首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
[目的]对不同种植季节下水稻株高进行遗传分析。[方法]选择株高差异大的3个亲本CB1、CB4和CB7,配制CB1×CB4和CB7×CB4组合,建立相应的P1、F1、P2、B1、B2、F2群体,将其分为中、晚2个生产季节种植,考察了株高性状。利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量。[结果]株高在所有2个季别B1、B2、F2中均符合1对加性主基因+加-显性多基因遗传模式,主基因遗传率为38.63%~78.53%,多基因遗传率为1.72%~36.04%,总基因型遗传率为45.52%~92.93%;2个遗传群体2季别下株高主基因加性效应值d分别为-4.56、-9.16、-7.19和-9.38,表明主基因加性效应会降低株高性状的表达。[结论]水稻茎粗性状的遗传率受种植季别及所配组合的影响明显。  相似文献   

2.
选择茎杆粗度差异大的3个亲本CB,(11.0 mm)、CB4(15.5 mm)和CB7(11.5 mm),配制CB1×CB4和CB7×CB4组合,建立了相应的P1、F1、P2、B1、B1、F2群体,将其分为中、晚两个生产季节种植,考察了茎杆粗度性状.利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量.结果表明该性状在所有2个季别中B1、B2、F2中均符合1对加性主基因+加-显性多基因遗传模式,主基因遗传率为27.60%~63.69%,多基因遗传率为1.39%~30.07%,总基因型遗传率为39.43%~82.01%,茎粗性状的遗传率受种植季别及所配组合的影响明显.  相似文献   

3.
选择单穗质量和千粒质量较小的亲本CB1和CB7与较大的亲本CB4配制CB1×CB4和CB7×CB4组合,建立了相应的P1、F1、P2、B1、B2、F2群体,将其分为中、晚2个生产季节种植,考察了穗质量与粒质量性状.利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量.结果表明:单穗质量在所有B1、B2、F2中均符合1对主基因+多基因模型模式;主基因遗传率为58.06%~75.60%,多基因遗传率为5.03%~25.46%,总基因型遗传率为68.07%~96.68%;同一遗传群体不同种植季节下主基因遗传率无明显差异,但同一季节下CB7/CB4组合群体主基因遗传率均比CB1/CB4组合群体大,表明单穗质量遗传分析时应考虑到构建遗传群体的亲本选择问题;千粒质量在所有B1、B2、F2中均符合1对加性主基因+加-显性多基因模型模式,其中CB1/CB4组合群体中季主基因遗传率最高,为60.06%~69.38%;CB1/CB4组合群体中季多基因遗传率最小,为10.73%~23.21%;CB1/CB4组合群体中季总基因遗传率为71.48%~83.55%;CB1/CB4组合群体中季一阶参数d值最小,说明粒质量遗传研究时需要考虑构建遗传群体的亲本及种植季节的选择问题.  相似文献   

4.
水稻每穗粒数和二次枝梗数的遗传分析   总被引:1,自引:0,他引:1  
选择每穗粒数和每穗二次枝梗数差异大的2个水稻亲本CB1(每穗粒数87.83粒,每穗二次枝梗数12.77个)、CB4(每穗粒数150.70粒,每穗二次枝梗数25.75个),配制CB1×CB4组合,建立了相应的P1、F1、P2、B1、B2、F2群体,将其分为中季和晚季两个生产季节种植,考查了每穗粒数和每穗二次枝梗数性状。利用主基因+多基因混合遗传模型理论的Akaike信息准则(AIC)在B1、B2、F2代中鉴定影响数量性状的主基因存在与否,主基因存在时,通过分离分析估计主基因和微效基因的遗传效应及所占总变异的分量。结果表明,每穗粒数在所有B1、B2、F2中均符合两对主基因+多基因模型模式,主基因遗传率为17.717%~63.562%,多基因遗传率为21.188%~59.449%,总基因型遗传率为76.029%~92.973%,每穗粒数遗传率受种植季别影响明显;每穗二次枝梗数在所有B1、B2、F2中均符合两对主基因+多基因模型模式,主基因遗传率为59.537%~71.787%,多基因遗传率为6.431%~23.870%,总基因型遗传率为78.121%~87.298%;每穗二次枝梗数遗传率受种植季别影响较小。  相似文献   

5.
不结球白菜株高性状主基因+多基因遗传分析   总被引:7,自引:0,他引:7  
应用主基因 多基因6个世代联合分离分析方法对不结球白菜SI×秋017组合的株高性状进行了分析.结果表明,SI×秋017组合的株高性状遗传受1对负向完全显性主基因 加性-显性多基因控制,主基因加性效应为5.79;多基因加性效应为-7.85,多基因显性效应为14.95;B1、B2和F2世代株高的主基因遗传率分别为33.28%、37.05%和51.68%;多基因遗传率分别为5.84%、12.67%和1.34%,说明F2世代株高表现出较高的主基因遗传率,并受环境影响.对SI×秋017组合株高性状的改良要以主基因为主,同时注意环境的影响.  相似文献   

6.
[目的]为西葫芦果长育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F2 6个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果长进行多世代联合分析。[结果]2个组合的西葫芦的果长遗传为1对加性主基因+加性-显性多基因(D-2)遗传模型,组合1以加性效应为主,而组合2以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果长育种宜早代选择。  相似文献   

7.
[目的]为西葫芦果长育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果长进行多世代联合分析。[结果]2个组合的西葫芦的果长遗传为1对加性主基因+加性-显性多基因(D-2)遗传模型,组合1以加性效应为主,而组合2以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果长育种宜早代选择。  相似文献   

8.
利用主基因+多基因混合遗传模型多世代联合分析方法,对万寿菊W217×W203组合的P1、P2、F1、B1、B2和F2共6个世代的叶黄素含量进行遗传分析。结果表明,色素万寿菊叶黄素含量性状最优遗传模型为两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因遗传效应为主,多基因效应为辅。主基因加性效应、显性效应和上位性效应作用很大,在B1群体中主基因遗传率为78.47%,B2群体中主基因遗传率为86.86%、多基因遗传率11.77%,F2群体中主基因遗传率为60.82%、多基因遗传率38.42%。可见,色素万寿菊叶黄素含量性状遗传变异中主基因作用大于多基因作用。  相似文献   

9.
串番茄主要株型性状的遗传研究   总被引:6,自引:1,他引:5  
冯辉  王五宏  徐娜  鲁博  张婷  陈红波 《中国农业科学》2008,41(12):4134-4139
 【目的】通过对串番茄主要株型性状的遗传分析,探索叶片角度的遗传规律,为选育株型紧凑的串番茄品种提供理论依据。【方法】通过对筛选出的串番茄自交系进行多代杂交回交,应用主基因+多基因6个世代联合分离分析方法,分析叶片夹角、株幅、披垂值的遗传模型。【结果】串番茄的叶片夹角、株幅的遗传受1对加性主基因+加性-显性多基因(D-2)控制,叶片夹角的主基因加性效应为6.51,多基因加性效应为15.01,势能比值为0.914,显性度为0,主基因遗传率在B1、B2及F2群体中分别为45.61%、37.29%及47.71%;株幅的主基因加性效应为3.08,多基因的加性效应为3.58,显性效应为-1.59,势能比为-0.44,显性度为0,主基因遗传率在B1、B2及F2群体中分别为23.30%、20.73%及36.11%。披垂值的遗传受1对负向完全显性主基因+加性-显性多基因(D-4)控制,主基因加性效应为8.18,显性效应为-8.18,多基因加性效应为3.12,显性效应为19.07,势能比为6.09,显性度为-1,多基因遗传率在B1、B2及F2群体中分别为69.15%、68.5%和49.57%。【结论】对173×101组合的夹角和株幅性状改良以主基因为主,可在早期世代选择;对披垂值性状的改良应在晚代选择。  相似文献   

10.
应用植物数量性状"主基因+多基因混合遗传模型"方法,分析了辽粳371×辽粳326株高(plant height,PH)性状的遗传效应.结果表明:株高性状的遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型(E-0),两对主基因的加性效应分别为11.7和4.3,主基因遗传率为90.0%.经SSR标记,利用Qgene软件对该F2代群体进行QTL分析,在第9条染色体上检测到2个株高性状QTL位点qPH-9-1和qPH-9-2,LOD值分别为6.4和4.1,加性效应为24.2和4.1,贡献率为18.7%和12.3%.  相似文献   

11.
【目的】株高和穗部性状是影响谷子产量的关键性状。探究谷子株高及穗部性状表型变异的遗传规律,为相关性状的遗传改良与基因定位提供参考依据。【方法】以谷子优质品种豫谷18为共同父本,分别与黄软谷和红酒谷杂交,构建2个分别包含250个家系的重组自交系F7群体(YYRIL和YRRIL)。采用主基因+多基因混合遗传模型,对YYRIL和YRRIL群体在2个环境下的株高、穗长、穗下节间长、穗码数、穗粒重等5个农艺性状的表型数据进行遗传分析。【结果】5个性状在所有环境中均表现连续变异且存在超亲分离现象,峰度和偏度绝对值小于1,近似正态分布,呈现数量性状的典型遗传特点。性状间相关性分析表明株高与穗长、穗下节间长在所有环境中均呈极显著正相关,穗码数与穗粒重呈极显著正相关。遗传模型分析显示YYRIL和YRRIL群体株高的最适遗传模型分别为PG-AI和PG-A多基因模型,多基因遗传率分别为95.15%和91.27%。2个群体穗码数的最适模型均为PG-AI,多基因遗传率为70.07%—71.58%。穗下节间长在2个群体的最适遗传模型分别为4MG-CEA和3MG-CEA,均为等加性主基因模型。穗下节间长在YYRIL群体的主基因遗传率为9.69%,4对主基因加性效应值相等,均为-0.34,具有负向效应;穗下节间长在YRRIL群体的主基因遗传率为45.78%,3对主基因加性效应值相等,均为1.17,具有正向效应。穗长在YYRIL群体的最适模型为MX2-ED-A,即2对显性上位主基因+加性多基因模型,主基因遗传率为43.56%,多基因遗传率为50.56%。控制穗长的2对主基因加性效应值分别为-1.21、1.68,多基因加性效应较小,为-0.0017;穗长在YRRIL群体的最适模型为MX2-AE-A,即2对累加作用主基因,加性多基因混合遗传模型;穗长的主基因遗传率为46.40%,多基因遗传率为46.91%。控制穗长的第1对主基因加性效应值为1.53,具有正向效应,第1对主基因加性×第2对主基因加性上位性互作效应值是0.60,多基因加性效应值为-0.47,表现为较低的负向遗传效应。穗粒重在YYRIL群体的最适遗传模型为MX2-ED-A;符合2对显性上位主基因+加性多基因模型,主基因遗传率为69.09%,多基因遗传率为12.08%;控制穗粒重的2对主基因加性效应值分别为0.58、5.82,以第2对主基因的加性效应为主,多基因加性效应值为-3.81。穗粒重在YRRIL群体的最适遗传模型为3MG-PEA,即3对部分等加性主基因遗传模型;穗粒重的主基因遗传率为81.10%,3对主基因加性效应值分别为-2.68、-2.68和2.66,前2对主基因的加性效应值相同,且均为负向效应。【结论】谷子株高、穗码数的最适遗传模型相似,均服从多基因遗传,遗传率较高,受环境影响较小;穗下节间长的遗传受主基因控制,主基因遗传率偏低,受环境影响较大,在栽培中应充分考虑环境因素;穗长遗传受主基因和多基因共同控制;穗粒重在2个群体均服从主基因遗传,主基因遗传率较高,可能存在主效QTL。  相似文献   

12.
利用半矮生水稻品种沈稻4号(P_1)和中高秆晶系沈农637(P_2)及其杂交后代F_1、F_2群体,运用主基因+多基因混合遗传模型对株高的遗传进行了联合分离分析.结果表明:株高性状受两对加性-显性-上位性主基因和加性-显性-上位性多基因共同控制.两对主基因的加性效应近似相等,分别为-4.742和-4.741,主基因遗传力为47.13%,多基因遗传力为41.33%.  相似文献   

13.
[目的]了解不同氮环境中水稻氮素籽粒生产效率的遗传特点。[方法]采用Dasanbyeo×TR22183杂交,构建了163个家系组成的重组自交系群体(RILs),利用主基因+多基因混合遗传模型,研究施氮、不施氮处理的水稻氮素籽粒生产效率的遗传机制。[结果]两亲本的氮素籽粒生产效率在不同处理中均存在统计学差异,RILs群体的变幅较大,极显著差异,且呈连续变异。水稻氮素籽粒生产效率属两对主基因+多基因控制,在施氮处理下的最适模型为E-1-4模型,主基因表现为显性上位作用,遗传率为51.03%,且两对主基因的加性效应不同;在未施氮处理下的最适模型为E-1-9,主基因表现为抑制作用,遗传率为41.10%。主基因间包括加性和加性上位互作效应。[结论]水稻氮素籽粒生产效率在不同的氮环境中均属两对主基因+多基因遗传控制,主基因遗传率在施氮环境中表现相对较高。  相似文献   

14.
烤烟耐烤性的遗传效应   总被引:2,自引:1,他引:1  
【目的】变褐时间是衡量烟叶耐烤性的一个重要指标,对其分析并阐明烤烟耐烤性遗传效应。【方法】通过在暗箱试验中统计烟叶变褐比例,算出变褐指数(BI=∑B/n)作为耐烤性量化标准,并应用主基因+多基因混合遗传模型的6世代联合分析方法,对2个杂交组合(云烟85×大白筋599和中烟100×翠碧1号)的6个世代群体(P1、P2、F1、B1、B2和F2)中部叶烤烟耐烤性状进行遗传分析。【结果】供试组合的烤烟品种耐烤性的遗传符合E-0模型,即由2对加性-显性-上位性主基因+加性-显性-上位性多基因混合控制。主基因都以负向加性效应为主,主基因遗传率都较高,其中F2群体最高;多基因遗传率都较低。【结论】基于烤烟品种耐烤性的遗传效应,重视亲本材料和高世代对耐烤性的选择是十分必要的。  相似文献   

15.
赵刚  吴子恺  王兵伟 《安徽农业科学》2007,35(17):5096-5098,5134
以2个微胚乳超高油玉米组合的P1、F1、P2、B1、B2和F2 6个世代为材料,采用数量性状的主基因+多基因混合遗传模型多世代联合分析法,研究了株高和穗位高的遗传。对2个不同组合的研究结果表明:组合I株高的遗传符合加性-显性-上位性多基因遗传模型;穗位高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为27.27%、37.36%和58.59%。组合II株高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为18.41%、1.03%和12.61%;穗位高的遗传符合加性-显性-上位性多基因遗传模型。  相似文献   

16.
[目的]研究 AL 型雄性不育育性恢复基因的遗传模型.[方法]通过 AL 型小麦不育系(♀)与恢复系(♂)杂交,获得杂交后代分离群体,采用植物数量性状主基因+多基因混合遗传模型分离分析法对亲本 P1 和 P2 以及杂种后代 Fl 和 F2 群体 4 个世代的育性进行分析.[结果]AL 型育性恢复基因的最适遗传模型为 E-1,育性恢复基因由两对加性-显性-上位性主基因和加性-显性多基因共同控制,主基因遗传率为 85.92;.[结论]小麦 AL 型雄性不育育性恢复基因由两对主效基因和多对微效基因控制,主效基因遗传力较高,在小麦育种中有较高的利用价值.  相似文献   

17.
甘蓝型油菜白花性状的主基因+多基因遗传分析   总被引:2,自引:1,他引:2  
 【目的】对甘蓝型油菜白花性状进行量化观察,研究其数量遗传特性,为育种利用提供理论依据。【方法】利用扫描仪和颜色提取软件对油菜新鲜花瓣进行处理,获得花瓣颜色特征值(CIE RGB值),选择能反映花瓣颜色差异的B值,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对甘蓝型油菜杂交组合(HW243×HZ21-1和HW243×中油821)的P1、P2、F1、B1、B2和F2世代群体进行分析。【结果】甘蓝型油菜白花性状表现为一数量性状,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因作用为主,多基因的作用相对较小。两对主基因的加性、显性和上位性效应均具有较大的作用。在F2群体中主基因的遗传率为96.94%和95.83%,多基因遗传率为3.93%和2.47%;在B1群体中主基因的遗传率为54.58%和49.57%,多基因遗传率分别为35.64%和46.9%;在B2群体中主基因的遗传率为98.14%和97.67%,多基因遗传率分别为0.98%和2.06%。【结论】甘蓝型油菜白花性状具有数量性状的遗传特性,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因效应为主,多基因效应相对较小。主基因的遗传力较高,受环境影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号