首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

2.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

3.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

4.
Field experiments were conducted at Fort Vermilion (58°23′N 116°02′W), Alberta, to determine phosphorus (P) release patterns from red clover (Trifolium pratense) green manure (GM), field pea (Pisum sativum), canola (Brassica rapa) and monoculture wheat (Triticum aestivum) residues in the 7th and 8th years of conventional and zero tillage. Phosphorus contained in crop residues ranged from 1.5 kg ha−1 in pea to 9.2 kg ha−1 in clover GM, both under zero tillage. The patterns of P release over a 52-week period sometimes varied with tillage, i.e., a greater percentage of GM residue P was released under conventional tillage than under zero tillage in the first 2–10 weeks of residue placement. Wheat residues resulted in net P immobilization under zero tillage, but the amounts immobilized were less than 1 kg ha−1. When net P mineralization occurred, the percentage of P released ranged from 24% of wheat P under conventional tillage to 74% of GM P under conventional tillage. The amounts of P released were 0.4 kg ha−1 from wheat, 0.8 kg ha−1 from canola, 0.4 kg ha−1 from pea and 5.1–5.6 kg ha−1 from clover GM residues. Therefore, only GM residues recycled agronomically significant amounts of P for use by subsequent crops in rotation. Phosphorus release was positively correlated with residue P concentration and negatively correlated with C/P and lignin/P ratios.  相似文献   

5.
High population pressure in the central highlands of Kenya has led to continuous cultivation of land with minimal additional inputs leading to soil nutrient depletion. Research work has reported positive results from use of manure and biomass from Tithonia, Calliandra, Leucaena, Mucuna and Crotolaria for soil fertility replenishment. An experimental field was set up in Chuka Division to test different soil nutrient replenishment treatments. The experimental design was randomised complete block with 14 treatments replicated three times. At the beginning and end of the experiment, soil was sampled at 0–15 cm depth and analysed for pH, Ca, Mg, K, C, N and P. End of the 2000/2001 short rains (SR) season and 2001 long rains (LR) season, soil samples were taken at 0–30, 30–100 and 100–150 cm for nitrate and ammonium analysis. All the treatments received an equivalent of 60 kg N ha−1, except herbaceous legume treatments, where N was determined by the amount of the biomass harvested and incorporated in soil and control treatment received no inputs. Results indicate soil fertility increased slightly in all treatments (except control) over the 2-year study period. Average maize grain yield across the treatments was 1.1, 5.4, 3.5 and 4.0 Mg ha−1 during the 2000 LR, 2000/2001 SR, 2001 LR and 2001/2002 SR, respectively. The reduced yield in 2000 LR and 2001 LR are attributed to poor rainfall distribution during the two seasons. On average, Tithonia with half recommended rate of inorganic fertilizer recorded the highest (4.8 Mg ha−1) maize yield followed by sole Tithonia (4.7 Mg ha−1). Highest average concentration (144.8 and 115.5 kg N ha−1) of mineral N was recorded at the 30–100 cm soil depth at the end of both 2000/2001 SR and LR, respectively. The lowest average concentration (67.1 kg N ha−1) was recorded in the 100–150 cm soil depth in both seasons, while during the 2001 LR, the 0–30 cm soil depth recorded the lowest concentration (52.3 kg N ha−1). The residual mineral N in the 100–150 cm soil depth doubled at the end of the LR 2001 compared to what was present and the end of the SR 2000/2001 season in all treatments. This shows that there is substantial amount of mineral N that is being leached below the rooting zone of maize in this region.  相似文献   

6.
Crop residue retention is important for sequestering soil organic carbon (SOC), controlling soil erosion, and improving soil quality. Magnitude of residue management impacts on soil structural properties and SOC sequestration is, however, site specific. This study assessed long-term (10 year) impacts of three levels (0, 8, and 16 Mg ha−1 on a dry matter basis) of wheat (Triticum aestivum L.) straw applied annually on SOC concentration and physical properties of the bulk soil and individual 5- to 8-mm aggregates for the 0- to 50-cm soil depth under no-till (NT) on a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) in central Ohio. This study also quantified relationships between soil properties and straw-induced changes in SOC concentration. Changes in soil properties due to straw mulching were mostly confined to the upper 5 cm of the soil. Mulching increased SOC concentration, but it did not significantly change cone index (CI) and shear strength (SHEAR). Within the upper 0–5-cm soil depth, mulching decreased bulk density (ρb) by 40–50%, aggregate density (ρagg) by 30–40%, and particle density (ρs) by 10–15%, and increased tensile strength (TS) of aggregates by up to 14 times as compared to unmulched soil. At the same depth, soil with mulch retained >30% more water than soil without mulch from 0 to −1500 kPa potentials. The SOC amount was 16.0 Mg ha−1 under no straw, 25.3 Mg ha−1 under 8 Mg ha−1 straw, and 33.5 Mg ha−1 under 16 Mg ha−1 straw in the 0- to 10-cm depth. Below 10 cm, differences in SOC pool between mulched and unmulched soil were not significant. Overall, SOC from 0- to 50-cm depth was 82.5 Mg ha−1 for unmulched soil, 94.1 Mg ha−1 for 8 Mg ha−1 mulch, and 104.9 Mg ha−1 for 16 Mg ha−1. About 33% of C added with straw over the 10-year period was sequestered in soil. This means that 2/3 of the wheat straw applied was not converted to SOC and most probably was lost as emissions of CO2 and CH4. The annual rate of total C accrual was 1.2 Mg ha−1 in soil mulched with 8 Mg ha−1 and 2.2 Mg ha−1 in soil mulched with 16 Mg ha−1 of straw in the 0- to 50-cm depth. The percentage of macroaggregates (>5-mm) was six times higher under 8 Mg ha−1 of straw and 12 times higher under 16 Mg ha−1 compared to unmulched treatments. Macroaggregates contained greater SOC than microaggregates in mulched soil. The SOC concentration explained the variability in aggregate properties by as much as 96%. Overall, long-term straw mulching increased SOC concentration and improved near-surface aggregate properties.  相似文献   

7.
In Vertisols of central India erratic rainfall and prevalence of drought during crop growth, low infiltration rates and the consequent ponding of water at the surface during the critical growth stages are suggested as possible reasons responsible for poor yields (<1 t ha−1) of soybean (Glycine max (L.) Merr.). Ameliorative tillage practices particularly deep tillage (subsoiling with chisel plough) can improve the water storage of soil by facilitating infiltration, which may help in minimizing water stress in this type of soil. In a 3-year field experiment (2000–2002) carried out in a Vertisol during wet seasons at Bhopal, Madhya Pradesh, India, we determined infiltration rate, root length and mass densities, water use efficiency and productivity of rainfed soybean under three tillage treatments consisting of conventional tillage (two tillage by sweep cultivator for topsoil tillage) (S1), conventional tillage + subsoiling in alternate years using chisel plough (S2), and conventional tillage + subsoiling in every year (S3) as main plot. The subplot consisted of three nutrient treatments, viz., 0% NPK (N0), 100% NPK (N1) and 100% NPK + farmyard manure (FYM) at 4 t ha−1 (N2). S3 registered a significantly lower soil penetration resistance by 22%, 28% and 20%, respectively, at the 17.5, 24.5 and 31.5 cm depths over S1 and the corresponding decrease over S2 were 17%, 19% and 13%, respectively. Bulk density after 15 days of tillage operation was significantly low in subsurface (15–30 cm depth) in S3 (1.39 mg m−3) followed by S2 (1.41 mg m−3) and S1 (1.58 mg m−3). Root length density (RLD) and root mass density (RMD) of soybean at 0–15 cm soil depth were greater following subsoiling in every year. S3 recorded significantly greater RLD (1.04 cm cm−3) over S2 (0.92 cm cm−3) and S1 (0.65 cm cm−3) at 15–30 cm depth under this study. The basic infiltration rate was greater after subsoiling in every year (5.65 cm h−1) in relation to conventional tillage (1.84 cm h−1). Similar trend was also observed in water storage characteristics (0–90 cm depth) of the soil profile. The faster infiltration rate and water storage of the profile facilitated higher grain yield and enhanced water use efficiency for soybean under subsoiling than conventional tillage. S3 registered significantly higher water use efficiency (17 kg ha−1 cm−1) over S2 (16 kg ha−1 cm−1) and S1 (14 kg ha−1 cm−1). On an average subsoiling recorded 20% higher grain yield of soybean over conventional tillage but the yield did not vary significantly due to S3 and S2. Combined application of 100% NPK and 4 t farmyard manure (FYM) ha−1 in N2 resulted in a larger RLD, RMD, grain yield and water use efficiency than N1 or the control (N0). N2 registered significantly higher yield of soybean (1517 kg ha−1) over purely inorganic (N1) (1392 kg ha−1) and control (N0) (898 kg ha−1). The study indicated that in Vertisols, enhanced productivity of soybean can be achieved by subsoiling in alternate years and integrated with the use of 100% NPK (30 kg N, 26 kg P and 25 kg K) and 4 t FYM ha−1.  相似文献   

8.
Nitrous oxide (N2O) and methane (CH4) emitted by anthropogenic activities have been linked to the observed and predicted climate change. Conservation tillage practices such as no-tillage (NT) have potential to increase C sequestration in agricultural soils but patterns of N2O and CH4 emissions associated with NT practices are variable. Thus, the objective of this study was to evaluate the effects of tillage practices on N2O and CH4 emissions in long-term continuous corn (Zea mays) plots. The study was conducted on continuous corn experimental plots established in 1962 on a Crosby silt loam (fine, mixed, mesic Aeric Ochraqualf) in Ohio. The experimental design consisted of NT, chisel till (CT) and moldboard plow till (MT) treatments arranged in a randomized block design with four replications. The N2O and CH4 fluxes were measured for 1-year at 2-week intervals during growing season and at 4-week intervals during the off season. Long-term NT practice significantly decreased soil bulk density (ρb) and increased total N concentration of the 0–15 cm layer compared to MT and CT. Generally, NT treatment contained higher soil moisture contents and lower soil temperatures in the surface soil than CT and MT during summer, spring and autumn. Average daily fluxes and annual N2O emissions were more in MT (0.67 mg m−2 d−1 and 1.82 kg N ha−1 year−1) and CT (0.74 mg m−2 d−1 and 1.96 kg N ha−1 year−1) than NT (0.29 mg m−2 d−1 and 0.94 kg N ha−1 year−1). On average, NT was a sink for CH4, oxidizing 0.32 kg CH4-C ha−1 year−1, while MT and CT were sources of CH4 emitting 2.76 and 2.27 kg CH4-C ha−1 year−1, respectively. Lower N2O emission and increased CH4 oxidation in the NT practice are attributed to decrease in surface ρb, suggesting increased gaseous exchange. The N2O flux was strongly correlated with precipitation, air and soil temperatures, but not with gravimetric moisture content. Data from this study suggested that adoption of long-term NT under continuous corn cropping system in the U.S. Corn Belt region may reduce GWP associated with N2O and CH4 emissions by approximately 50% compared to MT and CT management.  相似文献   

9.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

10.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

11.
A study was carried out on a previously eroded Oxic Paleustalf in Ibadan, southwestern Nigeria to determine the extent of soil degradation under mound tillage with some herbaceous legumes and residue management methods. A series of factorial experiments was carried out on 12 existing runoff plots. The study commenced in 1996 after a 5-year natural fallow. Mound tillage was introduced in 1997 till 1999. The legumes – Vigna unguiculata (cowpea), Mucuna pruriens and Pueraria phaseoloides – were intercropped with maize in 1996 and 1998 while yam was planted alone in 1997 and 1999. This paper covers 1997–1999. At the end of each year, residues were either burned or mulched on respective plots. Soil loss, runoff, variations in mound height, bulk density, soil water retention and sorptivity were measured. Cumulative runoff was similar among interactions of legume and residue management in 1997 (57–151 mm) and 1999 (206–397 mm). However, in 1998, cumulative runoff of 95 mm observed for Mucuna-burned residue was significantly greater than the 46 mm observed for cowpea-burned residue and the 39–51 mm observed for mulched residues of cowpea, Mucuna and Pueraria. Cumulative soil loss of 7.6 Mg ha−1 observed for Mucuna-burned residue in 1997 was significantly greater than those for Pueraria-mulched (0.9 Mg ha−1) and Mucuna-mulched (1.4 Mg ha−1) residues whereas in 1999 it was similar to soil loss from cowpea treatments and Pueraria-burned residue (2.3–5.3 Mg ha−1). There were no significant differences in soil loss in 1998 (1–3.2 Mg ha−1) whereas Mucuna-burned residue had a greater soil loss (28.6 Mg ha−1) than mulched cowpea (6.9 Mg ha−1) and Pueraria (5.4 Mg ha−1). Mound heights (23 cm average) decreased non-linearly with cumulative rainfall. A cumulative rainfall of 500 mm removed 0.3–2.3 cm of soil from mounds in 1997, 3.5–6.9 cm in 1998 and 2.3–4.6 cm in 1999, indicating that (detached but less transported) soil from mounds was far higher than observed soil loss in each year. Soil water retention was improved at potentials ranging from −1 to −1500 kPa by Mucuna-mulched residue compared to the various burned-residue treatments. Also, mound sorptivity at −1 cm water head (14.3 cm h−1/2) was higher than furrow sorptivity (8.5 cm h−1/2), indicating differences in hydraulic characteristics between mound and furrow. Pueraria-mulched residues for mounds had the highest sorptivity of 17.24 cm h−1/2, whereas the least value of 6.96 cm h−1/2 was observed in furrow of Mucuna-burned residue. Pueraria phas eoloides was considered the best option for soil conservation on the previously eroded soil, cultivated with mound tillage.  相似文献   

12.
Conservation tillage practices are commonly used to reduce erosion; however, in fields that have been in no-tillage (NT) for long periods, compaction from traffic can restrict infiltration. Rotational tillage (RT) is a common practice that producers use in the central corn-belt of the United States, and could potentially reduce soluble nutrient loads to surface waters. The objectives of this study were to determine the first year impacts of converting from long-term NT to (RT) on N and P losses through runoff. Plots (2 m × 1 m) were constructed in two fields that had been in NT corn–soybean rotation for the previous 15 years. One field remained in NT management, while RT was initiated prior to planting corn in the other field using a soil finisher. Variable-intensity rainfall simulations occurred before and after fertilization with urea (224 kg N ha−1) and triple superphosphate (112 kg P ha−1). Rainfall was simulated at (1) 50 mm h−1 for 50 min; (2) 75 mm h−1 for 15 min; (3) 25 mm h−1 for 15 min; (4) 100 mm h−1 for 15 min. Runoff volumes and nutrient (NH4-N, NO3-N and dissolved P [DP]) concentrations were greater from the NT field than the RT field before and after fertilization.Dissolved P concentrations in runoff prior to fertilization were greater during the 50 mm h−1 rainfall period (0.09 mg L−1) compared to the other periods (0.03 mg L−1). Nutrient concentrations increased by 10–100-fold when comparing samples taken after fertilization to those taken prior to fertilization. Nutrient loads were greater prior to and after fertilization from the NT treatment. Prior to fertilization, NT resulted in 83 g ha−1 greater NH4-N and 32.4 g ha−1 greater dissolved P losses than RT treatment. After fertilization, NT was observed to lose 5.3 kg ha−1 more NH4-N, 1.3 kg ha−1 more NO3-N, and 2.4 kg ha−1 more dissolved P than RT. It is typically difficult to manage land to minimize P and N losses simultaneously; however, in the short term, tillage following long-term NT resulted in lowering the risk of transport of soluble N and P to surface water.  相似文献   

13.
Cover crop and tillage effects on soil enzyme activities following tomato   总被引:2,自引:0,他引:2  
Increasing numbers of vegetable growers are adopting conservation tillage practices and including cover crops into crop rotations. The practice helps to increase or maintain an adequate level of soil organic matter and improves vegetable yields. The effects of the practices, however, on enzyme activities in southeastern soils of the United States have not been well documented. Thus, the objectives of the study were to investigate the effects of cover crops and two tillage systems on soil enzyme activity profiles following tomato and to establish relationships between enzyme activities and soil organic carbon (C) and nitrogen (N). The cover crops planted late in fall 2005 included black oat (Avena strigosa), crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed. A weed control (no cover crop) was also included. Early in spring 2006, the plots were disk plowed and incorporated into soil (conventional tillage) or mowed and left on the soil surface (no-till). Broiler litter as source of N fertilizer was applied at a rate of 4.6 Mg ha−1, triple super phosphate at 79.0 kg P ha−1, and potassium chloride at 100 kg K ha−1 were also applied according to soil testing recommendations. Tomato seedlings were transplanted and grown for 60 days on a Marvyn sandy loam soil (fine-loamy, kaolinitic, thermic Typic Kanhapludults). Ninety-six core soil samples were collected at incremental depths (0–5, 5–10, and 10–15 cm) and passed through a 2-mm sieve and kept moist to study arylamidase (EC 3.4.11.2), l-asparaginase (EC 3.5.1.1), l-glutaminase (EC 3.5.1.2), and urease (EC 3.5.1.5) activities. Tillage systems affected only l-glutaminase activity in soil while cover crops affected activities of all the enzymes studied with the exception of urease. The research clearly demonstrated that in till and no-till systems, l-asparaginase activity is greater (P ≤ 0.05) in plots preceded by crimson clover than in those preceded by black oat or their mixture. Activity of the enzyme decreased from 11.7 mg NH4+–N kg−1 2 h−1 at 0–5 cm depth to 8.73 mg NH4+–N kg−1 2 h−1 at 5–10 cm and 10–15 cm depths in the no-till crimson clover plots. Arylamidase activity significantly correlated with soil organic C (r = 0.699**) and soil organic N (r = 0.764***). Amidohydrolases activities significantly correlated with soil organic N but only urease significantly correlated with soil organic C (r = 0.481*). These results indicated that incorporation of cover crops into rotations may increase enzyme activities in soils.  相似文献   

14.
Broiler chicken (Gallus gallus) manure, a rich source of plant nutrients, is generated in large quantities in southeastern USA where many row crops, such as corn (Zea mays L.), are also extensively grown. However, the use of broiler manure as an economical alternative source of nutrients for corn production has not been extensively explored in this region. This study was conducted to examine the use of broiler litter as a source of nutrients for corn production, as influenced by tillage and litter rate, and any residual effects following application. In addition, the consequence of litter application to soil test nutrient levels, particularly P, Zn and Cu, was explored. The treatments consisted of two rates of broiler litter application, 11 and 22 Mg ha−1 on a wet weight basis, and one rate of chemical fertilizer applied under no-till and conventional tillage systems. Treatments were replicated three times in a randomized complete block design. Corn was grown with broiler litter and inorganic fertilizer applied to the same plots each year from 1998 to 2001. In 2002 and 2003, corn was planted no-till, but only N fertilizer was applied in order to make use of other residual litter nutrients. Soil samples were taken yearly in the spring prior to litter application and 4 years after the cessation of litter application to evaluate the status of the residual nutrients in soil. Two years out of the 4-year experiment, broiler litter application produced significantly greater corn grain yield than equivalent chemical fertilizer application and produced similar grain yield in the other 2 years. Corn grain yield was significantly greater under no-till in 1999, but significantly greater under conventional-till in 2000, and no difference between the two tillage systems were observed in 1998 and 2001. With 4 years of litter application, Mehlich-3 P increased from an initial 18 mg kg−1 to 156 mg kg−1 with 11 Mg ha−1 litter and to 257 mg kg−1 with 22 Mg ha−1 litter. For every 6 kg ha−1 of P applied in poultry litter Mehlich-3 P was increased by 1 mg kg−1. Modest increases in Mehlich-3 Cu and Zn did not result in phytotoxic levels. This study indicated that an optimum rate of broiler litter as a primary fertilizer at 11 Mg ha−1 applied in 4 consecutive years on a silt loam soil produced corn grain yields similar to chemical fertilizer under both no-till and conventional tillage systems and kept soil test P, Cu and Zn levels below values considered to be harmful to surface water quality or the crop.  相似文献   

15.
Few studies address nutrient cycling during the transition period (e.g., 1–4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize–tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced 15N-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 μm), microaggregates (53–250 μm) and silt-and-clay (<53 μm). We found a cropping system effect on soil Nnew (i.e., N derived from 15N-fertilizer or -15N-cover crop), with 173 kg Nnew ha−1 in the conventional system compared to 71.6 and 69.2 kg Nnew ha−1 in the low-input and organic systems, respectively. In the conventional system, more Nnew was found in the microaggregate and silt-and-clay fractions, whereas, the Nnew of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-Nnew than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-Nnew was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g N2O–N ha−1 day−1) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha−1) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability.  相似文献   

16.
Soil organic carbon (SOC) has an important role in improving soil quality and sustainable production. A long-term fertilization study was conducted to investigate changes in SOC and its relation to soil physical properties in a rice paddy soil. The paddy soils analyzed were subjected to different fertilization practices: continuous application of inorganic fertilizers (NPK, N–P–K = 120–34.9–66.7 kg ha−1 yr−1 during 1967–1972 and 150–43.7–83.3 kg ha−1 yr−1 from 1973 to 2007), straw based compost (Compost, 10 Mg ha−1 yr−1), a combination of NPK + Compost, and no fertilization (control). Soil physical properties were investigated at rice harvesting stage in the 41st year for analyzing the relationship with SOC fraction. Continuous compost application increased the total SOC concentration in plough layers and improved soil physical properties. In contrast, inorganic or no fertilization markedly decreased SOC concentration resulting to a deterioration of soil physical health. Most of the SOC was the organo-mineral fraction (<0.053 mm size), accounting for over 70% of total SOC. Macro-aggregate SOC fraction (2–0.25 mm size), which is used as an indicator of soil quality rather than total SOC, covered 8–17% of total SOC. These two SOC fractions accumulated with the same tendency as the total SOC changes. Comparatively, micro-aggregate SOC (0.25–0.053 mm size), which has high correlation with physical properties, significantly decreased with time, irrespective of the inorganic fertilizers or compost application, but the mechanism of decrease is not clear. Conclusively, compost increased total SOC content and effective SOC fraction, thereby improving soil physical properties and sustaining production.  相似文献   

17.
Soil organic matter improves the physical, chemical and biological properties of soil, and crop residue recycling is an important factor influencing soil organic matter levels. We studied the impact of continuous application of rice straw compost either alone or in conjunction with inorganic fertilizers on aggregate stability and distribution of carbon (C) and nitrogen (N) in different aggregate fractions after 10 cycles of rice–wheat cropping on a sandy loam soil at Punjab Agricultural University research farm, Ludhiana, India. Changes in water stable aggregates (WSA), mean weight diameter (MWD), aggregate-associated C and N, total soil C and N, relative to control and inorganically fertilized soil were measured. Total WSA were significantly (p = 0.05) higher for soils when rice straw compost either alone or in combination with inorganic fertilizers was applied as compared to control. The application of rice straw compost either alone or in combination with inorganic fertilizers increased the macroaggregate size fractions except for 0.25–0.50 mm fraction. The MWD was significantly (p = 0.05) higher in plots receiving rice straw compost either alone at 8 tonnes ha−1 (0.51 mm at wheat harvest and 0.41 mm at rice harvest) or at 2 tonnes ha−1 in combination with inorganic fertilizers (0.43 and 0.38 mm) as compared to control (0.34 and 0.33 mm) or inorganically fertilized plots (0.33 and 0.31 mm). The macroaggregates had higher C and N density compared to microaggregates. Application of rice straw compost at 2 tonnes ha−1 along with inorganic fertilizers (IN + 2RSC) increased C and N concentration significantly over control. The C and N concentration increased further when rice straw compost at 8 tonnes ha−1 (8RSC) was added. It is concluded that soils can be rehabilitated and can sustain the soil C and N levels with the continuous application of rice straw compost either alone or in combination with inorganic fertilizers. This will also help in controlling the rising levels of atmospheric carbon dioxide.  相似文献   

18.
Tillage with a spring tine harrow has become a recommended mechanical weeding technique for cereal crops. In this study, the impact of its use on soil mineral N content, soil aggregation and spring wheat (Triticum aestivum L.) production was investigated. The experiment was performed during 2 successive years (2005–2006) on a clay loam and on a silty loam. The two-main plot treatments consisted of a wheat crop subjected or not to intensive harrow use in a weed-free production system. Two N fertilizer treatments (mineral fertilizer and dry granular poultry manure) were also included as subplots within these main treatments and compared to a non-fertilized control. Harrowing had significant and variable effects on soil NO3 contents in the 0–5 cm soil layer. Slightly higher NO3 contents (average difference of 3.2 kg NO3 ha−1) were measured in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2006. However, significantly lower mineral N contents were observed in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2005 and in the silty loam soil in 2006. This apparent N immobilization amounted to 19 kg NO3 ha−1 in the clay loam soil in 2005 (for both fertilizers) and 30 kg NO3 ha−1 in the silty loam soil in 2006 (only in mineral fertilizer plots) after the successive harrowing treatments. In all cases, data of the last sampling dates in the fall indicated that residual NO3 content was not affected by the treatments. Overall harrowing had a minor decreasing and transient effect on the mean weight diameter (MWD) of soil aggregates while the dry poultry manure tended to increase MWD. The harrowing treatment had no significant effect on wheat, grain N uptake and yield. In conclusion, harrow use had variable impacts on soil NO3 content and a minor decreasing effect on the MWD of soil aggregates. Of note, significant apparent mineral N immobilization was observed on a few sampling dates following the harrow treatments.  相似文献   

19.
In sandy soils of the southeastern USA coastal plains, crop production is limited by low water holding capacity and compacted soil layers that reduce root growth and productivity. Polyacrylamide (PAM) was added to sandy coastal plain soils to improve physical properties and yield. Soils were amended with linear and cross-linked PAMs. Treatments and controls included the following: (1) spraying a 600 mg kg−1 solution of linear PAM behind a subsoil shank at a rate of 3.93 kg ha−1, (2) spraying a 100 mg kg−1 solution at 0.66 kg ha−1, (3) spraying only water at 13.1 m3 ha−1, (4) dropping a dry PAM powder formulation (3005 KB) behind a subsoil shank at 300 kg ha−1, (5) dropping another dry PAM powder formulation (3005 K2) at 230 kg ha−1, (6) dropping a dry PAM powder formulation 3005 K2 at a lower rate of 55 kg ha−1, (7) applying nothing behind a subsoil shank, and (8) not subsoiling. In each of the 3 years of the experiment, new sets of treatments were set up while the old ones were maintained to look at longevity of the PAM effect. Though treatment effects were dominated by the tillage, the cross-linked PAMs were the only treatments more effective than tillage alone. The cross-linked PAMs may have been more effective because we could add more in dry form than in the spray form. The effect diminished with time similar to or faster than the results seen in tillage only. Though some PAM applications may have reduced cone indices, yields were not affected.  相似文献   

20.
To date, tillage erosion experiments in Canada have only been conducted on conventionally tilled corn-based production systems in Ontario and conventionally tilled cereal-based production in Manitoba. Estimates and assumptions have been made for all other production systems. Therefore, the objective of this study was to evaluate the erosivity of primary and secondary tillage operations within conventional and conservation potato production systems used in Atlantic Canada. Regression analysis determined that a direct relationship exists between slope gradient and both the mean displacement distance of the tilled layer (TL) and the mass of translocated soil (TM) for the chisel plough (CP), mouldboard plough (MP) and offset disc (OD), but not for the vibrashank (VS). Overall, the potential for tillage erosion of the MP, CP, and OD was similar (1.8–1.9 kg m−1 %−1 pass−1) and larger than that of the VS (0.3 kg m−1 %−1 pass−1). The regression coefficients for each implement were improved after including slope curvature, and we recommend that curvature be included in any future tillage erosion modelling. Our results show that both residue management to control wind and water erosion and soil movement to control tillage erosion must be considered when choosing implements and developing best management practices with regards to reducing the negative impacts of total soil erosion on potato production systems in Atlantic Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号