soluble reactive phosphorous in NCA‐tanks was consistently increased, which was decreased to a low level in GLU‐tanks. However, growth parameters in NCA‐tanks were similar to GLU‐tanks (> .05) and reach a high finial density of 24.32 ± 1.04 kg/m3. Cetobacterium sp. was the first‐dominant bacterial genus in all tanks, which was a commonly indigenous bacterium in the intestinal tract of freshwater fish. The results demonstrate the feasibility of no carbohydrate addition in water‐reusing biofloc systems for tilapia.  相似文献   

2.
In two 120-day experiments, performed in the laboratory at 22°C, the effects of stocking density on the survival and growth of juvenile tench (Tinca tinca L.) were evaluated. Fish were kept in fibreglass tanks, supplied throughout with flow of artesian water, and fed a dry diet for salmonids, in excess, supplemented with restricted amounts of Artemia nauplii. In the first experiment four-month-old juveniles (0.31 ± 0.04 g and 32.00 ± 1.17 mm TL) were stocked at four densities—0.18, 0.88, 1.05, and 2.10 g l−1. Survival was high (>89%) for all treatments. Final densities ranged between 1.10 g l−1 (significantly lowest) and 10.46 g l−1 (significantly highest). The density increase was significantly higher (611%) for fish stocked at the lowest initial density (0.18 g l−1) than for fish stocked at 0.88, 1.05, and 2.10 g l−1, for which the density increase averaged 457%. In the second experiment, 4.5-month-old juveniles (0.58 ± 0.17 g and 39.54 ± 0.83 mm TL) were stocked at three densities—1.05, 3.00, and 4.00 g l−1. Survival was high (>96%) for all treatments. Final densities ranged between 4.08 and 16.53 g l−1 and were significantly higher for greater initial densities. The density increase was greatest (413%) for fish stocked at the highest density (4 g l−1) and was not significantly different for fish stocked at 1.05 and 3 g l−1. Considering all the densities in the two experiments, for stocking at 4 g l−1 the final density was 15 times higher than that reached after stocking at 0.18 g l−1, without harmful effects on survival and growth. This final density (equivalent to 16.53 kg m−3) is in the range recommended for other fish species in this period under intensive conditions.  相似文献   

3.
The feeding trial was conducted in 80 days to assess the effects of stoking densities on growth, digestive enzymes activities, serum biochemical parameters and antioxidant status of juvenile genetically improved farmed tilapia (GIFT, Oreochromis niloticus) reared in in‐pond raceway recirculating culture system (IPRS). Fish (initial body weight: 6.25 ± 0.32g ) were randomly allotted to six in‐pond raceways (22 × 5 × 2.5 m) stocked at three different stocking densities: low stocking density (LSD, 0.28 kg/m3), medium stocking density (MSD, 0.57kg /m3) and high stocking density (HSD, 0.85 kg /m3). The results indicated that no significant differences were observed in final body weight, weight gain and specific growth rate of GIFT reared at different stocking densities on day 20 (p > 0.05). Fish reared in the HSD group showed poor growth than those reared in the LSD and MSD groups on day 50, but fish reared in the MSD and HSD groups showed poor growth than those reared in the LSD group on day 80. There were no significant differences found in digestive enzyme activities, serum cortisol, lysozyme and superoxide dismutase (SOD) content, hepatic catalase (CAT), total SOD, total antioxidant capacity (T‐AOC) activities and malondialdehyde (MDA) content among fish reared at different densities treatments (p > 0.05). Fish reared in the HSD group exhibited significant higher red blood cell number, haematocrit and glucose (GLU) contents on day 80 (p < 0.05). In brief, under this trial conditions, high stocking densities (0.57 kg/m3) resulted in decrease in growth, and GIFT might have an adaptation capability to crowding stress without a change in antioxidant activity, some physiological and immune parameters.  相似文献   

4.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

5.
Recent advances in intensive rearing of astacid juvenile crayfish have greatly improved the results. This challenges the current application possibilities of the studies performed previously, and new research on density is required. A 100-day experiment was carried out under controlled conditions to evaluate density effects on survival and growth rates of juvenile crayfish in optimal conditions of feeding. Juvenile stage 2 Pacifastacus leniusculus were stocked in fibreglass tanks (1 m2, 200 l water) at 20 ± 1°C and fed a dry diet for salmonids supplemented with restricted amounts of Artemia nauplii. Stocking densities were 100, 300, 600 and 1,000 crayfish m−2. Mean survival rate was reduced significantly with increased stocking density, ranging from 86.33% (100 m−2) to 39.13% (1,000 m−2). All checks showed that at the lowest initial density (100 m−2) animals grew significantly faster those at higher densities, recording a final carapace length of 15.28 mm and weight of 1.08 g. Among the treatments of 300, 600 and 1,000 m−2 no differences were found either in carapace length or in weight throughout the experimental period, with a final mean growth of 14 mm carapace length and 0.72 g weight. The final proportion of animals with chelae autotomy rose significantly with increasing stocking density, ranging from 14.44% (100 m−2) to 41.45% (1,000 m−2). This study shows that diet is a decisive factor for stocking successfully high densities under controlled conditions and provides useful information to set adequate densities in accordance with the production objectives.  相似文献   

6.
Hilsa, Tenualosa ilisha has received much attention for culture due to decline of the natural population. Lack of knowledge on larval rearing is the bottleneck for its culture. This study was aimed at developing larval rearing protocols for hilsa shad. Hilsa larvae (4 days old, 4.76 ± 0.06 mm/0.49 ± 0.01 mg) were stocked in fibreglass‐reinforced plastic tanks (1.7 m3 water volume) at 300, 600 and 1,200 nos/m3 in triplicates in three experimental systems viz., E‐I (circular, 0.567 m water depth), E‐II (circular, 0.962 m water depth) and E‐III (rectangular, 0.567 m water depth) and reared for 46 days. The larvae were supplied with Chlorella vulgaris, Brachionus calyciflorus, mixed phytoplankton and mixed zooplankton during 4–50, 6–25, 8–50 and 26–50 days of their age respectively. In each system, higher (p < 0.05) fry survival at 300 nos/m3 than in higher densities indicates density dependent stress. Circular tanks showed higher survival (13.3%–61.31%) than in rectangular tanks (6.88%–27.26%) in each stocking density, indicating the importance of tank shape for rearing. Water depth affected fry survival in circular tanks (E‐I and E‐II) at 300 nos/m3; at 0.962 m depth, survival was higher (61.31%, p < 0.05) than that of 0.567 m depth (49.93%). Good fry survival was achieved through feeding the larvae initially with Chlorella followed by co‐feeding with Brachionus, mixed phytoplankton and zooplankton and rearing in circular tanks at 300 nos/m3 densities at 1 m depth. This first‐ever larval rearing protocol is useful for mass production of fry to support hilsa aquaculture in future.  相似文献   

7.
The effects of culture density and bottom areas on cuttlefish (Sepia officinalis) culture were studied. Cuttle fish were cultured under three experimental combinations of culture density and bottom area: (1) high density and small bottom surface area; (2) low density and large bottom area; (3) high density and large bottom area. Each experimental protocol was repeated in triplicate. Average weights at the end of the experiment were of 65.8 ± 5.8, 87.1 ± 5.6 and 78.7 ± 5.9 g for cuttlefish cultured under the conditions of protocol 1, 2, and 3, respectively; these differences were significant between each of the three groups. Total biomass increased faster (up to 7.5 kg per tank) under the high density/large bottom area conditions (protocol 3) due to the larger number of animals and low mortality in those tanks. Growth rates (%bw day−1) were different between protocols, with growth rates of 2.1 ± 0.1, 3.0 ± 0.2, and 2.5 ± 0.1%bw day−1 obtained for cuttlefish cultured according to protocol 1, 2, or 3, respectively. Average feeding rates were similar for the three groups—10.7 ± 0.8, 9.7 ± 2.0, and 9.6 ± 1.1%bw day−1 for cuttlefish cultured according to protocols 1, 2, and 3, respectively, while food conversions (%) were different—21.5 ± 3.2, 32.4 ± 2.5, and 27.0 ± 1.1%bw day−1, respectively. Total mortality was high in the high density/small bottom area tanks, 30%, while it was very low for the groups cultured under conditions of low and high density/large bottom area, 4%. Based on these results, we conclude that culture conditions that provide large bottom areas also provide good survival conditions and promote growth in comparison those with small bottom areas, even under conditions of lower culture densities.  相似文献   

8.
Asian river catfish (Pangasius bocourti Sauvage, 1880) were cultured at five different stocking densities in cages (submerged volume 1 m3) suspended in a dugout pond from August to November 2009. Pangasius bocourti fingerlings (mean weight 27.09 ± 0.54 g) were stocked at densities of 12, 25, 50, 100, and 200 fish m−3. At the end of 3 months, the harvest weights (gross yields) were, respectively, 2.05 ± 0.30, 5.20 ± 0.31, 10.60 ± 0.42, 19.98 ± 0.78, and 42.37 ± 0.41 kg m−3. The mean fish weights among the stocking densities of 25, 50, 100, and 200 fish m−3 were not significantly different, but were significantly higher than that of the 12 fish m−3 density. The specific growth rates among high stocking densities of 50, 100, and 200 fish m−3 were not significantly different; however, they were significantly higher than those of the low stocking densities of 12 and 25 fish m−3. Asian river catfish performed poorly at the lowest density. The results indicate an initial lower stocking threshold for Asian river catfish of above 5.20 kg m−3. The Asian river catfish cultured in small cages placed in a pond reached the desirable market size (>200 g) within a 90-day grow-out period. The results show that the maximum yield for Asian river catfish during a 3-month production cycle was not reached.  相似文献   

9.
A low‐head recirculating aquaculture system (RAS) for the production of Florida pompano, Trachinotus carolinus, from juvenile to market size was evaluated. The 32.4‐m3 RAS consisted of three dual‐drain, 3‐m diameter culture tanks of 7.8‐m3 volume each, two 0.71‐m3 moving bed bioreactors filled with media (67% fill with K1 Kaldness media) for biofiltration, two degassing towers for CO2 removal and aeration, a drum filter with a 40‐µm screen for solids removal, and a 1‐hp low‐head propeller pump for water circulation. Supplemental oxygenation was provided in each tank by ultrafine ceramic diffusers and system salinity was maintained at 7.0 g/L. Juvenile pompano (0.043 kg mean weight) were stocked into each of the three tanks at an initial density of 1.7 kg/m3 (300 fish/tank). After 306 d of culture, the mean weight of the fish harvested from each tank ranged from 0.589 to 0.655 kg with survival ranging from 57.7 to 81.7%. During the culture period, the average water use per kilogram of fish was 3.26 or 1.82 m3 per fish harvested. Energy consumption per kilogram of fish was 47.2 or 22.4 kwh per fish harvested. The mean volumetric total ammonia nitrogen (TAN) removal rate of the bioreactors was 127.6 ± 58.3 g TAN removed/m3 media‐d with an average of 33.0% removal per pass. Results of this evaluation suggest that system modifications are warranted to enhance production to commercial levels (>60 kg/m3).  相似文献   

10.
The present study was conducted to evaluate the effect of different stocking densities on the seed production of Nile tilapia, Oreochromis niloticus (L.), under intensive recycling hatchery system conditions. Males and females with mean body weights of 163.2 and 105.0 g, respectively, were stocked at three broodstock densities (4, 8 and 12 fish m–2) at a male:female ratio of 1:3 in 1 × 1 × 0.43 m (W × L × H) fibreglass tanks. The tanks were illuminated at 2500 lux for 18 h day–1 and the water temperature was maintained at 29 ± 1 °C. Effluent from spawning tanks was recycled through a biological filter with 10–15% replacement of new water per day. The experiment lasted for 126 days. The results showed that breeders stocked at 4 fish m–2 had significantly higher (P < 0.05) mean values for total seed production, seed kg–1 female day–1, seed female–1 day–1, seed m–2 day–1 and spawning synchrony than at 8 and 12 fish m–2 broodstock densities. The mean percentage of seeds in the yolk-sac and swim-up fry stages was highest at 4 fish m–2 broodstock density. However, the recovery rate was not affected by broodstock density. It is recommended that further research should be conducted to determine whether weight m–2 , number m–2 or age of broodstock should be the basis for stocking broodstock.  相似文献   

11.
Impact of aeration on growth of silver barb, Puntius gonionotus during fingerling rearing was studied through a 100‐d rearing experiment conducted in 18 concrete tanks of 50 m2 (10 × 5 × 1.2 m) size. Fry (0.74 ± 0.27 g, 35 ± 6 mm) were stocked in the experimental tanks at three stocking densities (25, 50, and 75 fry/m2) and were evaluated with and without provision of 6 h (2400–0600 h) of night time aeration. Aeration resulted in higher pH and dissolved oxygen regime and increased fingerling length and weight. The results suggest a rearing density of 75/m2 to be ideal for rearing fry to fingerling of this species when aeration is provided, whereas, under non‐aerated condition, rearing the fry to fingerling stage at 50/m2 was found advantageous over those at 25 and 75/m2.  相似文献   

12.
With recent advances in aquaculture techniques, captive‐breeding of the endangered white‐clawed crayfish Austropotamobius pallipes for restocking is becoming a widespread conservation method. Establishing optimal stocking densities for aquaculture is essential in maximizing productivity, and increases the likelihood of crayfish survival when released. A 240‐day experiment took place using 2‐month‐old juvenile, captive‐born, A. pallipes, within a small‐scale, closed‐circuit hatchery to investigate survival, growth and aggression at three treatment densities, low (100/m2), medium (200/m2) and high (300/m2). Crayfish were counted and measured every 60 days between August 2015 and April 2016. Mean survival rates were high across all three densities (87.7% ± 2.8%). Carapace length was significantly longer at low density than at medium and high densities. While growth rate was not significantly different between treatments, it was significantly higher in the first 2 months, across all three treatments (47.1% ± 6.6%) than in subsequent periods (14.1% ± 5.8%). Size variation within groups increased with density, suggesting that social dominance hierarchies are established with increasing stocking density: dominant individuals are larger and competitively exclude smaller individuals from food resources. Males were significantly larger than females from 6 months of age, (when they could be reliably sexed), in all three treatments. The larger male size suggests that sexual dimorphism begins prior to sexual maturity, with males growing faster and being more dominant and aggressive than females. In conclusion, young‐of‐the‐year A. pallipes can be reared at high densities without compromising survival; however, the optimal stocking density that maximizes growth and health is 100/m2.  相似文献   

13.
This study aimed to assess the effects of stocking density on the growth, antioxidant status, and physiological response of juvenile turbot. Turbot (average initial weight 70.0 ± 5 g) were reared at three different initial densities (low density [LD], 5.13 ± 0.03 kg/m2; medium density [MD], 7.71 ± 0.11 kg/m2; and high density [HD], 10.8 ± 0.12 kg/m2) for 80 d. At the end of this trial, the final densities were 13.2 ± 0.10, 19.9 ± 0.15, and 25.7 ± 0.12 kg/m2 in the LD, MD, and HD groups, respectively. The growth performances were adversely influenced by a high stocking density. Levels of cortisol, glucose, cholesterol, triglyceride, glutamate pyruvate transaminase, and glutamate oxalate transaminase in the plasma significantly increased in HD treatment. Results of oxidative stress analyses showed that there was a clear decrease in superoxide dismutase, glutathione peroxidase, catalase, glutathione, and total antioxidant capacity, and an obvious increase in malondialdehyde in plasma and/or liver of turbot reared in HD group (P < 0.05). Overall, the results indicated that increasing stocking density reduced the growth performance, modulated the physiological response, and induced oxidative stress in turbot.  相似文献   

14.
Redclaw crayfish, Cherax quadricarinatus, early juveniles were reared at different stocking densities in a closed recirculation system using 12-L plastic containers as rearing tanks. Initial stocking densities were 1.0, 1.5, 2.0, 2.5, and 3.0 per liter (66, 89, 111, 133, and 156 crayfish/m2, respectively). Rearing period was 42 days. Each density was tested with five replicates. Shelter (0.112 m2) was added to double the surface area of rearing tanks. Animals were fed ad libitum twice a day with a commercial diet containing 35% crude protein. There were no significant differences (P < 0.05) in length and specific growth rate (SGR) among stocking densities. Final weight and daily weight gain, however, were significantly higher at the density of 66 per m2 (1.0 per liter). Total biomass at harvest increased with density. Survival was affected by stocking density from day 28 onward, decreasing with density from 62.7 ± 7.6% obtained at 66 crayfish/m2 to 44.85 ± 8.18% at 156 crayfish/m2.  相似文献   

15.
This study evaluated the zootechnical performance and enzymatic activity of Litopenaeus vannamei reared at different feeding frequencies during the nursery phase in biofloc system. The experiment consisted of four treatments, corresponding to the feeding frequencies of one, two, three and four times a day. Twelve‐day postlarvae (PL12) were stocked in 12 circular tanks at a density of 3,000/m2 for 35 days. These tanks were connected to a recirculation system supplied by a matrix tank where biofloc management was carried out. Water quality remained within acceptable limits for the species over the experiment. Food frequencies had no influence on survival (88.5–92.7%) and feed conversion ratio (1.5–1.7), but the final mean weight (0.43–0.56 g) was significantly higher in shrimp fed three times a day. This fact is probably associated with amylase (14.58 U/mg) and trypsin (23.84 U/mg) activities, as well as the significant increase of chymotrypsin (11.74 U/mg) and lipase (1.27 U/mg) in shrimp of this treatment at the end of culture period. Feeding three times a day provided the highest enzymatic activity and the best zootechnical performance of L. vannamei during the nursery phase in biofloc system.  相似文献   

16.
ABSTRACT

In temperate regions, post-larvae freshwater prawn, Macrobrachium rosenbergii, are grown to more advanced sizes in tanks prior to pond stocking. This intermediate stage of culture is referred to as the nursery period. Little research has been conducted on different management practices on juvenile prawn growth and survival during this 30-60 day period. Survival during the nursery stage has been highly variable and may be related to the cannibalistic behavior of juvenile freshwater prawn when cultured at high densities in the nursery. The objective of this study was to evaluate the effect of stocking density, relative to the provision of artificial substrate (number of prawns/m2 of substrate), on growth, survival, and economic variables for freshwater prawn juveniles during nursery production. Post-larvae (0.01%0.00 g, n = 300) were stocked into nine 1900 L tanks, each provided with 20.5 m2 of artificial substrate in the form of horizontal layers of black plastic mesh (10 mm) spaced 5 cm apart. Tanks were randomly assigned one of three prawn densities (215, 430, or 860 post-larvae/m2 of substrate), which equated to 2.3,4.6 and 9.2 prawn/L, respectively. Juvenile prawn were fed a commercial trout diet (42% protein) at a percentage of body weight according to a feed rate table. Water quality was maintained using a flow rate of 8 L/min in each tank from a reservoir pond. Temperature was maintained at approximately 28°C using heat pumps. After 56 days there was no significant difference (P >0.05) in average weight of juvenile prawn stocked at the three densities (0 = 0.58%0.12 g, n = 9). Survival was significantly lower (P <0.05) for prawn stocked at 860 m2 (62%) than in those stocked at 430/m2 (78%) and 215/m2 (94%), which were not statistically different (P >0.05). Even with reduced survival, the highest stocking density produced the greatest number of nursed juveniles based on both tank volume (5.5/l) and surface area (530/m2), at the lowest average cost.  相似文献   

17.
The first step for rearing the newly produced hybrid of Asp, Leuciscus aspius ♀, × Caspian Kutum, Rutilus frisii ♂ (so‐called “Aspikutum”) is to understand essential production requirements such as stocking density. For this purpose, fish (60.4 g) were held at five stocking densities of 2, 4, 6, 8, and 10 kg/m3 in circular concrete tanks (603 L) for a period of 56 d. The culture system was maintained at natural temperature and photoperiod. Fish were fed thrice a day using a commercial diet. At the end of the trial, growth indices, including final mean weight, weight gain, and specific growth rate, were significantly higher at the density of 10 kg/m3 compared with 2 kg/m3 (P< 0.05). Feed intake was significantly greater at 10 kg/m3 compared with 2 kg/m3 (P< 0.05); however, feed efficiency, protein efficiency ratio, protein productive value, and hepatosomatic index remained unchanged among the stocking densities (P> 0.05). Increased stocking density caused significant increase in body protein and fat contents (P< 0.05). Condition factor in higher densities (8 and 10 kg/m3) was significantly higher compared with 2 kg/m3 (P< 0.05). The results indicated that rearing this hybrid in the studied weight range at high density of 10 kg/m3 or more is possible without negative impacts on growth performance and body composition.  相似文献   

18.
A study to determine the effects of four stocking densities on growth and feed utilization of wild‐caught black sea bass Centropristis striata was conducted in a pilot‐scale recirculating tank system. The outdoor system consisted of 12 insulated fiberglass tanks (dia. = 1.85 m; vol. = 2.17 m3) supported by biological filters, UV sterilizers, and heat pumps. Subadults (N= 525; ×± SD = 249 ± 16.8 g) were stocked at densities of 4.6 fish/m3 (1.18 kg/m3), 16 fish/ m3 (3.91 kg/m3), 25.3 fish/m3 (6.83 kg/m3), and 36 fish/m3 (7.95 kg1m3), with three replicate tanks per treatment. Fish were grown under 35 ppt salinity, 21‐25 C, and under ambient photoperiod conditions. A commercial flounder diet containing 50% protein and 12% lipid was hand‐fed twice daily to satiation for 201 d. Mean (range) total ammonia‐nitrogen, 0.61 (0‐2.1) mg/L, nitrite‐nitrogen, 0.77 (0.04‐3.6) mg/L, and nitrate‐nitrogen 40.1 (0‐306) mg/L were significantly higher (P < 0.0001) in the 25.3 and 36 fish/m3 treatments than in the 4.6 and 16 fish/m3 treatments [0.19 (0.05‐0.5), 0.1 (0.24‐0.63), and 11.9 (1.3‐82.2) mg/L, respectively]. However, there were no significant differences (P > 0.05) in growth (RGR = 196.8‐243.1%; DWG = 2.55‐2.83 g/d; and SGR = 0.55‐0.61%/d), coefficient of variation of body weight (CwtV., = 0.24‐0.25), condition factor (K = 2.2‐2.4), feed consumption (FC = 1.45‐1.65%/d), and feed conversion ratio (FCR = 1.45‐1.52) among stocking densities. Final biomass densities on day 201 reached 3.48, 12.0, 21.1, and 27.2 kg/m3 at stocking densities of 4.6, 16, 25.3, and 36 fish/m3, respectively. Survival (83.8‐99.1%) did not differ among treatments. Apparent net protein retention (ANPR) was significantly higher (P < 0.005) for fish stocked at the lower densities of 4.6 and 16 fish/m3 (22.5‐23.7%) than for those stocked at 25.3 and 36 fish/m3 (21‐20.1%). There were no significant differences (P > 0.05) in apparent net energy retention (ANER = 55.9‐59.1 %) among stocking densities. Final whole body protein (15.3‐16.3%) and lipid (23.1‐26.4%) levels did not differ significantly (P > 0.05) among treatments. The results demonstrated that growth, survival, and feed utilization were not impaired under stocking densities ranging from 4.6‐36 fish/m3 (3.48‐27.2 kg/m3), despite a slight reduction in water quality at the higher densities. In addition, growth variation and final whole body protein and lipid levels were not influenced by these densities. The results suggest that black sea bass are tolerant of crowding and moderate variations in water quality during intensive culture in recirculating tank systems and that higher stocking densities are possible.  相似文献   

19.
To determine the optimal stocking density, three densities of 5 (SD5), 10 (SD10), and 15 kg/m3 (SD15) were used to culture striped knifejaw, Oplegnathus fasciatus, for 10 wk. A total of 10, 20, or 30 juveniles with mean weights of approximately 96 g were stocked into one of nine 300‐L tanks (with an initial water volume of 200 L) and fed with commercial feed via self‐feeders. The fish were sampled at 4 and 8 wk, and the stocking density was maintained by adjusting the water volume of the tanks. The final body weights in SD10 and SD15 were 183.8 and 178.9 g, respectively, which were significantly higher than 161.7 g in SD5 (P< 0.05). However, there was no significant difference between the SD10 and SD15 (P > 0.05). A similar trend was observed in the specific growth rate among the treatments. Feed efficiency and the lipid retention efficiency were both significantly higher in SD10 than that in SD5. The plasma levels of cortisol, glucose, and total protein were similar among the treatments. These results clearly suggest that densities of 10 and 15 kg/m3 can be used to improve the growth performance of striped knifejaw, O. fasciatus, when fed with a self‐feeder.  相似文献   

20.
Stocking density is an important factor affecting growth in aquaculture. The main objectives of this study are to evaluate the effects of different stocking densities on Holothuria arguinensis and Holothuria mammata's growth and determine the optimal density. Four different stocking densities were selected for H. arguinensis (1, 3, 5 and 7 ind/0.2 m2) and three for H. mammata (6, 10 and 12 ind/0.5 m2). Growth (specific growth rate (SGR) and growth rate (GR)), weight change, coefficient of variation and productivity were estimated, additionally the feeding rate on H. mammata. Growth on H. arguinensis decreased as the stocking density increased, showing the higher growth at the stocking density of 1 ind/0.2 m2 (SGR: 1.24%/day ± 0.16 and GR: 0.94 g/day ± 0.05), with a 104.65% (±9.98) of weight change. The best H. mammata growth was registered at 10 ind/m2 (SGR: 0.56% ± 0.04%/day and GR: 0.48 ± 0.04 g/day) and 25.48% (±1.52) of weight change. H. mammata feeding rate decreased as stocking density increased. Crowding stress could be considered the main factor affecting the sea cucumbers growth and performance on our study. The optimal stocking density for H. arguinensis and H. mammata under tank‐based conditions were established as 1 ind/0.2 m2 and 5 ind/0.5 m2 respectively. The critic biomass for H. arguinensis (471.65 g/m2) and for H. mammata (988.11 g/m2) were reached during the experiment at the fourth and fifth weeks respectively. Therefore, to ensure and increase growth of these species under tank, their biomass should be maintained under those thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号