首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five sources of dietary fatty acids (fish, linseed, sunflower, olive and coconut oils) were evaluated in juvenile Nile tilapia in two trials: at optimal (28°C) and suboptimal (22°C) temperatures lasting 9 and 12 weeks, respectively. At 28°C, there was no clear effect of dietary source on fish growth, but at 22°C, the highest daily weight gain occurred in fish fed sunflower, linseed and fish oil. Feed efficiency and apparent net protein utilization increased as the amount of unsaturated fatty acids, especially n‐3 polyunsaturated fatty acids (PUFA), in the diet increased. Coconut oil, which is rich in saturated fatty acids (SFA), led to the worst growth results, especially at 22°C, with the lowest weight gain, feed intake and feed utilization by tilapia. The body fatty acid profile, in % of total fatty acids, was dependent on diet composition. However, for all treatments, PUFA body content increased with the decrease in temperature, but SFA and monounsaturated fatty acids remained the primary contributors to the body profile. Either fish oil or vegetable oil may be used as sources of dietary fatty acids for Nile tilapia, but at suboptimal temperatures, a dietary source containing more PUFA and less SFA improves performance.  相似文献   

2.
Nile tilapia juveniles (8.35 ± 0.80 g) were fed on four levels (0.0%; 0.5%; 1.0%; 2.0%, 4.0%) of Aurantiochytrium sp. meal (ALL‐G‐RICH?), a source of docosahexaenoic acid (DHA). The 1% Aurantiochytrium sp. meal diet was compared to a control diet, which contained the same amount of DHA as cod liver oil (CLO) at 1.7% diet. Groups of 25 fish were stocked in 100 L tanks and fed twice daily until apparent satiation, for 57 days, at 28°C. Increasing dietary Aurantiochytrium sp. meal reduced the body retention of DHA and n‐3 polyunsaturated fatty acids (n‐3 PUFA) but increased the body retention of alpha‐linolenic (α‐LNA), linoleic (LOA) and n‐6 polyunsaturated fatty acids (n‐6 PUFA). Fatty acid profile in tilapia muscle was affected by increasing dietary inclusions of Aurantiochytrium sp. meal, with an increase in DHA, α‐LNA, n‐3 PUFA and n‐3 long chain‐polyunsaturated fatty acids (n‐3 LC‐PUFA) but a decrease in monounsaturated fatty acids (MUFA), n‐6 PUFA and n‐6 long‐chain polyunsaturated fatty acids (n‐6 LC‐PUFA). There was a larger body retention of DHA, α‐LNA, LOA, n‐3 PUFA and n‐6 PUFA fatty acids and a higher percentage of DHA, n‐3 PUFA and n‐3 LC‐PUFA in muscle fatty acid profile in fish fed on CLO diets than in those fed on 1% Aurantiochytrium sp. Therefore, Aurantiochytrium sp. meal is an alternative source of DHA for Nile tilapia diets.  相似文献   

3.
We studied the effects of dietary n‐3 LC‐PUFAs on the activities and mRNA expression levels of tissue lipoprotein lipase (LPL) and fatty acid synthase (FAS) during vitellogenesis and ovarian fatty acid composition in female silver pomfret broodstock. Broodstock were fed one of four experimental diets for 185 days: FO (100% fish oil), FSO (70% fish oil + 30% soybean oil), SFO (30% fish oil + 70% soybean oil) or SO (100% soybean oil). The results revealed that hepatic LPL and FAS and ovarian FAS activities and mRNA expression levels significantly increased at vitellogenesis and postvitellogenesis relative to previtellogenesis, with no significant differences between these two stages, except for hepatic LPL mRNA expression. Dietary n‐3 LC‐PUFAs decreased tissue FAS and increased LPL activities and mRNA expression levels. The ovarian concentrations of 20:4n‐6 (ARA), 20:5n‐3 (EPA), 22:6n‐3 (DHA) and n‐3 LC‐PUFAs were directly influenced by n‐3 LC‐PUFA levels. Total n‐3 LC‐PUFA concentrations in SO were 57% lower than those in FO, while 18:2n‐6 concentrations in SO were 4.7 ×  higher than those in FO. These results revealed that high dietary n‐3 LC‐PUFAs levels significantly affected tissue lipid metabolism in female silver pomfret broodstock during vitellogenesis by upregulating LPL and downregulating FAS.  相似文献   

4.
This is the first comprehensive study on the effect of dietary polyunsaturated fatty acid (PUFA) levels on the expression of fatty acid elongase 5 (AJELOVL5), PUFA composition, and growth in juvenile sea cucumbers. The specific growth rate (SGRw) was improved in n‐3 PUFA‐rich diets compared to low n‐3 PUFA diets. AJELOVL5 expression was apparently upregulated in juveniles fed lower PUFA diets relative to higher PUFA diets, with higher expression in the body wall and respiratory tree of juveniles fed diets without ɑ‐linolenic acid (ALA, 18:3n‐3) compared to juveniles fed higher ALA level diets; similar results were also detected in juveniles fed diets with lower eicosapentaenoic acid (EPA, 20:5n‐3), docosahexaenoic acid (DHA, 22:6n‐3), and none of ALA, EPA, or DHA respectively. The concentrations of ALA, EPA, and DHA in tissues were positively related to the content of dietary corresponding PUFA, with higher ALA content in juveniles fed diet ALA12.71 than in the ALA7.46 and ALA0 groups. Similar results were also obtained in sea cucumber fed diets enriched with either EPA or DHA. Interestingly, considerable levels of EPA and DHA were found in the tissues of juveniles fed diets of CK0 and DHA0, with no specific input of EPA or DHA, showing that the sea cucumber was capable of biosynthesizing EPA and DHA from their corresponding precursors as ALA and linoleic acid (LA, 18:2n‐6).  相似文献   

5.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

6.
It is assumed that Florida pompano have dietary EPA (20:5n‐3) and DHA (22:6n‐3) requirements. However, it is unclear whether both are equally important in meeting demand for n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFAs) or whether the requirement(s) can be influenced by other fatty acids. Accordingly, we assessed production performance and tissue composition of juvenile Florida pompano (41.0 ± 0.5 g) fed diets containing fish oil; beef tallow; or beef tallow partially or fully supplemented with EPA, DHA or both. After 8 weeks, no signs of fatty acid deficiency were observed. Although fish performance did not vary significantly among the dietary treatments, fish fed the DHA‐supplemented feeds exhibited numerically superior growth than those fed the other diets. Fillets of fish fed the beef tallow‐based diets contained reduced levels of n‐3 fatty acids and LC‐PUFAs and elevated levels of MUFAs and n‐6 fatty acids, although dietary supplementation with EPA and/or DHA attenuated these effects somewhat. Our results suggest that beef tallow is suitable as a primary lipid source in Florida pompano feeds and n‐3 LC‐PUFA requirements may be met by as little as 4 g/kg EPA and 4 g/kg DHA. However, there may be value in supplementing tallow‐based diets with DHA to enhance tissue levels and possibly growth.  相似文献   

7.
Golden pompano Trachinotus ovatus is an important farmed carnivorous marine teleost. Although some enzymes for long‐chain polyunsaturated fatty acid (LC‐PUFA) biosynthesis have been identified, the ability of T. ovatus for endogenous biosynthesis is unknown. Here, we evaluated in vivo LC‐PUFA synthesis in a 56‐day culture experiment using six diets (D1–D6) formulated with linseed and soybean oils to produce dietary linolenic/linoleic acid (ALA/LA) ratios ranging from 0.14 to 2.20. The control diet (D0) used fish oil as lipid source. The results showed that, compared with the corresponding indices of fish fed D0, the weight gain rate and specific growth rate as well as the contents of eicosapentaenoic (EPA) and docosahexaenoic acids in tissues (liver, muscle, brain and eye) of D1–D6 groups were significantly lower (p < .05). These data suggested that T. ovatus could not synthesize LC‐PUFA from C18 PUFA or such ability was very low. However, tissue levels of 20:4n‐3 in fish fed diets D1–D6 were higher than that of D0 fish (p < .05), and positively correlated with dietary ALA/LA ratio, while levels of EPA showed no difference among the D1–D6 groups. These results indicated that Δ5 desaturation, required for the conversion of 20:4n‐3 to EPA, may be lacking or very low, suggesting incomplete LC‐PUFA biosynthesis ability in T. ovatus.  相似文献   

8.
The aim of this work was to study the fatty acid (FA) bioconversion ability in Eurasian perch fed with diets differing in their polyunsaturated fatty acids (PUFA) from n‐3 and n‐6 series content at two development stages: adults in exogenous vitellogenesis, and juveniles during the on‐growing phase. Duplicate groups of adults and juveniles were fed for 12 weeks with four diets: D1 and D2, two diets prepared with fish oil partially or totally as the lipid source, and so containing long‐chain PUFA (LC‐PUFA). Those two diets differed by their n‐3/n‐6 FA dietary ratio (0.2 and 7.0, respectively), D1 being characterized by a high n‐6 LC‐PUFA level, while D2 had a high level of n‐3 LC‐PUFA. D3 and D4 were constituted only with vegetable oils, and were therefore devoid of LC‐PUFA. D3 was characterized by a high level of 18:2 n‐6 (n‐6/n‐3 ratio of 0.3), while D4 was characterized by a high level of 18:3 n‐3 (n‐3/n‐6 ratio of 1.9). Both groups of fish were able to elongate and desaturate the 18:3 n‐3 precursor into eicosapentaenoic acid and docosahexaenoic acid, regarding the FA profile of livers. Furthermore, total elongation/desaturation from [1‐14C]18:3 n‐3 of LC‐PUFA was higher in fish fed with the high dietary 18:3 n‐3 level compared to the diet rich in n‐3 LC‐PUFA. By opposition, the bioconversion of 18:2 n‐6 into LC‐PUFA was limited, regarding the elongation/desaturation activity of LC‐PUFA from [1‐14C]18:2 n‐6. In view of the great ability for bioconversion of n‐3 FA, linseed oil is a promising alternative to fish oil in formulating feed for juveniles perch as there were no differences in terms of specific growth rate between the treatments, but adults undergoing maturation should have at least partially LC‐PUFA in their diet, particularly arachidonic acid (ARA) which is important during maturation, as breeders are not able to bioconvert 18:2 n‐6 into ARA.  相似文献   

9.
The possibility of increasing n‐3 and n‐6 long‐chain polyunsaturated fatty acids (PUFA) content in microalgal mixtures used to feed Tapes philippinarum larvae was explored by lowering culture temperature from 26 to 14 °C. Although fatty acid composition of different microalgal species has a genetic basis, the algal cultures grown at 14 °C significantly increased the content of long‐chain n‐3 PUFA in Isocrysis galbana and in Thalassiosira pseudonana, while in Tetraselmis tetrathelo, the PUFA increase only involved shorter chain PUFA, namely 16:4n‐3 and 18:4n‐3. However, larvae fed on the PUFA enriched microalgal mixture did not show improvements in growth and survival performances with respect to the control group fed the microalgal mixture grown at 26 °C. From a biochemical perspective, two key aspects emerged from the results: (i) clam larvae have adequate biotransformation and selection skills to adjust fatty acid profile to their requirements as they can even modulate the incorporation of essential long‐chain PUFA as 20:5n‐3 and 22:6n‐3 when the dietary supply exceeds the physiological requirements; (ii) bivalve can biosynthesize non‐methylene‐interrupted dienoic (NMID) fatty acids as confirmed by the constancy of relative proportion with larvae growth in spite of the NMID fatty acid absence in the diet.  相似文献   

10.
This study investigated the effect of n‐3 to n‐6 fatty acid ratios in broodstock diets on reproduction performance, fatty acid composition of eggs and gonads of tongue sole Cynoglossus semilaevis. Broodstock were fed five isonitrogenous and isoenergetic diets for 60 days. The supplemented lipids were prepared by a combination of fish oil and soybean oil inclusion FO (fish oil); FSO1 (fish oil: soybean oil = 7:1); FSO2 (fish oil: soybean oil = 2.2:1); FSO3 (fish oil: soybean oil = 1:1); FSO4 (fish oil: soybean oil = 1:4.3) as lipid sources with different n‐3 to n‐6 fatty acid ratios 10.40, 5.21, 2.81, 1.71 and 0.87. Results showed that relative fecundity, fertilization rate and survival rate of larvae at 7 days posthatching were all higher in broodstock fed FSO1 and FSO2 diet and significantly (< 0.05) decreased in groups fed FSO3 and FSO4 diets. The best result in starvation tolerance test was obtained in FSO2 diet. The present study suggests that n‐3 and n‐6 PUFA ratio in broodstock diet has a considerable effect on spawning performance, egg and larval quality for C. semilaevis.  相似文献   

11.
This study was carried out to evaluate the effects of water temperature (WT) and dietary protein levels on growth, body composition and blood biochemistry of GIFT tilapia (Oreochromis niloticus; initial average body weight: 38.75 ± 0.61g, n = 20). The fish were fed with six diets contained graded levels of protein (209.6, 251.0, 302.4, 354.3, 401.9 and 456.8 g/kg) and raised in each of WT (22°C, 28°C and 34°C) for 8 weeks. Results showed that the growth, feed utilization and protein efficiency were significantly increased with the increase of dietary protein level and followed by the latter platform at each WT. The fish raised at 28 and 34°C showed similar growth performance, and their values were significantly higher than the fish raised at 22°C (p < 0.05). The lipid contents in whole body were decreases with the increase of dietary protein level at each WT. However, the whole‐body protein, ash and moisture contents were not affected by dietary protein level or WT (p > 0.05). The values of serum biochemical indices (ALP, ALT, AST and TCHO) were all decreased with the increase of dietary protein. The optimal dietary protein requirement for GIFT tilapia to achieve maximal growth performance is 374.4, 301.7 and 304.9 g protein/kg diet at 22, 28 and 34°C, respectively.  相似文献   

12.
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components.  相似文献   

13.
We evaluated the effect of different concentrations of 5′‐inosine monophosphate (IMP) and 5′‐guanosine monophosphate (GMP) on the growth, immunity and muscle composition of turbot Scophthalmus maximus. Eight diets (containing no IMP or GMP, or 0.5 g/kg IMP, 1.0 g/kg IMP, 2.0 g/kg IMP, 0.5 g/kg GMP, 1.0 g/kg GMP, 2.0 g/kg GMP, or 0.5 g/kg IMP plus 0.5 g/kg GMP) were prepared. A total of 360 fish (average body weight of 105 g) were randomly selected and placed in groups into 24 plastic aquaria (8 treatments × 3 replicates × 15 individuals per plastic aquaria). The tanks were maintained at the temperature of 15 ± 2°C. The experimental diets were fed for 60 days. The specific growth rate (SGR) was significantly higher in S. maximus fed with IMP or GMP compared with fish fed neither IMP nor GMP. The highest SGR was observed in fish fed with 1.0 g/kg IMP. Supplementation with these dietary nucleotides had a positive, but not significant effect on the activity of superoxide dismutase, alkaline phosphatase and acid phosphatase. There was a significant difference in the moisture and crude lipid content of muscle from S. maximus fed the different diets compared with control fish. The highest moisture content was 83.44 for a diet of 0.5 g/kg IMP plus 0.5 g/kg GMP, which was also significantly higher when compared to fish fed alternative diets. The crude lipid content of S. maximus fed diets containing either IMP or GMP was significantly higher than those fed diets without IMP or GMP. Thus, according to these results, the optimal level of dietary IMP is 1.0 g/kg, which correlates with the largest increase in growth performance of S. maximus.  相似文献   

14.
We explored how currently manufactured feeds, under real‐world conditions and across geographically distinct locations, promoted flesh n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA, i.e. 20:5n‐3 + 22:6n‐3) levels in various life stages of farmed Atlantic Salmon (Salmo salar). Potential effects on flesh LC‐PUFA included: (1) diet and fish weight at one Canadian east coast farm, (2) diet and farm location across six east coast farms, and (3) diet and farm location between east and west coast farms. For objectives 1 and 2, salmon were fed a currently manufactured feed (labelled as feeds A, B or C) and harvested at 1, 3 and 5 kg. LC‐PUFA levels in 5 kg (harvest size) fish were then compared to previously published values for west coast farmed Atlantic Salmon (Obj. 3). Combined results revealed that variability in LC‐PUFA levels was better explained by diet than by fish weight or farm location. Fish size, however, was also important for two reasons. First, feeding a high LC‐PUFA diet early in life appeared important for ensuring high LC‐PUFA levels at harvest size. Second, salmon flesh LC‐PUFA levels increased with fish size, but only when dietary LC‐PUFA was provided above an apparent threshold value (~3000 mg per 100 g or 10% of total fatty acids) that likely promoted LC‐PUFA incorporation and storage. Overall, our comparison makes new recommendations for feed manufacturers and demonstrates that farmed Atlantic Salmon reared under real‐world conditions on currently available salmon feeds were good sources of n‐3 LC‐PUFA to consumers.  相似文献   

15.
The wide use of lipid as a non‐protein energy substitute has led to lipid metabolic problems in cultured tilapia. Therefore, studies that reduce the effects of high‐fat diets in genetically improved farmed tilapia (GIFT) are required. This study evaluated the optimum level and effects of dietary α‐lipoic acid (α‐LA) on growth performance, body composition, antioxidant capacity and lipid metabolism of GIFT tilapia. The basal diet (120 g/kg lipid) was supplemented with six concentrations of α‐LA at 0 (control), L300, L600, L900, L1200 and L2400 mg/kg diet to make the experimental diets, which were fed to GIFT tilapia juveniles (initial body weight: 0.48 ± 0.01 g) for 8 weeks. The weight gain of fish improved significantly in the L300 than other dietary treatments. The intraperitoneal fat index and lipid content of fish fed on the L2400 diet decreased significantly than those fed on the control diet. The activities of superoxide dismutase and glutathione peroxidase (GSH‐Px) in serum and liver were significantly higher in fish fed on the L300 diet than the control. The reduced GSH content of fish fed on the L300 in serum and liver was significantly higher than those fed on control diet. The malondialdehyde content in serum and liver was significantly lower in L300 than in the control. The adipose triglyceride lipase gene was significantly up‐regulated in fish fed on the L2400, but the diacylglycerol acyltransferase 2 gene was down‐regulated in adipose. The liver‐type fatty acid‐binding protein gene in the liver was significantly up‐regulated in fish fed on the L300 and L600 diets. Moreover, the acyl‐coenzyme A oxidase gene in liver was significantly up‐regulated in fish fed on the L300, L600, L900 and L1200 diets. Polynomial regression analysis indicated that 439–528 mg/kg α‐LA is an appropriate dosage in high‐fat diet to improve growth performance and relieve lipid oxidative damage by accelerating lipid catabolism and reducing lipid synthesis in GIFT tilapia.  相似文献   

16.
The aim of this study was to determine the effects of replacing fish oil (FO) with laurel seed oil (LSO), as an alternative plant lipid source in diets on the growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss; 111.47 ± 0.2 g mean individual weight). At the end of the feeding trial, survival was 100% in all treatments. No significant differences were seen in growth between the dietary groups (P > 0.05). The protein, lipid and ash contents were not significantly different among the groups (P > 0.05); however, there was a significant difference in protein and ash content between the treatment groups and the initial, and between the 50LSO group and the initial group, respectively (P < 0.05). The viscerosomatic index (VSI) and hepatosomatic index (HSI) values were not affected by increasing LSO percentages in the diets. The n‐6 polyunsaturated fatty acid (PUFA) concentration increased with increasing LSO levels in the diets. In contrast, the n‐3 PUFA levels decreased with increasing LSO levels in the diets. The liver and muscle were used for the analysis of fatty acids. The highest level of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations was recorded in fillet of fish fed the FO diet and the lowest in those fed the 50LSO diet. However, EPA and DHA ratios in the liver of fish fed the 75LSO diet were higher than those in fillet of fish fed the FO and 50LSO diets. No significant differences were seen in fatty acid composition between the dietary groups (P > 0.05). Based on the results of growth performance and fatty acid composition of the experimental fish in this study, it can be concluded that the 75% concentration of laurel seed oil performed best among the diets tested in the experiment.  相似文献   

17.
H. Xu  J. Du  S. Li  K. Mai  W. Xu  Q. Ai 《Aquaculture Nutrition》2017,23(6):1449-1457
Studies were conducted to investigate the effects of dietary n‐3 long‐chain polyunsaturated fatty acid (n‐3 LC‐PUFA) on growth performance, lipid deposition, hepatic fatty acid composition and serum enzyme activities of juvenile Japanese seabass Lateolabrax japonicus (initial mean weight 29.2 ± 1.34 g). Triplicate groups of 30 Japanese seabass were fed with six diets containing grade levels of n‐3 LC‐PUFA (1.30, 2.98, 5.64, 10.31, 14.51, 24.13 g kg–1 of dry weight) to apparent satiation twice daily for 9 weeks. The specific growth rate (SGR) was the highest in 10.31 g kg–1 dietary n‐3 LC‐PUFA group. Crude lipid content of the fish decreased significantly with increasing dietary n‐3 LC‐PUFA. Meanwhile, the hepatic lipid content increased significantly in the 24.13 g kg–1 group. Hepatic n‐3 LC‐PUFA content of total fatty acids was closely correlated with that in diet. No significant difference was observed in serum alanine transaminase (ALT) and aspartate aminotransferase (AST) activities. Moderate n‐3 LC‐PUFA level (10.31 g kg–1 of dry weight) in the diet was beneficial to enhance the activity of lysozyme in serum. Based on SGR, the optimum dietary n‐3 LC‐PUFA content was estimated to be around 10.94 g kg–1 of dry weight by second‐order polynomial regression method.  相似文献   

18.
19.
20.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号