首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物细胞质雄性不育(CMS)是指植物不能产生具有正常功能的花粉。控制CMS的基因存在于线粒体中,核基因对线粒体基因表达具顺向调节作用,而线粒体对核基因表达具有反向调节作用。目前植物线粒体蛋白组研究主要以营养器官为材料,主要粮食作物如水稻、小麦及玉米等都存在花药小、花期短、同一花序的花药发育不同步等。文章介绍了线粒体起源及植物线粒体蛋白组和植物CMS的研究现状,禾谷类作物花药线粒体蛋白组研究的重要性及困难,提出利用比较基因组学筛选水稻编码线粒体蛋白、与雄性不育相关的核基因的策略,以期为研究禾谷类作物特别是水稻CMS机理提供参考。  相似文献   

2.
It has been established that the content of proteins in cytoplasm is 10 times higher than in mitochondria. Of the four analyzed genotypes, the male-sterile line is characterized by the minimum content of cytoplasmic and maximum content of mitochondrial proteins in all investigated organs. Treatment with gibberellins stimulates the biosynthesis of proteins in three genotypes and inhibits their biosynthesis in line RW637Rf, both in the cytoplasmic and mitochondrial fractions. By means of electrophoresis, a protein with a molecular mass of 16 kDa, related to cytoplasmic sterility in sunflower and being a product of mitochondrial gene orfH522, has been found in leaves and flower heads of male-sterile line SW501CMS and fertile line SW501 treated with gibberellins. Its content is higher in the mitochondrial fraction of these genotypes.  相似文献   

3.
4.
 动物需要能量来维持生命活动,所需的能量主要来源于食物里的碳水化合物、脂肪和蛋白质。即使在体重平衡(非生产、生长状态)动物仍需要能量来维持体重、体温恒定及肌肉的基本活动。最新发现的线粒体内膜转运蛋白质,具有调节能量代谢的作用,它们的活动增加了动物的基础代谢率,这类蛋白质被称为解偶联蛋白(Uncoupling Proteins, UCPs)。UCPs作为质子通道驱散氧化呼吸时形成的H+梯度,降低了线粒体膜电位差ΔμH+, 从而增加呼吸产热, 阻止ATP的形成。目前已至少发现有5种UCPs(UCP1,UCP2,UCP3,UCP4 和UCP5),这个家族的蛋白质已经在人类、哺乳动物、禽类、鱼、真菌、甚至在植物不同组织的线粒体内膜上被发现。  相似文献   

5.
The mitochondrial pathway of apoptosis in vertebrates is dependent on the process of mitochondrial outer membrane permeabilization (MOMP), which leads to the release of proteins from the mitochondrial intermembrane space into the cytosol. "Upstairs" of this event are the Bcl-2 family proteins that regulate and mediate MOMP; "downstairs" is the activation of caspases that orchestrate the dismantling of the cell. In the Connections Map database at Science's Signal Transduction Knowledge Environment (STKE), the pathways that define the mitochondrial pathway of apotosis are illustrated, with the bulk of control occurring "upstairs" of MOMP.  相似文献   

6.
mrs2(mitochondrial RNA splicing2)基因是植物线粒体中Ⅱ类内含子自我剪接缺陷的抑制基因,同时参与了植物中镁离子的运输。本研究利用已经分离的植物的mrs2基因,鉴别出MRS2结构域,同时对拟南芥和水稻中的mrs2基因家族的成员进行了鉴定;利用这些基因编码的蛋白质序列构建了系统发生树,并进行了序列保守性分析,最后查找了相关基因的EST表达信息。结果表明:①系统发生分析表明拟南芥和水稻的mrs2基因的结构在拟南芥和水稻分离之前已经形成,并在分离之后按照物种特异性的方式进行了扩张;②MEME分析表明植物的Mrs2蛋白质具有高度保守的基序,并且在蛋白质中的排列顺序也大致相似;③mrs2基因在拟南芥和水稻中的表达有差异,但在部分表达上仍保持了一致性。  相似文献   

7.
Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.  相似文献   

8.
ATP-binding cassette (ABC) adenosine triphosphatases actively transport a wide variety of compounds across biological membranes. Here, the ABC protein Mdl1 was identified as an intracellular peptide transporter localized in the inner membrane of yeast mitochondria. Mdl1 was required for mitochondrial export of peptides with molecular masses of approximately 2100 to 600 daltons generated by proteolysis of inner-membrane proteins by the m-AAA protease in the mitochondrial matrix. Proteolysis by the i-AAA protease in the intermembrane space led to the release of similar-sized peptides independent of Mdl1. Thus, two pathways of peptide efflux from mitochondria exist that may allow communication between mitochondria and their cellular environment.  相似文献   

9.
10.
蛋白质亚细胞定位分析是揭示蛋白质功能的关键步骤。1个蛋白质分子能被定位到2个亚细胞位置,这一现象被称为蛋白质的"双定位"。本研究首先从Uniprot、MitoP2、MGI、TAIR、DBMLoc等蛋白质数据库及已发表文献中收集双定位于线粒体与质体的植物蛋白质数据,共获得703个双定位蛋白质,组成测试数据集。再从Uniprot数据库中选取唯一定位于线粒体的829个和唯一定位于质体的6 376个植物蛋白质,组成参照数据集,分析双定位于线粒体与质体的植物蛋白质的带电特征。结果表明,与单定位于线粒体或质体的植物蛋白质相比,双定位线粒体与质体的植物蛋白质具有更低的净电荷量;此外,双定位蛋白质电荷分布较为集中对称,线粒体蛋白质次之,质体蛋白质最为分散。本文研究结果将为揭示植物蛋白质双定位的分子机制奠定理论基础。  相似文献   

11.
Mitochondrial malate dehydrogenase: a new genetic polymorphism in man   总被引:10,自引:0,他引:10  
Starch-gel electrophoresis patterns of malate dehydrogenase from human tissue indicate a new genetic polymorphism for the mitochondrial form of the enzyme. Studies of families showed simple Mendelian segregation rather than maternal inheritance, suggesting that not all mitochondrial proteins are coded by mitochondrial DNA.  相似文献   

12.
The pathophysiology of mitochondrial cell death   总被引:3,自引:0,他引:3  
In the mitochondrial pathway of apoptosis, caspase activation is closely linked to mitochondrial outer membrane permeabilization (MOMP). Numerous pro-apoptotic signal-transducing molecules and pathological stimuli converge on mitochondria to induce MOMP. The local regulation and execution of MOMP involve proteins from the Bcl-2 family, mitochondrial lipids, proteins that regulate bioenergetic metabolite flux, and putative components of the permeability transition pore. MOMP is lethal because it results in the release of caspase-activating molecules and caspase-independent death effectors, metabolic failure in the mitochondria, or both. Drugs designed to suppress excessive MOMP may avoid pathological cell death, and the therapeutic induction of MOMP may restore apoptosis in cancer cells in which it is disabled. The general rules governing the pathophysiology of MOMP and controversial issues regarding its regulation are discussed.  相似文献   

13.
The transport of pyruvate, the end product of glycolysis, into mitochondria is an essential process that provides the organelle with a major oxidative fuel. Although the existence of a specific mitochondrial pyruvate carrier (MPC) has been anticipated, its molecular identity remained unknown. We report that MPC is a heterocomplex formed by two members of a family of previously uncharacterized membrane proteins that are conserved from yeast to mammals. Members of the MPC family were found in the inner mitochondrial membrane, and yeast mutants lacking MPC proteins showed severe defects in mitochondrial pyruvate uptake. Coexpression of mouse MPC1 and MPC2 in Lactococcus lactis promoted transport of pyruvate across the membrane. These observations firmly establish these proteins as essential components of the MPC.  相似文献   

14.
植物细胞质雄性不育(CMS)是指植物不能产生具有正常功能的花粉。控制CMS的基因存在于线粒体中,核基因对线粒体基因表达具顺向调节作用,而线粒体对核基因表达具有反向调节作用。目前植物线粒体蛋白组研究主要以营养器官为材料,主要粮食作物如水稻、小麦及玉米等都存在花药小、花期短、同一花序的花药发育不同步等。文章介绍了线粒体起源及植物线粒体蛋白组和植物CMS的研究现状,禾谷类作物花药线粒体蛋白组研究的重要性及困难,提出利用比较基因组学筛选水稻编码线粒体蛋白、与雄性不育相关的核基因的策略,以期为研究禾谷类作物特别是水稻CMS机理提供参考。  相似文献   

15.
16.
17.
BAX and BAK are "multidomain" proapoptotic proteins that initiate mitochondrial dysfunction but also localize to the endoplasmic reticulum (ER). Mouse embryonic fibroblasts deficient for BAX and BAK (DKO cells) were found to have a reduced resting concentration of calcium in the ER ([Ca2+]er) that results in decreased uptake of Ca2+ by mitochondria after Ca2+ release from the ER. Expression of SERCA (sarcoplasmic-endoplasmic reticulum Ca2+ adenosine triphosphatase) corrected [Ca2+]er and mitochondrial Ca2+ uptake in DKO cells, restoring apoptotic death in response to agents that release Ca2+ from intracellular stores (such as arachidonic acid, C2-ceramide, and oxidative stress). In contrast, targeting of BAX to mitochondria selectively restored apoptosis to "BH3-only" signals. A third set of stimuli, including many intrinsic signals, required both ER-released Ca2+ and the presence of mitochondrial BAX or BAK to fully restore apoptosis. Thus, BAX and BAK operate in both the ER and mitochondria as an essential gateway for selected apoptotic signals.  相似文献   

18.
在植物体内合成的特定低温应激蛋白中,多数已经被鉴定。近年来,研究的焦点主要集中在几种特殊类型的冷激蛋白,其中,植物抗冻蛋白保护细胞免受冰晶破坏,分子伴侣和脱水蛋白在冷胁迫期间保护细胞大分子不受损伤,线粒体内解偶联蛋白的氧化和磷酸化过程,可以使植物保持高于0℃一段时间,为随后适应低于0℃的环境做充分的准备。  相似文献   

19.
Numerous degenerative disorders are associated with elevated levels of prooxidants and declines in mitochondrial aconitase activity. Deficiency in the mitochondrial iron-binding protein frataxin results in diminished activity of various mitochondrial iron-sulfur proteins including aconitase. We found that aconitase can undergo reversible citrate-dependent modulation in activity in response to pro-oxidants. Frataxin interacted with aconitase in a citrate-dependent fashion, reduced the level of oxidant-induced inactivation, and converted inactive [3Fe-4S]1+ enzyme to the active [4Fe-4S]2+ form of the protein. Thus, frataxin is an iron chaperone protein that protects the aconitase [4Fe-4S]2+ cluster from disassembly and promotes enzyme reactivation.  相似文献   

20.
Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating fungal disease on small grain cereal crops, because it reduces yield and quality and causes the mycotoxin contamination to the grain. Dynamins and dynamin-related proteins (DRPs) are large GTPase superfamily members, which are typically involved in the budding and division of vesicles in eukaryotic cells, but their roles in Fusarium spp. remain unexplored. Here, we found that FgDnm1, a DRP and homolog to Dnm1 in Saccharomyces cerevisiae, contributes to the normal fungal growth, sexual reproduction and sensitivity to fungicides. In addition, we found FgDnm1 co-localizes with mitochondria and is involved in toxisome formation and deoxynivalenol (DON) production. Several quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs) cause fragmentated morphology of mitochondria. Importantly, the deletion of FgDnm1 displays filamentous mitochondria and blocks the mitochondrial fragmentation induced by QoIs and SDHIs. Taken together, our studies uncover the effect of mitochondrial dynamics in fungal normal growth and how such events link to fungicides sensitivity and toxisome formation. Thus, we concluded that altered mitochondrial morphology induced by QoIs and SDHIs depends on FgDnm1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号