首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Y. Okada    M. Nishiguchi    A. Saito    T. Kimura    M. Mori    K. Hanada    J. Sakai    Y. Matsuda  T. Murata 《Plant Breeding》2002,121(3):249-253
Viral diseases of sweet potato are very prevalent and often seriously damaging to the plants. In particular, the severe strain of the sweet potato feathery mottle virus (SPFMV‐S) causes ‘obizyo‐sohi’ disease in Japan. In order to confer viral resistance against SPFMV using current biotechnology, a transgenic sweet potato has been produced, introducing hygromycin‐resistant (hpt) and SPFMV‐S coat protein (CP) genes, which have shown a significant resistance to SPFMV‐S. In the breeding programme, it is important to confirm that the viral resistance conferred in T0 plants can be inherited by their progeny. In the present study, progeny were obtained from crosses between the transgenic T0 and a non‐transgenic variety of sweet potato. The results showed that the CP gene was inherited by the next generation and that the stability of viral resistance was also confirmed. Thus, this production system for the virus‐resistant transgenic sweet potato is useful in practical breeding.  相似文献   

2.
Potato leafroll virus (PLRV; Genus Polerovirus; Family Luteoviridae) is one of the most important virus pathogens of potato worldwide and breeders are looking for new sources of resistance. Solanum etuberosum Lindl., a wild potato species native to Chile, was identified as having resistances to PLRV, potato virus Y, potato virus X, and green peach aphid. Barriers to sexual hybridization between S. etuberosum and cultivated potato were overcome through somatic hybridization. Resistance to PLRV has been identified in the BC1, BC2 and BC3 progeny of the somatic hybrids of S. etuberosum (+) S. tuberosum haploid × S. berthaultii Hawkes. In this study, RFLP markers previously mapped in potato, tomato or populations derived from S. palustre (syn S. brevidens) × S. etuberosum and simple sequence repeat (SSR) markers developed from tomato and potato EST sequences were used to characterize S. etuberosum genomic regions associated with resistance to PLRV. The RFLP marker TG443 from tomato linkage group 4 was found to segregate with PLRV resistance. This chromosome region has not previously been associated with PLRV resistance and therefore suggests a unique source of resistance. Synteny groups of molecular markers were constructed using information from published genetic linkage maps of potato, tomato and S. palustre (syn. S. brevidens) × S. etuberosum. Analysis of synteny group transmission over generations confirmed the sequential loss of S. etuberosum chromosomes with each backcross to potato. Marker analyses provided evidence of recombination between the potato and S. etuberosum genomes and/or fragmentation of the S. etuberosum chromosomes.  相似文献   

3.
Late blight is the most devastating disease of the potato crop that can be effectively managed by growing resistant cultivars. Introgression of resistance (R) genes/quantitative trait loci (QTLs) from the Solanum germplasm into common potato is one of the plausible approaches to breed resistant cultivars. Although the conventional method of breeding will continue to play a primary role in potato improvement, molecular marker technology is becoming one of its integral components. To achieve rapid success, from the past to recent years, several R genes/QTLs that originated from wild/cultivated Solanum species were mapped on the potato genome and a few genes were cloned using molecular approaches. As a result, molecular markers closely linked to resistance genes or QTLs offer a quicker potato breeding option through marker‐assisted selection (MAS). However, limited progress has been achieved so far through MAS in potato breeding. In near future, new resistance genes/QTLs are expected to be discovered from wild Solanum gene pools and linked molecular markers would be available for MAS. This article presents an update on the development of molecular markers linked to late blight resistance genes or QTLs by utilization of Solanum species for MAS in potato.  相似文献   

4.
A new resistance (R) gene to powdery mildew has been identified and characterized in a population derived from the wild potato species, Solanum neorossii under natural infection in the greenhouse. The segregation of resistance has revealed that this R gene is controlled by a single monogenic and dominant gene designated Rpm-nrs1. Analysis of the DNA sequence on an internal transcribed spacer (ITS) region of the pathogen genome suggests that the pathogen causing the powdery mildew disease is either Golovinomyces orontii or G. cichoracearum. The resistance locus was localized to the short arm of chromosome 6 where several disease R genes already identified in potato and tomato are known to reside. The resistance locus cosegregated in 96 progeny with three AFLP markers and one PCR marker. The sequences of the two cosegregating AFLP markers are highly homologous to Mi-1 conferring resistance to nematode, potato aphid and whitefly and Rpi-blb2 conferring resistance to late blight. The results in this study will facilitate the cloning of this gene conferring resistance to powdery mildew.  相似文献   

5.
Summary The past 25 years, 1686 potato accessions, representing 100 species in the genus Solanum L., subgenus Potatoe, section Petota, were evaluated for field resistance to one or more of the following insect pests: green peach aphid, Myzus persicae (Sulzer); potato aphid, Macrosiphum euphorbiae (Thomas); Colorado potato beetle, Leptinotarsa decemlineata (Say); potato flea beetle, Epitrix cucumeris (Harris); and potato leafhopper, Empoasca fabae (Harris). Accessions highly resistant to green peach aphid were identified within 36 species, to potato aphid within 24 species, to Colorado potato beetle within 10 species, to potato flea beetle within 25 species, and to potato leafhopper within 39 species. Resistance levels were characteristic within Solanum species. Insect resistance appears to be a primitive trait in wild potatoes. Susceptibility was most common in the primitive and cultivated Tuberosa. Insect resistance was also characteristic of the most advanced species. The glycoalkaloid tomatine was associated with field resistance to Colorado potato beetle and potato leafhopper. Other glycoalkaloids were not associated with field resistance at the species level. Dense hairs were associated with resistance to green peach aphid, potato flea beetle, and potato leafhopper. Glandular trichomes were associated with field resistance to Colorado potato beetle, potato flea beetle, and potato leafhopper. Significant correlations between insect score and altitude of original collection were observed in six of thirteen species. Species from hot and arid areas were associated with resistance to Colorado potato beetle, potato flea beetle, and potato leafhopper. Species from cool or moist areas tended to be resistant to potato aphid.Abbreviations EBN Endosperm Balance Number  相似文献   

6.
C. M. Lu  W. Y. Yang  B. R. Lu 《Euphytica》2005,143(1-2):75-83
The devastating late blight pathogen Phytophthora infestans infects foliage as well as tubers of potato. To date, resistance breeding has often focused on foliage blight resistance, but tuber blight resistance is becoming more and more important in cultivated potatoes. In this study, a reliable tuber assay for resistance assessment was developed and foliage and tuber blight resistance (R) was compared in four mapping populations. In the RH4X-103 population, tuber blight resistance inherited independently from foliage blight resistance. Three specific R genes against P. infestans were segregating. The Rpi-abpt and R3a genes function as foliage-specific R genes, whereas the R1 gene acts on both foliage and tuber. In the segregating populations SHRH and RH94-076, tuber and foliage blight resistance correlated significantly, which suggests that resistance in foliage and tuber is conferred by the same gene (could be R3b) and quantitative trait loci (QTL), respectively. In the CE population neither tuber nor foliage resistance was observed.  相似文献   

7.
8.
Summary During the last decades extensive progress has been achieved in winter barley breeding with respect to both, yield and resistance to fungal and viral diseases. This progress is mainly due to the efficient use of the genetic diversity present within high yielding adapted cultivars and – with respect to resistance – to the extensive evaluation of genetic resources followed by genetic analyses and introgression of respective genes by sexual recombination. Detailed knowledge on genetic diversity present on the molecular level regarding specific traits as well as on the whole genome level may enhance barley breeding today by facilitating efficient selection of parental lines and marker assisted selection procedures. In the present paper the state of the art with respect to virus diseases, i.e. Barley mild mosaic virus, Barley yellow mosaic virus, and Barley yellow dwarf virus is briefly reviewed and first results on a project aiming on a genome wide estimation of genetic diversity which in combination with data on yield and additional agronomic traits may facilitate the detection of marker trait associations and a more efficient selection of parental genotypes are presented. By field tests of 49 two-rowed and 64 six-rowed winter barley cultivars the genetic gain in yield for the period 1970–2003 was estimated at 54.6 kg ha−1 year−1 (r2 = 0.567) for the six-rowed cultivars and at 37.5 kg ha−1 year−1 (r2 = 0.621) for the two-rowed cultivars. Analysis of 30 SSRs revealed a non-homogenous allele distribution between two and six-rowed cultivars and changes of allele frequencies in relation to the time of release. By PCoA a separation between two and six-rowed cultivars was observed but no clear cut differentiation in relation to the time of release. In the two-rowed cultivars an increase in genetic diversity (DI) from older to newly released cultivars was detected.  相似文献   

9.
Lentil production is limited by lack of moisture and unfavorable temperatures throughout its distribution. Waterlogging and salinity are only locally important. Progress has been made in breeding for tolerance to drought through selection for an appropriate phenology and increased water use efficiency and in breeding for winter hardiness through selection for cold tolerance.The diseases rust, vascular wilt, and Ascochyta blight, caused by Uromyces viciae-fabae, Fusarium oxysporum f. sp. lentis, and Ascochyta fabae f. sp. lentis, respectively, are the key fungal pathogens of lentil. Cultivars with resistance to rust and Ascochyta blight have been released in several countries and resistant sources to vascular wilt are being exploited. Sources of resistance to several other fungal and viral diseases of regional importance are known. In contrast, although the pea leaf weevil (Sitona spp.) and the parasitic weed broomrape (Orobanche spp.), and to a lesser extent the cyst nematode (Heterodera ciceri), are significant yield reducers of lentil, no sources of resistance to these biotic stresses have been found. Directions for future research in lentil on both biotic and abiotic stresses are discussed.  相似文献   

10.
Molecular mapping of powdery mildew resistance genes in wheat: A review   总被引:40,自引:3,他引:40  
Powdery mildew, caused by Blumeria graminis f. sp. tritici (syn. Erysiphe graminis f. sp. tritici), is one of the most important diseases of common wheat (Triticum aestivum L.) worldwide. Molecular mapping and cloning of genes for resistance to powdery mildew in hexaploid wheat will facilitate the study of molecular mechanisms underlying resistance to powdery mildew diseases and help understand the structure and function of powdery mildew resistance genes, and permit marker-assisted selection in breeding programs. So far, 48 genes/alleles for resistance to powdery mildew at 32 loci have been identified and located on 16 different chromosomes, of which 21 resistance genes/alleles have been tagged by restriction fragment length polymorphisms (RFLPs), random-amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), sequence characterized amplified regions (SCARs), sequence-tagged sites (STS) or simple sequence repeats (SSRs). Several quantitative trait loci (QTLs) for adult plant resistance (APR) to powdery mildew have been associated with molecular markers. The detailed information on chromosomal location and molecular mapping of these genes has been reviewed. Isolation of powdery mildew resistance genes and development of valid molecular markers for pyramiding resistance genes in breeding programs is also discussed.  相似文献   

11.
S. M. Ali  B. Sharma  M. J. Ambrose 《Euphytica》1993,73(1-2):115-126
The economic importance and current progress made in studies of the host-parasite relationship and identification of sources of resistance and breeding strategies of some important biotic diseases of pea are reviewed in this paper. The root rot complex caused by Rhizoctonia solani, Fusarium solani, Aphanomyces euteiches, Pythium ultimum and Fusarium oxysporum f. sp. pisi, race 1 and 2 has been reported from all commercial pea growing areas of the world. Adequate sources of resistance have been identified and there has been impressive success in the control of the Fusarium wilt pathogen following the introduction of wilt-resistant cultivars. Leaf and stem diseases of pea caused by the Ascochyta complex, Peronospora viciae and Erysiphe pisi are prevalent in most temperate pea growing regions of the world. Several sources of resistance are available, some of which are surprisingly durable. The biochemical genetic parameters of phenolic content used for assaying resistance to Erysiphe pisi offers an alternative method of evaluating breeding material. Wild relatives of pea (Pisum fulvum and P. humile) are valuable additional sources of genetic variation and provide good sources of resistance to pests and diseases. In temperate rainfed pea growing areas of southern Australia, pea seed yield is more closely related to dry matter production than harvest index. Tall and leafy cultivars proved more productive than afila types.  相似文献   

12.
Potato leaves infected with Phytophthora infestans produced a serine protease inhibitor (PLPKI) with specificity for microbial proteases. Sequencing of the first twenty residues at the NH2‐terminus of the mature PLPKI polypeptide demonstrated that PLPKI is a novel member of the potato protease inhibitor I family. PLPKI inhibited the activity of extracellular proteases produced by two pathogens of potato, P. infestans and Rhizoctonia solani, but was inactive against proteases secreted into the culture media by the binucleate Rhizoctonia N2, a non‐pathogenic fungus for potato. Western blot analysis showed a positive correlation between the levels of PLPKI and the degree of horizontal resistance, showing its highest accumulation in clone OKA 5632.11, which has been described as highly resistant. This correlation, together with the ability of PLPKI to completely abolish the secreted serine protease activity of P. infestans, suggests that PLPKI may have an active role in protecting potato plants from this pathogenic oomycete and that it could be used as a suitable biochemical marker to help breeders in the selection of cultivars with high degree of horizontal resistance.  相似文献   

13.
Resistance to four foliar diseases of sugar beet (Beta vulgaris ssp. vulgaris), virus yellows caused by Beet mild yellowing virus (BMYV) and Beet yellows virus (BYV), powdery mildew (Erysiphe betae) and Cercospora leaf spot (Cercospora beticola), was assessed in up to 600 accessions of closely related wild and cultivated Beta species. Most accessions were from the Section Beta, a taxon containing types most closely related to, and sexually compatible with, sugar beet and therefore most valuable for use in crop improvement. Between 1–12% of accessions were highly resistant (resistance scores of 2 on an international standardised resistance scale of 1–9) to these diseases. These levels, however, underestimate the potential number of resistant sources available from this section as some accessions with intermediate mean resistance scores contained a significant proportion of highly resistant plants within segregating populations. Variation in resistance to all diseases except BYV was observed within the Section Beta. Much higher levels of resistance were observed, and more frequently, in more distantly related sections of the genus Beta. Accessions of the Section Corollinae were highly resistant to both viruses (>62% of accessions tested), but less so to Cercospora (15%) and they were very susceptible to powdery mildew. Section Procumbentes accessions were highly resistant to BMYV and Cercospora (100%) but less so to powdery mildew (50%) and BYV (20%). However, sexual incompatibility between these sections and sugar beet make utilisation of these sources impractical using conventional breeding methods.  相似文献   

14.
Summary A geographically representative selection of germplasm of Beta vulgaris, section Beta has been assessed for characteristics important in sugarbeet breeding, including downy mildew resistance, resistance to aphid colonisation and infection by the beet virus yellow complex. The occurrence of maintainer lines for cytoplasmic male-steriles was also investigated. Desirable qualities were found in some accessions, including nothern European wild vulgaris ssp. maritima and some old multigerm cultivars of fodder beets.  相似文献   

15.
The Rysto gene from Solanum stoloniferum introduced into potato cultivars (Solanum tuberosum L. ssp. tuberosum) confers resistance to potato virus A, potato virus V and potato virus Y (PVY). In addition to PVY, tobacco etch virus (TEV) and a TEV construct that encodes β‐glucuronidase (TEV‐GUS) were inoculated to determine the inheritance of resistance to these viruses in progenies obtained from potato cultivars containing the Rysto gene. While cultivars ‘Karlena’ and ‘Delikat’ were susceptible, ‘Bettina’ and clone 927eY were resistant to PVY, TEV and TEV‐GUS, as determined by enzyme linked immunosorbent assay, biotest and GUS assay, respectively. The segregation ratios obtained from the progenies of ‘Bettina’בDelikat’ and 816eY בKarlena’ indicate that resistances to PVY and TEV are governed by one dominant gene or two genes tightly linked in coupling phase. Evidently, Rysto confers broad spectrum resistance to potyviruses. TEV resistance could be reliably detected 4 days after inoculation with the TEV‐GUS construct by GUS assay. Therefore, the GUS‐tagged TEV construct can be used for early selection for resistances based on the gene Rysto or closely linked genes.  相似文献   

16.
Summary Sixty-two 2x families were generated by intermating 16, 2x clones and evaluated for resistance to potato tuber moth (PTM), Phthorimaea operculella under natural infestation in a storage at San Ramon, Peru and in laboratory tests. The following conclusions could be drawn: (1) relatively simple inheritance was observed for resistance derived from Solanum sparsipilum (spl), (2) the high level of resistance of the original spl has been transferred, undiminished, into an advanced 2x population, (3) simple phenotypic selection was successfully applied to transfer resistance into an improved 2x population, (4) there was a strong indication of reciprocal effects, however spl cytoplasm is not essential for the expression of nuclear resistance genes, (5) antibiosis and antixenosis are the mechanism of PTM resistance in this population, and (6) 4x × 2x crosses could be used to transfer the resistance into commercial cultivars.  相似文献   

17.
18.
J. Bae  S. H. Jansky  D. I. Rouse 《Euphytica》2008,164(2):385-393
Verticillium wilt (VW) of potato, caused primarily by the fungus Verticillium dahliae, results in yield loss and is therefore an important soil-borne disease. Resistance to VW exists in potato germplasm and is used by breeders during cultivar development. Breeders could make more rapid progress toward the development of VW resistant clones if they had an effective early generation selection strategy. The purpose of this study was to determine whether selection for VW resistance could be carried out in the first tuber generation on single hills. One hundred and fifty-two clones from 19 families were planted as single hills on a V. dahliae-infested field. Each plant was scored for vine maturity, VW symptom expression, yield, stem colonization (colony forming units (cfu), in dried basal stem segments) and incidence (percent infected stems). In the second clonal generation, which consisted of replicated four-hill plots, stem colonization scores and incidence values were used to identify clones which were more resistant than a moderately resistant cultivar and others which were more susceptible than a susceptible cultivar. The efficiency and reliability of the single-hill selection strategy, based on symptoms and yield, was then determined by comparison to the four-hill results. We determined that the best single-hill selection strategy was negative selection (discard clones with the lowest performance) with low stringency, based on yield.  相似文献   

19.
Summary Resistance to potato leafroll virus (PLRV) was detected in an accession of Solanum chacoense. Inoculations with viruliferous aphids and subsequent graft challenges using Datura tatula and potato as PLRV sources determined that resistance appears to be of an extreme type. Virus was not detectable using enzyme-linked immunosorbent assay (ELISA) in S. chacoense, and in resistant F1 and BC1 progenies after attempts to transmit the virus through grafting. The segregation ratios of BC1 progenies for positive and negative ELISA tests are consistent with simple dominant inheritance.  相似文献   

20.
Summary Verticillium wilt (V. albo-atrum Reinke & Berthold or V. dahliae Kleb) threatens potato (Solanum tuberosum L.) production in most growing areas of the world. Genetic resistance offers the most cost-effective and environmentally-sound control measure. However, there is a dearth of genetic and breeding information on resistance to verticillium wilt in potato, because of obscure parentage of some standard cultivars and the complex segregation at the tetraploid level. The wide range of genetic variability in wild relatives of potatoes can be potentially useful as a source of disease resistance, such as verticillium wilt resistance. Six diploid, wild, interspecific Solanum hybrids involving resistant x resistant and susceptible x resistant crosses, were assayed for verticillium wilt resistance under greenhouse conditions to evaluate their potential as sources of verticillium wilt resistance. The cross between S. gourlayi Oka. and S. chacoense Bitt. and its reciprocal had the most resistant progenies based on mean colony counts. No simple mode of inheritance can be proposed based on the observed segregation ratios. However, the continuous distributions observed on verticillium wilt disease response among hybrid families indicate that inheritance of resistance may be polygenic and complex. In addition, skewness of colony count distributions toward the resistance parents were characteristic of all resistant x susceptible crosses suggesting that resistance may be dominant. By contrast, the susceptible x susceptible cross showed a more normal distribution. Overall, the cross between S. gourlayi and S. chacoense showed the most potential as a source of verticillium wilt resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号