首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The derivatization followed by reductive cleavage (DFRC) method cleaves alpha- and beta-ethers in lignins but leaves lignin gamma-esters intact. When applied to grasses, which contain p-coumarate esters on their lignins, esterified monolignol derivatives are released. Saturation of the p-coumarate double bond occurs during DFRC, so the released products are 4-acetoxycinnamyl 4-acetoxyphenylpropionates. Synthesis of the esters allowed determination of response factors for the released products. Maize and bamboo lignins released 221 and 38 micromol/g of p-coumarate-derived esters. The sinapyl ester was much more abundant than the coniferyl one. The bamboo and maize lignin S/G ratios in the conjugates were 12 and 38 times greater than those of the normal monomers released by DFRC, evidence of a strong selectivity for acylation of syringyl units. Of three possible biochemical mechanisms for incorporating p-coumarates into lignin, evidence is mounting that the process involves incorporation of preacylated monolignols into the normal lignification process.  相似文献   

2.
The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.8% in the fibers and 29.0% in the shives. Analysis by Py-GC/MS indicated a H:G:S molar ratio of 13:72:15 in the milled wood lignin (MWL) isolated from flax fibers and a molar ratio of 5:87:8 in the MWL isolated from flax shives. In addition, 2D-NMR showed a predominance of β-O-4' aryl ether linkages, followed by β-5' phenylcoumaran and β-β' resinol-type linkages in both MWLs, with a higher content of condensed linkages in flax shives. Thioacidolysis (followed by Raney nickel desulfurization) gave further information on the lignin units involved in the different linkages and confirmed the enrichment of G units. The thioacidolysis dimers released were similar from both lignins, with a predominance of the β-5' followed by β-1' and 5-5' structures.  相似文献   

3.
The behavior of cinnamyl end groups of lignins during the derivatization followed by reductive cleavage (DFRC) procedure has been investigated using lignin model compounds. On AcBr treatment, hydroxycinnamyl alcohols give rise mainly to 1-aryl-1, 3-dibromopropanes from which 1-aryl-3-bromopropanes and arylcyclopropanes are formed by zinc reduction. Arylpropene derivatives are also significant among DFRC products of etherified cinnamyl end-group models. Major monomers from DFRC of hydroxycinnamaldehydes are arylcyclopropyl acetates produced by reductive ring closure of 1-acetoxy-3-aryl-1,3-dibromopropanes. Although the reactions are not as clean as the ether-cleaving reactions that form the basis of the DFRC method, end groups produce diagnostic compounds that provide valuable markers for studying end groups in lignins.  相似文献   

4.
To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.  相似文献   

5.
Plant cell walls containing suberin or lignin in the human diet are conjectured to protect against colon cancer. To confirm the existence of authentic lignin in cereal grain dietary fibers, the DFRC (derivatization followed by reductive cleavage) method was applied to different cereal grain dietary fibers. By cleavage of diagnostic arylglycerol-beta-aryl (beta-O-4) ether linkages and identification of the liberated monolignols, it was ascertained that lignins are truly present in cereal grains. From the ratios of the liberated monolignols coniferyl alcohol and sinapyl alcohol, it is suggested that lignin compositions vary among cereals. Furthermore, dimeric cross-coupling products, comprising ferulate and coniferyl alcohol, were identified in most cereal fibers investigated. These ferulate 4-O-beta- and 8-beta-coniferyl alcohol cross-coupled structures indicate radical cross-coupling of polysaccharides to lignin precursors via ferulate.  相似文献   

6.
Pyrolysis-gas chromatography in the presence of tetramethylammonium hydroxide (TMAH) was applied to the determination of the ratio of the abundances of the syringyl beta-aryl ether subunits to those of the guaiacyl equivalents (S/G) in lignin. Diazomethane-methylated kenafs (Hibiscus cannabinus and Hibiscus sabdariffa) and beech (Fagus crenata) in situ lignins were employed. Relative abundances of pyrolysis products derived from the guaiacyl and syringyl beta-aryl ether subunits were determined. The S/G ratios for in situ lignins were obtained with average 3.1% relative standard deviation for a minimum of six repeated runs. The S/G ratios determined by pyrolysis in the presence of TMAH agreed well with those determined by thioacidolysis, with a significant linear regression (R(2) = 0.9867). The results showed that pyrolysis with TMAH is an effective tool for obtaining information on the S/G ratio for in situ lignins.  相似文献   

7.
Detailed chemical structural elucidation of lignin fractions from Miscanthus × giganteus was performed by several analytical techniques. Mild formosolv, basic organosolv, and cellulolytic enzyme treatments were applied to isolate three lignin fractions (AL, BL, and CL, respectively), and their structural characterization was comparatively evaluated. Both non-destructive techniques [e.g., Fourier transform infrared (FTIR) spectroscopy, size-exclusion chromatography (SEC), and two-dimensional (2D) nuclear magnetic resonance (NMR)] and degradation methods [e.g., acidic hydrolysis, derivatization followed by reductive cleavage (DFRC), and thioacidolysis] were used. The analysis revealed that a certain amount of carbohydrates (12.8%) was associated with CL and partially led to its increased molecular weight determined by SEC before acetylation. β-O-4 linkages were determined to be the predominant interunits (82%), but also, extensively acylated structures were observed. Alkaline organosolv treatment significantly improved the purity of the lignin fraction (carbohydrate content of 1.0%) and basically kept the original structure of the lignin macromolecule. Under acidic conditions, not only the portion of aryl alkyl ether bonds were cleaved but also new carbon-carbon bonds were formed by condensation reactions, resulting in an increment of the lignin molecular weights. Guaiacyl units were more reactive toward condensation than syringyl units, which was evidenced by an increasing S/G ratio from 0.7 (CL) to 1.7 (AL).  相似文献   

8.
Chemical modification of eucalypt lignin was investigated during kraft pulping and chlorine-free bleaching by comparing milled wood lignin, kraft lignin, and pulp enzymatic residual lignins. The syringyl-to-guaiacyl ratio (S/G) from analytical pyrolysis slightly changed during pulping and bleaching (S/G, 3-4) but was higher in the kraft lignin. Semiquantitative heteronuclear single quantum correlation (HSQC) nuclear magnetic resonance (NMR) showed that the relative amount of beta-O-4' (around 80% side chains) and resinol type substructures (15%) was slightly modified during pulping and oxygen delignification. However, a decrease of resinol substructures (to only 6%) was found after alkaline peroxide bleaching. The relative amount of surviving linkages in the highly phenolic kraft lignin was dramatically modified; resinols were predominant. Oxygen delignification did not change interunit linkages, but a relative increase of oxidized units was found in the HSQC aromatic region, in agreement with the small increase of pyrolysis markers with oxidized side chains. NMR heteronuclear multiple bond correlations showed that the oxidized units after oxygen delignification bore conjugated ketone groups.  相似文献   

9.
Milled wood lignin (MWL) and dioxane lignin (DL) from different morphological regions (nodes and internodes) of Arundo donax reed were subjected to a comprehensive structural characterization by (13)C, (1)H NMR, FTIR, and UV spectroscopies and functional analysis. The permanganate and nitrobenzene oxidation methods were also applied to the in situ lignins. Both node and internode lignins are HGS-type lignins, with a significant amount of H units (including p-coumaric acid type structures). The S/G ratio (1.13-1.32), the weight-average molecular weight (20,400-24,500), the methoxyl group content (0.90-0.98), the phenolic hydroxyl group content (0.23-0.27), and the aliphatic hydroxyl group content (1.00-1.09) are not very different in the lignins from nodes and internodes. However, some structural differences between node and internode lignins were observed. The former has much more phenolic acids (p-coumaric and ferulic), 8.8% in node versus 1.2% in internode and less beta-O-4 (0. 32 and 0.49 per aromatic unit in node and internode, respectively). In situ node lignin is more condensed than internode lignin.  相似文献   

10.
The chemical composition of leaf fibers of curaua (Ananas erectifolius), an herbaceous plant native of Amazonia, was studied. Special attention was paid to the content and composition of lignin and lipophilic compounds. The analysis of lignin in the curaua fibers was performed in situ by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and showed a lignin composition with a p-hydroxyphenyl:guaiacyl:syringyl units (H:G:S) molar proportion of 30:29:41 (S/G molar ratio of 1.4). The presence of p-hydroxycinnamic acids (p-coumaric and ferulic acids) in curaua fibers was revealed upon pyrolysis in the presence of tetramethylammonium hydroxide. On the other hand, the main lipophilic compounds, analyzed by GC/MS, were series of long-chain n-fatty acids, n-fatty alcohols, alpha- and omega-hydroxyacids, monoglycerides, sterols, and waxes. Other compounds, such as omega-hydroxy monoesters and omega-hydroxy acylesters of glycerol, were also found in this fiber in high amounts.  相似文献   

11.
Compositional information for lignins in food is rare and concentrated on cereal grains and brans. As lignins are suspected to have important health roles in the dietary fiber complex, the confusing current information derived from nonspecific lignin determination methods needs to be augmented by diagnostic structural studies. For this study, lignin fractions were isolated from kiwi, pear, rhubarb, and, for comparison, wheat bran insoluble dietary fiber. Clean pear and kiwi lignin isolates allowed for substantive structural profiling, but it is suggested that the significance of lignin in wheat has been overestimated by reliance on nonspecific analytical methods. Volume integration of NMR contours in two-dimensional (13)C-(1)H correlation spectra shows that pear and wheat lignins have comparable guaiacyl and syringyl contributions and that kiwi lignins are particularly guaiacyl-rich (approximately 94% guaiacyl) and suggest that rhubarb lignins, which could not be isolated from contaminating materials, are as syringyl-rich (approximately 96% syringyl) as lignins from any known natural or transgenic fiber source. Typical lignin structures, including those newly NMR-validated (glycerols, spirodienones, and dibenzodioxocins), and resinols implicated as possible mammalian lignan precursors in the gut are demonstrated via their NMR correlation spectra in the fruit and vegetable samples. A novel putative benzodioxane structure appears to be associated with the kiwi lignin. It is concluded that the fruits and vegetables examined contain authentic lignins and that the detailed structural analysis exposes limitations of currently accepted analytical methods.  相似文献   

12.
Lignin extracted with acidic dioxane was investigated as a possible standard for quantitatively determining lignin content in plant samples using the spectrophotometric method employing acetyl bromide. Acidic dioxane lignins were analyzed for carbohydrate, total protein, nitrobenzene oxidation products, and UV spectral characteristics. Total carbohydrate content of isolated lignins ranged from 2.21 to 5.70%, while protein ranged from 0.95 to 6.06% depending upon the plant source of the original cell wall sample. Nitrobenzene analysis indicated differences in the amount of guaiacyl and syringyl units making up the lignins, but this did not alter the UV spectrum of lignin solubilized in acetyl bromide. Regression equations developed for the acetyl bromide method using the isolated lignins for all the plant samples were similar to each other. Lignin values obtained by the acetyl bromide method were similar to the lignin values obtained as acid insoluble residues following a Klason lignin procedure.  相似文献   

13.
The structure of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems was studied both in situ and in isolated milled "wood" lignins by several analytical methods. The presence of p-coumarate and ferulate in the cortex and pith, as well as in their isolated lignins, was revealed by pyrolysis in the presence of tetramethylammonium hydroxide, and by 2D NMR, and indicated that ferulate acylates the carbohydrates while p-coumarate acylates the lignin polymer. 2D NMR showed a predominance of alkyl aryl ether (β-O-4') linkages (82% of total interunit linkages), with low amounts of "condensed" substructures, such as resinols (β-β'), phenylcoumarans (β-5'), and spirodienones (β-1'). Moreover, the NMR also indicated that these lignins are extensively acylated at the γ-carbon of the side chain. DFRC analyses confirmed that p-coumarate groups acylate the γ-OHs of these lignins, and predominantly on syringyl units.  相似文献   

14.
Occurrence of naturally acetylated lignin units   总被引:2,自引:0,他引:2  
This work examines the occurrence of native acetylated lignin in a large set of vascular plants, including both angiosperms and gymnosperms, by a modification of the so-called Derivatization Followed by Reductive Cleavage (DFRC) method. Acetylated lignin units were found in the milled wood lignins of all angiosperms selected for this study, including mono- and eudicotyledons, but were absent in the gymnosperms analyzed. In some plants (e.g., abaca, sisal, kenaf, or hornbeam), lignin acetylation occurred at a very high extent, exceeding 45% of the uncondensed (alkyl-aryl ether linked) syringyl lignin units. Acetylation was observed exclusively at the gamma-carbon of the lignin side chain and predominantly on syringyl units, although a predominance of acetylated guaiacyl over syringyl units was observed in some plants. In all cases, acetylation appears to occur at the monomer stage, and sinapyl and coniferyl acetates seem to behave as real lignin monomers participating in lignification.  相似文献   

15.
The chemical composition of leaf fibers of abaca (Musa textilis), which are commonly used for high-quality paper pulp production, was thoroughly studied. The results revealed that the lignin content was 13.2% of the total fiber. The analysis of abaca fibers by pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS) released predominantly compounds arising from lignin and p-hydroxycinnamic acids, with high amounts of 4-vinylphenol. The latter compound was demonstrated to arise from p-coumaric acid by pyrolysis of abaca fibers in the presence of tetramethylammonium hydroxide, which released high amounts of p-coumaric acid (as the methyl derivative). Products from p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) propanoid units, with a predominance of the latter (H:G:S molar ratio of 1.5:1:4.9), were also released after Py-GC/MS of abaca fibers. Sinapyl and coniferyl acetates, which are thought to be lignin monomer precursors, were also found in abaca. The extractives content of the abaca fiber (0.4%) was low, and the most predominant compounds were free sterols (24% of total extract) and fatty acids (24% of total extract). Additionally, significant amounts of steroid ketones (10%), triglycerides (6%), omega-hydroxyfatty acids (6%), monoglycerides (4%), fatty alcohols (4%), and a series of p-hydroxycinnamyl (p-coumaric and ferulic acids) esterified with long chain alcohols and omega-hydroxyfatty acids were also found, together with minor amounts of steroid hydrocarbons, diglycerides, alpha-hydroxyfatty acids, sterol esters, and sterol glycosides.  相似文献   

16.
Miscanthus giganteus lignin was extracted by an organosolv process under reflux conditions (4 h) with varying concentrations of ethanol (65%, 75%, 85%, 95%) and 0.2 M hydrochloric acid as catalyst. The resulting lignin was extensively characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), and chemical analysis (residual sugars, Klason lignin, ash). The predominant linkage units present were β-O-4' (82-84%), resinol (6-7%), and phenylcoumaran (10-11%). The 65% ethanol solvent system gave the lowest lignin yield (14% of starting biomass) compared to 29-32% of the other systems. Increasing ethanol concentration resulted in decreasing carbohydrate content of the lignins (3.6-1.1%), a higher solubility in tetrahydrofuran (THF), a slight reduction of the molecular weight (M(w) 2.72-2.25 KDa), an increasing α-ethoxylation, and an increase in ethoxylated phenylpropenoic compounds (p-coumaric and ferulic acid), but the S/G ratio of the monolignols (0.63, GC/MS) and Klason lignin content (86-88%) were unaffected. An extraction method for these ethyl-esterified phenylpropenoids and smaller molecular weight lignin compounds was developed. The effect of reaction time (2, 4, and 8 h) was investigated for the 95% ethanol solvent system. Besides increased lignin yield (13-43%), a slight increase in M(w) (2.21-2.38 kDa) and S/G ratio (0.53-0.68, GC-MS) was observed. Consecutive extractions suggested that these changes were not from lignin modifications (e.g., condensations) but rather from extraction of lignin of different composition. The results were compared to similar solvent systems with 95% acetone and 95% dioxane.  相似文献   

17.
To characterize the lignin structures and lignin-carbohydrate complex (LCC) linkages, milled wood lignin (MWL) and mild acidolysis lignin (MAL) with a high content of associated carbohydrates were sequentially isolated from ball-milled poplar wood. Quantification of their structural features has been achieved by using a combination of quantitative (13)C and 2D HSQC NMR techniques. The results showed that acetylated 4-O-methylgluconoxylan is the main carbohydrate associated with lignins, and acetyl groups frequently acylate the C2 and C3 positions. MWL and MAL exhibited similar structural features. The main substructures were β-O-4' aryl ether, resinol, and phenylcoumaran, and their abundances per 100 Ar units changed from 41.5 to 43.3, from 14.6 to 12.7, and from 3.7 to 4.0, respectively. The S/G ratios were estimated to be 1.57 and 1.62 for MWL and MAL, respectively. Phenyl glycoside and benzyl ether LCC linkages were clearly quantified, whereas the amount of γ-ester LCC linkages was ambiguous for quantification.  相似文献   

18.
Stem tissues of tall fescue (Festuca arundinacea Schreb.) were sampled at three elongation stages and three reproductive stages. Anatomical analysis showed the deposition of guaiacyl (G) and syringyl (S) lignin during plant development and the formation of a lignified sclerenchyma ring. A dramatic increase in Klason lignin content was found from elongation stage to reproductive stage. Lignin composition analyzed by gas chromatography-mass spectrometry revealed that S lignin content and S/G ratio increased with stem development, but contents of p-hydroxyphenyl (H) and G lignins decreased during the same period. S lignin content and S/G ratio also increased from the younger upper internode down to the older basal internode of the stem, but G and H lignin decreased in parallel. Relative O-methyltransferase activities increased during stem development and in parallel with the lignification process of stem. The pattern of enzyme activity during development varied with the choice of substrate, with highest activities seen when substrates were caffeoylaldehyde and 5-hydroxyferulic acid, and lowest activities were seen when caffeic acid and 5-hydroxyconiferyl alcohol were used as substrates. The expression of caffeic acid O-methyltransferase and cinnamyl alcohol dehydrogenase genes increased during the stem elongation stage and remained at high levels during the reproductive stages. The changes at anatomical, metabolic, and molecular levels during plant development were closely associated with lignification and degradability. This study provides an integrated picture of the molecular and chemical events that accompany changes in lignin deposition and ruminal degradability.  相似文献   

19.
Fractionation of lignocellulosic material into its constitutive components is of vital importance for the production of biofuels as well as other value-added chemicals. The conventional acetosolv processes are mainly focused on the production of pulp from woody lignocelluloses. In this study, a mild acetosolv process was developed to fractionate bamboo under atmospheric pressure to obtain cellulosic pulp, water-soluble fraction, and acetic acid lignin. The structural features of the lignins obtained under various conditions were characterized with elemental analysis, sugar analysis, alkaline nitrobenzene oxidation, gel permeation chromatography (GPC), (1)H nuclear magnetic resonance ((1)H NMR), and heteronuclear single-quantum coherence (HSQC) spectroscopy. As compared to milled wood lignin (MWL) of bamboo, acetic acid lignins had low impurities (carbohydrates 2.48-4.56%) mainly due to the cleavage of linkages between lignin and carbohydrates. In addition, acetic acid lignins showed a low proportion of syringyl (S) units. Due to the cleavage of linkages between lignin units, acetic acid lignins had weight-average molecular weights ranging from 4870 to 5210 g/mol, less than half that of MWL (13000 g/mol). In addition, acetic acid lignins showed stronger antioxidant activity mainly due to the significant increase of free phenolic hydroxyls. The lignins obtained with such low impurities, high free phenolic hydroxyls, and medium molecular weights are promising feedstocks to replace petroleum chemicals.  相似文献   

20.
The short-term influence of adequate and high nitrogen fertilization on poplar lignification was investigated. The high nitrogen supply decreased lignin staining in the newly formed secondary xylem, indicating that lignin deposition was affected. Acetyl bromide determinations gave a 9-10% decrease in lignin content; however, Klason lignin content was unchanged. Thioacidolysis showed that elevated N supply affected lignin structure such that there was a reduced frequency of lignin units involved in beta-O-4 bonds, a reduced syringyl/guaiacyl ratio, an increased frequency of p-hydroxyphenyl lignin units, more guaiacyl units with free phenolic groups, and more p-hydroxybenzoic acid ester-linked to poplar lignins. These features suggest that lignins from poplars grown under high N bear structural similarities to lignins formed during early stages of wood development. The findings also indicate that a gravitational stimulus inducing the formation of tension wood and high N availability lead to similar and additive effects on lignin content and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号