首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

2.
Mud spiny lobsters, Panulirus polyphagus (Herbst, 1793), were reared at four different stocking sizes and stocking densities in open sea cages to evaluate their effects on growth performance. To evaluate the effect of stocking size on the growth performance, the lobsters were segregated into four different treatment groups according to size and were stocked at a density of 300 animals per cage. To evaluate the effect of stocking density on the growth performance, lobsters of 81–100 g were stocked in four different stocking densities, i.e. 16/m2, 24/m2, 32/m2 and 40/m2. The results showed that the growth rate of (60–80 g) size group, was significantly higher compared to the size groups, i.e. 101–120 g and 121–140 g comprising of larger individuals. The final body weight, though significantly higher in 81–100 g as compared to 60–80 g, the growth performance (i.e. weight gain percentage (WG %) and specific growth rate (SGR)) were not significantly different. The density‐dependent influence on growth performance was evident in this study. The WG % and SGR during 90 days’ culture period was significantly higher in 24/m2 compared to other groups. This study provides crucial information about the appropriate stocking density and stocking size of lobsters at the field level, which would help to promote sustainable lobster cage farming by maximizing the production potential of the system.  相似文献   

3.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

4.
Macrobrachium rosenbergii (de Man 1879) juveniles (0.4 g) were cultured in experimental cages (L × W × H: 2.5 × 1 × 1 m) in Laguna de Bay, the largest lake in the Philippines. The following stocking densities at four replicates each were used: 15, 30, 60 and 90 prawns m−2 of cage bottom. The mean sizes at harvest after 5 months of culture ranged from 14.3 g for the highest stocking density to 26.3 g for the lowest. The mean size at harvest, daily growth rate and size class distribution were significantly influenced by stocking density, with those at the lowest stocking density showing significantly better growth and overall proportion of larger prawns. Heterogeneous individual growth (HIG) was fairly evident in all treatments. The percentage of blue‐clawed males was not influenced by treatment but the mean weight was significantly higher in the lower stocking densities. Both the percentage and mean weight of berried females were significantly higher in the lowest stocking density. Survival was the highest in the lower stocking densities (55.3%, 54.0%, 52.7% and 36.9% for 15, 30, 60 and 90 prawns m−2 respectively). Feed conversion ratio (FCR) improved with decreasing stocking density, ranging from 2.1 to 3. As expected, yield per cropping increased with stocking density and ranged from 450 to 1089 g m−2 yr−1 of actual cage area. Production values obtained in the cage cultured M. rosenbergii were comparable to or even higher than those reported from pond culture, given that the stocking densities used in this study were generally higher than in ponds. The results show that the farming of M. rosenbergii in cages in lakes is a viable alternative to pond culture and has the potential of improve aquaculture production in lakeshore fish farming communities.  相似文献   

5.
The sutchi catfish, Pangasius sutchi (Fowler 1937) was grown at 10 stocking densities in cages suspended in a river‐fed channel during the summer of 2000. Catfish fingerlings (mean length 9.1–9.7 cm and mean weight 5.9–6.7 g) were stocked at densities of 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150 fish m?3. After 150 days, growth and yield parameters were studied and a simple economic analysis was carried out to calculate profitability. The mean gross yield ranged from 15.6±0.27 to 34.5±0.44 kg m?3 and the net yield ranged from 15.2±0.22 to 33.5±0.36 kg m?3 and showed significant variations (P<0.05). The mean weights of fish at harvest were inversely related to stocking density. Both gross and net yields were significantly different and were directly influenced by stocking density but the specific growth rate, survival rate and feed conversion rate were unaffected. Higher stocking density resulted in higher yield per unit of production cost and lower cost per unit of yield. The net revenue increased positively with increasing stocking density. A density of 150 fish m?3 produced the best production and farm economics among the densities tested in this experiment.  相似文献   

6.
Asian river catfish (Pangasius bocourti Sauvage, 1880) were cultured at five different stocking densities in cages (submerged volume 1 m3) suspended in a dugout pond from August to November 2009. Pangasius bocourti fingerlings (mean weight 27.09 ± 0.54 g) were stocked at densities of 12, 25, 50, 100, and 200 fish m−3. At the end of 3 months, the harvest weights (gross yields) were, respectively, 2.05 ± 0.30, 5.20 ± 0.31, 10.60 ± 0.42, 19.98 ± 0.78, and 42.37 ± 0.41 kg m−3. The mean fish weights among the stocking densities of 25, 50, 100, and 200 fish m−3 were not significantly different, but were significantly higher than that of the 12 fish m−3 density. The specific growth rates among high stocking densities of 50, 100, and 200 fish m−3 were not significantly different; however, they were significantly higher than those of the low stocking densities of 12 and 25 fish m−3. Asian river catfish performed poorly at the lowest density. The results indicate an initial lower stocking threshold for Asian river catfish of above 5.20 kg m−3. The Asian river catfish cultured in small cages placed in a pond reached the desirable market size (>200 g) within a 90-day grow-out period. The results show that the maximum yield for Asian river catfish during a 3-month production cycle was not reached.  相似文献   

7.
The relative growth and production of estuary grouper, Epinephelus salmoides, in response to seven combinations of hiding space and stocking density were studied in floating net cages. Used car tyres were suspended in the net cages to provide hiding space for the fish. The seven combinations of hiding space and stocking density were as follows:
Provision of hiding space in the net cages was found to permit an increase in the stocking density from the optimal rate of 60 fish/m3 (without artificial hides) to 156 fish/m3. The net production was found to increase from 8.5 kg/m3 to 19.5 kg/m3 after 3 months. Growth in terms of weight gain per fish, survival rate and food conversion ratio at stocking rates below 156 fish/m3 with hiding space between 116 and 222 cm3/fish was comparable to that observed at the optimal stocking density without hiding space (60 fish/m3). The growth of fish stocked at 180–204 fish/m3 with hiding space of 272–289 cm3/fish, respectively, was found to be significantly depressed. Thus, with the provision of hiding space of 251 cm3/fish, the stocking density could be increased to as high as 156 fish/m3 and the production of fish could be increased by 230% over that at the usual optimal stocking rate of 60 fish/m3 without artificial hides.  相似文献   

8.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

9.
To evaluate effects of stocking density on welfare of Amur sturgeon (Acipenser schrenckii), an experiment was designed using three initial stocking densities in flow‐through tanks (LSD = 3.7 kg m?3, MSD = 6.9 kg m?3, and HSD = 9.3 kg m?3, respectively) for 60 days. Growth, body composition, and haematological and biochemical parameters were monitored. The mortality and feed conversion rate (FCR) were not affected by stocking density. However, the specific growth rate (SGR), final weight and weight gain in the HSD group were significantly lower than in the LSD and MSD groups. The hepatosomatic (HSI) and viscerosomatic indices (VSI) varied inversely with regard to stocking density. Stocking density did not affect crude protein levels in fish. In contrast, the total lipid level was significantly higher in the LSD group compared to the MSD and HSD groups. The levels of erythrocytes and haemoglobin were positively correlated with stocking density. Serum total bilirubin and urea in HSD group were significantly higher than in the LSD group while serum triglycerides showed opposite tendencies. Differences between treatments were not registered for glucose, total protein and albumin. In conclusion, higher stocking density resulted in increased immunosuppression and enhanced energy mobilization. The latter was necessary to enable Amur sturgeon to cope with crowding.  相似文献   

10.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

11.
This study investigated the effects of different stocking densities on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii. Fish were reared at low, medium, and high stocking densities (initial experimental densities were 0.30, 0.75, and 1.78 kg m−2, respectively) for 70 days. The results showed that high stocking density had negative effects on growth and feeding efficiency, and altered serum levels of thyroid hormones and cortisol in Amur sturgeon. A significant decrease in specific growth rate was observed as stocking density was increased. The feeding rate decreased significantly in the medium and high density groups, indicating that high stocking density reduced the food consumption of sturgeon. Food conversion ratio increased with increasing stocking density, suggesting that high stocking density might inhibit fish growth through decreasing food conversion efficiency. Serum concentrations of total triiodothyronine, free thyroxine, and free triiodothyronine were inversely related to stocking densities, whereas serum total thyroxine level of sturgeon stocked at different densities remained stable. Also, higher stocking density resulted in an elevation of serum cortisol level, indicating that the sturgeon stocked at the higher density experienced density-dependent physiological stress. These results suggest growth suppression caused by high stocking density might be related to both crowding stress and the declines in peripheral circulating levels of thyroid hormones, as well as associated with the reductions in both food consumption and food conversion efficiency.  相似文献   

12.
Welfare in farmed fish got particular attention during the last decades from both governmental and public sides. In aquaculture context, welfare concerns are mainly related to handling procedures, water quality and stoking densities. In Europe, authorities had to clarify the threshold limits of stocking densities to maintain fish good welfare, including for organics aquaculture through the EC regulation 710/2009. However, effects of stocking density on fish welfare are complex and sometimes contradictory. Moreover, there is a lack of knowledge about the impact of density on fish welfare in organic aquaculture. Thus, the aim of the study is to asses welfare state of rainbow trout (Oncorhynchus mykiss) at two initial stocking densities (low density, LD: 12 kg/m3 and high density, HD: 17 kg/m3) fed using organic feed by combining the monitoring of growth performances, behaviour (swimming activity) and physiological indicators (i.e. cortisol, glucose, lactate, hematocrit, red blood cellule count and lysozyme). At the end of experiment, the stocking density reached 21 kg/m3 and 30 kg/m3 for the LD and HD respectively. Overall, growth performances, swimming activity and level of physiological indicators of stress and welfare were similar between HD and LD over the experiment duration. To conclude, we observed no alteration of fish welfare between the two stocking densities monitored. This study suggests that a final stocking density of 30 kg/m3 can be considered for organic aquaculture of rainbow trout respecting welfare.  相似文献   

13.
Labeo rohita (139.92 ± 0.76 mm/24.33 ± 0.45 g) was reared for 92 days in floating square cages (10 m2 area, 1.5 m height) in a pond (2 ha) at six stocking densities (5, 7.5, 10, 15, 20 and 25 fish m?2) each with 3 replicates. Fish were fed daily once in the morning with rice polish and groundnut oil cake (1:1) in dough form at 3 % of the total body weight. Survival ranged from 96 to 100 % in different stocking densities. Final average body weight, average body weight gain, mean daily body weight gain and SGR decreased (P < 0.05) with increasing stocking density. Conversely, final biomass, biomass gain and FCR increased (P < 0.05) with increasing stocking density. The highest growth rate of fish could be achieved up to 60 days at 5 fish m?2 and 92 days at other densities. The reduced growth rate at 10–25 fish m?2 for 60 days of culture indicated that stress is related to size and density of the fish, suggesting that utmost care is required to reduce the stress at high densities. Maximum production and profit was observed at the highest stocking density. Non-lethal levels of water and soil qualities at different sites (cage premises, and 20 and 200 m away from cage area) suggested that cage aquaculture could be done safely covering 0.9 % of pond area. Production of advanced fingerlings in cages was found a viable alternative to their culture in pond.  相似文献   

14.
The influence of dietary supplementation of Lactobacillus acidophilus, on growth performance, digestive enzyme activities, gut histomorphology and gut microflora were evaluated in juveniles striped catfish (Pangasianodon hypophthalmus). Five experimental diets were formulated by supplementing 0, 103, 105, 107 and 109 CFU/g L. acidophilus in fishmeal and casein‐based semi‐purified diet. Triplicate groups of striped catfish (21.69 ± 0.18 g) were stocked in 15 fiberglass tanks with stocking density of 25 individuals per tank and fed twice daily at 2.5% of the fish body weight for 12 weeks. Weight gain, specific growth rate, feed conversion ratio and the protein efficiency ratio were significantly higher in fish fed with 105 and 107CFU/g L. acidophilussupplemented diets compared with the other treatment groups. Compared with the control and fish fed low (103 CFU/g) L. acidophilus supplementation, those fed with 105 and 107 CFU/g had significantly higher (p < 0.05) apparent protein digestibility. Inclusion of L. acidophilus at 107 CFU/g diet significantly increased amylase, protease and lipase activities. Microscopic analysis showed that the villi length in both the anterior and posterior gut and microvilli length in the posterior gut increased significantly in fish fed L. acidophilus supplementation at 105 and 107 CFU/g of diet. The fish fed L. acidophilus supplemented diets significantly increased the total lactic acid bacteria counts in the gut of striped catfish compared with the control‐fed group. Based on gut histomorphology and growth performance, inclusion of L. acidophilus at 105 CFU/g appears to have the most positive effect on striped catfish farming.  相似文献   

15.
Two consecutive experiments were conducted to study the effects of stocking density on growth, food utilization, production and farming profitability of Nile tilapia (Oreochromis niloticus) fingerlings (initial mean weight: 16.2 ± 0.2 g) fed Azolla, as a main component in diet. In experiment 1, fish were hand‐fed twice daily with three isonitrogenous (28.5% crude protein) and isocaloric (14.5 kJ g−1) diets A30, A35 and A40 containing 30%, 35% and 40%Azolla, respectively, for 90 days. Diets were formulated by mixing Azolla with locally available by‐products. No significant differences were found in growth parameters and production (P>0.05). Total investment cost was significantly higher with A30 (P<0.05), but same profitability values were obtained with all diets (P>0.05). In experiment 2, three stocking densities, 1, 3 and 5 m−2, were assigned to three treatments T1, T2 and T3 respectively. Fish were hand‐fed twice daily with diet A40. The final mean weight (89.53–115.12 g), the mean weight gain (0.81–1.10 g day−1), the specific growth rate (1.90–2.20% day−1) and the apparent food conversion ratio (1.29–1.58) were affected by stocking density, with significant difference (P<0.05) at 5 m−2, compared with the other densities. Stocking density did not affect survival rate (P>0.05). Yield and annual production increased with increasing stocking density, ranging from 7.10 ± 0.90 to 25.01 ± 1.84 kg are−1 and 28.79 ± 3.66 to 101.42 ± 7.48 kg are−1 year−1, respectively, with significant differences between all densities (P<0.05). Higher stocking density resulted in higher gross return and lower cost of fish production, with significant variations (P<0.05). The net return increased with increasing stocking density (P<0.05). However, both densities of 3 and 5 m−2 produced the same profitability values. On the basis of growth values and economic return, it was concluded that Nile tilapia could be raised at a density of 3 fish m−2 with A40 to improve production and generate profit for nutritional security and poverty alleviation in rural areas.  相似文献   

16.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

17.
The impact of stocking density on growth performance, physiological indicators, and body composition of juvenile blunt snout bream in recirculating aquaculture system was investigated in this study. Juvenile blunt snout bream were raised at stocking densities of 75, 150, 225, 300, and 450 fish/m3 for 12 wk with three replicate tanks at each density. All treatment tanks were supplied with water from the same recirculating system to ensure uniformity of water quality across groups. This study has shown that higher stocking densities had a negative effect on individual growth performance. Final body mass, specific growth rate (SGR), and weight gain decreased significantly as stocking density increased. Individual body mass as well as body length were more uniform in fish stocked at densities of 75 and 150 fish/m3 than in other groups. Stocking densities of 225 and 300 fish/m3 resulted in significant increases in serum total protein, triglyceride, lactate, and cholesterol levels, whereas blood glucose concentrations decreased significantly. In addition, decreased body lipid content and increased body moisture content were observed at stocking densities of 300 and 450 fish/m3. Overall, a density of 150 fish/m3 resulted in higher SGR and more uniform size among juvenile blunt snout bream.  相似文献   

18.
Fingerling rearing of pengba, Osteobrama belangeri, was conducted at varied densities for 90 days in 12 outdoor concrete tanks (10 m × 5 m × 1 m). The tanks, grouped into four triplicated treatments, were stocked with fry at 20, 30, 40 and 50 fry m‐3; and designated as control, T‐1, T‐2 and T‐3 respectively. Tanks were filled up to 90 cm depth. Evaporation loss compensated fortnightly. Fish sampling and monitoring of water quality parameters done at fortnight intervals. Survival varied between 71.5% and 84.0% in treatments. Both survival and total length significantly reduced with increasing densities from control to T‐2 (p < .05), while no differences were observed between T‐2 and T‐3 (p > .05). Similarly, significant reductions in final body weight and specific growth rate were observed with increased densities and these values further reduced in T‐3 than T‐2 (p < .05). Such results corroborated the inverse relationship between stocking density and growth. Gross biomass yields in two higher densities (T‐2 and T‐3), despite their lower survivals, were significantly higher than the two lower densities. The numbers of fingerlings harvested were 35, 74 and 112% higher than the control in T‐1, T‐2 and T‐3 respectively. The lowest size obtained even at the highest density (T‐3) was of 7.0 ± 1.0 cm and 3.99 ± 0.17 g, which can be considered as ideal grow‐out stocking size of pengba. Therefore, the study showed feasibility of stocking up to 50 fry m‐3 for rearing from fry to fingerling stage. However, the other lower densities may be used in case of requirement of larger fingerlings.  相似文献   

19.
In this study, we have tested the effect of seaweed stocking density in an experimental seaweed biofilter using the economically important red seaweed Hydropuntia cornea integrated with the cultivation of the pink shrimp Farfantepenaeus brasiliensis. Nutrient removal efficiency was evaluated in relation to seaweed stocking density (2.5, 4, 6 and 8 g fw L?1). Total ammonia nitrogen (TAN) was the main nitrogen source excreted by F. brasiliensis, with concentrations ranging from 41.6 to 65 μM of NH4+‐N. H. cornea specific growth rates ranged from 0.8 ± 0.2 to 1.4 ± 0.5% day?1 with lowest growth rates at higher seaweed stocking density (8 g fw L?1). Nutrient removal was positively correlated with the cultivation densities in the system. TAN removal efficiency increased from 61 to 88.5% with increasing seaweed stocking density. Changes in the chemical composition of the seaweed were analysed and correlated with nutrient enrichment from shrimp effluent. The red seaweed H. cornea can be cultured and used to remove nutrients from shrimp effluents in an integrated multi‐trophic aquaculture system applied to a closed recirculation system. Recirculation through seaweed biofilters in land‐based intensive aquaculture farms can also be a tool to increase recirculation practices and establish full recirculation aquaculture systems (RAS) with all their known associated benefits.  相似文献   

20.
The influence of three different initial stocking densities (low stocking density [LSD] = 1.5 kg/m2; medium stocking density [MSD] = 3 kg/m2; and high stocking density [HSD] = 6 kg/m2) in flow‐through systems was evaluated on growth and welfare in beluga, Huso huso, and ship sturgeon, Acipenser nudiventris, juveniles for 2 mo. Fish were kept in 18 concrete square tanks (2.0 × 1.0 × 1.2 m3) at 22.3 ± 0.4 C and under a natural photoperiod. In both species, the growth performance in terms of final body weight, weight gain, specific growth rate, and feed intake significantly decreased with increasing stocking density (P < 0.05). In both species, the percent of neutrophils increased after 60 d of trial (P < 0.05). Moreover, hematocrit and white blood cell counts increased after 60 d of trial in ship sturgeon (P < 0.05). Plasma immunoglobulin significantly decreased with increasing stocking density in both species. Plasma insulin‐like growth factor I decreased with increasing stocking density in beluga; however, it was not affected in ship sturgeon. Overall, these results showed that the LSD group in both species demonstrated more homogeneous and higher growth rate than the MSD and HSD groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号