首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
An 8‐week feeding trial was conducted to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity and lipid metabolites in juvenile Pacific white shrimp. Six isonitrogenous and isolipidic diets were formulated to supply 0, 1,000, 2,000, 4,000, 6,000, 10,000 mg/kg choline chloride, and dietary choline levels were analysed to be 1,317 (basal diet), 1,721, 2,336, 3,294, 5,421 and 9,495 mg/kg, respectively. Dietary choline levels significantly influenced percent weight gain (PWG) and protein efficiency ratio (PER), with the highest PWG was observed in shrimp fed the 5,421 mg/kg choline diet. However, there were no significant differences in proximate composition of whole body and muscle. Shrimp fed the diet containing 2,336 mg/kg choline had lower HDL and LDL in haemolymph than those fed the basal diet (1,317 mg/kg diet). Dietary choline prevented the accumulation of free radicals and improved antioxidant capacity by increasing catalase activity and reducing malondialdehyde content. Based on broken‐line regression and quadratic regression analysis between PWG against dietary choline levels, the optimal choline requirements were estimated to be 3,254.1 and 6,488.3 mg/kg for juvenile L. vannamei, respectively.  相似文献   

2.
An 8‐week feeding trial was conducted to investigate the effect of dietary selenium (Se) on feed intake, weight gain and antioxidant activity in juvenile grass carp (11.2 ± 0.03 g). Six Se levels (0.13, 0.41, 0.56, 1.12, 2.18 and 4.31 mg/kg) of semi‐purified diets were assayed in triplicate. The maximum weight gain, specific growth rate and feed intake were obtained in fish fed with 1.12 mg Se/kg diet. Hepatic glutathione peroxidase activity was markedly increased when dietary Se ≤1.12 mg/kg diet and reached a plateau when dietary Se ≥1.12 mg/kg diet. Hepatic superoxide dismutase and serum catalase activities in juvenile grass carp fed with 0.56, 1.12 and 2.18 mg Se/kg diets were all significantly higher than those in the other groups. The malondialdehyde content in liver and serum was firstly decreased and then increased with increasing dietary Se content, and the lowest content was observed in fish fed with 1.12 mg Se/kg diet. With the increase in Se level, the activities of serum alanine aminotransferase and aspartate aminotransferase were reduced. In addition, serum alkaline phosphatase activity and albumin content were highest in fish fed with 1.12 mg Se/kg diet. This study indicated that both the Se deficiency and excess of Se caused negative effect on the oxidative stress in juvenile grass carp and suggested that the health‐giving concentration of dietary inorganic Se was 1.12 mg/kg diet. Moreover, based on the broken‐line regression analysis of weight gain, the optimal concentration of dietary inorganic Se was 0.83 mg/kg for juvenile grass carp.  相似文献   

3.
4.
A 16‐week feeding trial was conducted to determine the dietary pantothenic acid requirement of fingerling Channa punctatus. Six casein–gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with graded levels of pantothenic acid (0, 10, 20, 30, 40 and 50 mg/kg diet) were fed to triplicate groups of fish (6.2 ± 0.71 cm; 4.26 ± 0.37 g) near to apparent satiation. The growth evaluation in terms of absolute weight gain (AWG), feed conversion ratio (FCR) and protein retention efficiency (PRE) indicated the best performance (p < .05) in fish fed diet containing 30 mg/kg pantothenic acid. Highest haemoglobin, haematocrit and RBCs counts were also obtained in fish fed diet with 30 mg/kg pantothenic acid. Mean cell haemoglobin and mean cell volume were found to be lowest in fish fed pantothenic acid‐free diet indicating the anaemia in this group of fish. Superoxidase dismutase and catalase activities of liver tissue were found to improve (p < .05) with the increasing levels of dietary pantothenic acid from 0 to 30 mg/kg. However, liver pantothenic acid concentration responded positively with the increasing levels of pantothenic acid up to 40 mg/kg diet and then stagnation in liver pantothenic acid concentration with the further inclusion of pantothenic acid was recorded. Second‐degree polynomial regression analysis of AWG, FCR and PRE exhibited the pantothenic acid requirement at 36.4, 32.8 and 34.7 mg/kg diet, respectively. Data generated during this study would be useful in formulating pantothenic acid‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

5.
为研究饲料中添加不同含量叔丁基氢醌(TBHQ)对大菱鲆幼鱼生长、血液生化指标、非特异性免疫及肠道组织结构的影响,在饲料中分别添加0、150、450和750 mg/kg的叔丁基氢醌,配制成4种等氮等脂实验饲料,选择初始体质量(8.31±0.04)g大菱鲆幼鱼,随机分成4组,每组6个重复,每个重复30尾,采用饱饲投喂方式,每天投喂2次,饲养周期为12 W。结果显示,与对照组相比,450和750 mg/kg TBHQ添加组大菱鲆的增重率、特定生长率均显著降低;450 mg/kg TBHQ添加组实验鱼血清碱性磷酸酶活力显著高于150 mg/kg TBHQ添加组;150 mg/kg TBHQ添加组实验鱼血清白蛋白和高密度脂蛋白含量显著低于对照组和450 mg/kg添加组;450 mg/kg TBHQ添加组鱼的血清肌酐含量显著高于对照组;150 mg/kg TBHQ添加组鱼的血清总蛋白含量显著低于对照组;饲料中添加高剂量的TBHQ能够显著升高血清中CAT、溶菌酶活力(450和750 mg/kg)及头肾吞噬细胞呼吸爆发活力(750 mg/kg);饲料中TBHQ添加量为750 mg/kg时,血清SOD活力显著降低;与对照组相比,饲料中添加450和750 mg/kg TBHQ能够显著降低中肠肠道绒毛长度与肠道直径比,而添加750 mg/kg TBHQ时中肠肠道做绒毛长度与肠道直径的比值显著降低。研究表明,饲料中TBHQ的添加量为150 mg/kg时,对大菱鲆幼鱼生长及生理生化指标无显著影响,而饲料中添加450 mg/kg以上的TBHQ则会对大菱鲆幼鱼的生长及生理状况产生一定负面作用。  相似文献   

6.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

7.
Dietary thiamin requirement of fingerling Channa punctatus was quantified by feeding casein/gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with seven graded levels of thiamin (0, 0.5, 1, 1.5, 2, 2.5 and 5 mg/kg diet) to triplicate groups of fish (6.9 ± 0.93 cm; 4.91 ± 0.62 g) for 16 weeks. Fish fed diet with 2.5 mg/kg thiamin reflected highest absolute weight gain (AWG), protein gain (PG), RNA/DNA ratio and lowest feed conversion ratio. Similarly, highest liver thiamin concentration was also recorded in fish fed 2.5 mg/kg thiamin diet. Hepatic thiobarbituric acid reactive substance (TBARS) concentration responded negatively with increasing concentrations of dietary thiamin up to 2.5 mg/kg, whereas superoxide dismutase and catalase activities were found to improve with the increasing levels of dietary thiamin from 0 to 2.5 mg/kg. Transketolase activity also improved as the thiamin concentrations increased up to 2.5 mg/kg. Broken‐line regression analysis of AWG, PG, RNA/DNA ratio, liver thiamin concentrations, transketolase and TBARS activities exhibited the thiamin requirement in the range of 2.34–2.59 mg/kg diet. Data generated during this study would be useful in formulating thiamin‐balanced feeds for the intensive culture of this fish.  相似文献   

8.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

9.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

10.
This study was conducted to investigate effects of and interactions between nanoselenium (NanoSe) and nanomagnesium (NanoMg) on growth, humoral immunity, serum biochemistry and antioxidant capacity of juvenile Asian seabass Lates calcarifer reared in freshwater. Four groups of fish with an average weight of 32.78 ± 2.23 g were fed one of the experimental diets for 6 weeks: (a) control (basal diet); (b) NanoSe (basal diet + 4 mg NanoSe/kg diet); (c) NanoMg (basal diet + 500 mg NanoMg/kg diet); and (d) combination (basal diet + 4 mg NanoSe/kg diet + 500 mg NanoMg/kg diet). Fish fed with NanoSe‐supplemented diets (NanoSe and combination) showed higher weight gain, specific growth rate and feed intake. The combination of NanoSe and NanoMg enhanced the immune response. Also, fish fed on combination diet showed higher serum alanine aminotransferase and aspartate transaminase levels but lower glucose concentration. The activities of liver superoxide dismutase, glutathione peroxidase and catalase were not different among all groups, but liver malondialdehyde level was lower in fish fed diets supplemented with NanoSe and/or NanoMg. It could be concluded that NanoSe improved growth performance; the combination of both NanoSe and NanoMg enhanced humoral immunity; and NanoSe and/or NanoMg improved antioxidant capacity in Asian seabass.  相似文献   

11.
A 56‐day experiment was carried out to investigate the effects of dietary vitamin C and vitamin E on the growth, antioxidant status and digestive enzyme activities of discus fish (Symphysodon haraldi; initial body weight: 7.96 ± 0.61 g and body length: 5.45 ± 0.65 cm). Animals were fed with 13 different diets including one control diet and 12 treatment diets containing four levels of vitamin C (magnesium‐L‐ascorbyl‐2‐phosphate; 40, 80, 120 and 160 mg/kg) crossed with three levels of vitamin E (DL‐α‐tocopheryl acetate; 40, 80 and 120 mg/kg). The results showed that the fish fed diets containing additional vitamin C (40 mg/kg) and vitamin E (80 mg/kg) showed higher specific growth rate, length growth rate, total antioxidant capacity and protease activity but had lower feed conversion ratio and total superoxide dismutase activity than those fed the control diet. Collectively, these findings suggest that the inclusion of additional 40 mg/kg of vitamin C and 80 mg/kg of vitamin E in the basal diet could have beneficial effect on the growth, antioxidant defence and digestion of S. haraldi.  相似文献   

12.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

13.
An 8‐week feeding trial was conducted to determine the requirement of protein for large‐size grouper Epinephelus coioides (initial body weight: 275.07 ± 1.56 g). Six iso‐lipidic (124 g/kg) diets were formulated containing graded levels of protein (350, 400, 450, 500, 550 and 600 g/kg). Grouper was hand‐fed twice daily to apparent satiation with triplicate. The results showed that significantly high weight gain, specific growth rate and significantly low feed conversion ratio were observed in fish fed 450 g/kg protein group. High‐protein level diets significantly increased protein content and significantly decreased lipid content of fish body and muscle. Total protein and cholesterol content in serum of 600 g/kg group were significantly higher than those of 350 g/kg group. However, serum glucose and triglyceride contents of fish fed low‐protein diets were significantly higher than those of fish fed high‐protein diets. Meanwhile, liver glutamic‐pyruvic transaminase and glutamic‐oxaloacetic transaminase in high‐protein diet groups were significantly higher than those of low‐protein diet groups. The intestinal protease activity in high‐protein diet groups was significantly higher that of low‐protein diet groups, but lipase and amylase showed opposite trend. With the increasing of dietary protein level, the activities of alkaline phosphatase, superoxide dismutase and lysozyme in liver of grouper increased significantly compared with 350 g/kg group, while the activities of acid phosphatase decreased significantly. With specific growth rate as the evaluation index, the optimum dietary protein level of large‐size grouper Epinephelus coioides was 438.39 g/kg by fitting the broken‐line regression analysis.  相似文献   

14.
The effects of dietary administration of inorganic zinc (zinc sulphate, ZnSO4) and nano zinc (zinc oxide nanoparticles, ZnO‐NP) were evaluated in rohu, Labeo rohita fingerlings. Fish were fed with a basal diet (Control) supplemented with ZnSO4 (T1, T2 and T3) and ZnO‐NP (T4, T5 and T6) at 10, 20 and 30 mg/kg, respectively, for a duration of 45 days. The results revealed that fish fed diet containing 20 mg ZnO‐NP per kg (T5) had the highest weight gain and specific growth rate (SGR, % per day), which was significantly different (p < .05) from the other experimental diets. Significantly (p < .05), higher activities of the digestive and metabolic enzymes were recorded in the fish fed ZnO‐NP containing diets as compared to the diets containing inorganic Zn or control diet. The maximum serum glucose and protein levels were noted in fish reared on diet T5. Both SGOT and SGPT activities were significantly increased in fish fed Zn‐supplemented diets (T1 to T6), as compared to the control group. Similarly, innate immune parameters were improved with feeding Zn incorporated diets. The highest phagocytic (40.74 ± 0.65%) and respiratory burst (0.33 ± 0.001, OD 630nm) activities were recorded in the fish fed diet containing ZnO‐NPs at 20 mg/kg (T5). The maximum superoxide production and serum peroxidase activity were detected in the fish fed T5 and T6 diets. Overall, results indicated that short‐duration feeding (≤45 days) of dietary ZnO‐NP (20 mg/kg) improved growth, enzyme activity, serum biochemical parameters and immune function in rohu fingerlings.  相似文献   

15.
The current study was conducted to evaluate the effect of dietary soy isoflavones (SI) on growth performance, antioxidant status, immune response and resistance to Aeromonas hydrophila in juvenile grass carp (Ctenopharyngodon idella). Six diets were formulated to contain 0 (control), 10, 50, 100, 500 or 1,000 mg SI per kg feed. Each diet was randomly allotted to triplicate net cages, and each net cage was stocked with 30 fish. The fish were fed one of the experimental diets to satiation twice per day for 60 days. The results showed that the WGR and DGC of the 500 mg/kg SI‐supplemented group were significantly higher than those of the non‐SI‐supplemented group (p < .05). Serum LZM and IgM activities in the SI‐supplemented groups were improved compared to the control group. SOD and GSH‐Px levels of fish fed the diet containing 500 mg/kg SI were significantly enhanced compared to those of fish fed the control diet (p < .05). Additionally, serum CAT, GSH‐Px and AKP activities in 50, 100 and 500 mg/kg SI‐supplemented groups were significantly higher than that in the control group (p < .05). The expression of most immune‐related genes (including IFN‐γ2, TNF‐α, M‐CSF2, IL‐6, IL‐12p40 and IL‐4) was significantly affected by dietary supplementation of SI. The group fed with 500 mg/kg SI had the highest 7‐day cumulative survival rate after challenge test (p < .05). The current results revealed that dietary inclusion of SI could improve the immune response and resistance against A. hydrophila and the supplementation level is suggested to be 500 mg/kg diet.  相似文献   

16.
Vitamin C is an essential micronutrient for normal physiological and immune functions of fish. However, its requirements and effects in Chu's croaker (Nibea coibor) are currently unknown. A 56‐day feeding trial was conducted to evaluate the optimal dietary vitamin C requirements based on its effects on growth performance, body composition and biochemical parameters in juvenile Chu's croaker (14.17 ± 0.1 g). Six isoproteic (450 g/kg crude protein) and isolipidic (100 g/kg crude lipid) diets were formulated to contain 2.24 (basal diet), 39.03, 85.01, 171.16, 356.49 and 715.46 mg/kg of vitamin C. The results showed that fish fed on 171.16 mg/kg vitamin C diet had the highest growth performance and feed utilization. Fish fed on the basal diet had higher malondialdehyde (MDA) content and lower activities of antioxidant enzymes in the serum and liver as compared with those fed on vitamin C diets. Polynomial analysis indicated that the optimal dietary vitamin C requirements of juvenile Chu's croaker were 102.28, 98.21, 150.26, 165.38, 71.46, 176.19, 84.84 and 103.78 mg/kg based on weight gain, specific growth rate, liver storage, muscle storage, liver MDA content, liver alanine aminotransferase activity, liver alkaline phosphatase activity and liver superoxide dismutase activity, respectively. We recommend an inclusion level in the range of 71.46–150.26 mg/kg vitamin C in the diets of juvenile Chu's croaker for optimum growth performance, liver function, antioxidant capacity and innate immunity functions.  相似文献   

17.
18.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

19.
A 10‐week growth trial was run to evaluate effects of myo‐inositol (MI) on growth performance, haematological parameters, antioxidative capacity and salinity stress tolerance of Litopenaeus vannamei. Six practical diets supplemented with graded levels of MI (designated as MI0, MI600, MI1200, MI2400, MI 3600 and MI4800 for 448.8, 974.2, 1568.0, 2810.6, 3835.5 and 4893.6 mg/kg diet, respectively) were fed to six replicate groups of L. vannamei (mean initial body weight 0.63 ± 0.00 g). The results showed that significant increment of growth performance was observed in shrimp fed MI600 diet than those fed MI1200 diet. Lipid concentration in whole body of the shrimp fed MI600 diet was significantly increased. Shrimp fed MI0 diet had lower total protein (TP) as compared to shrimp fed the MI‐supplemented diets (except MI4800 diet). In general, lower activities of antioxidant enzymes and higher malondialdehyde (MDA) content in haemolymph and hepatopancreas were recorded in shrimp fed MI0 diet, compared to those fed the MI‐supplemented diets. Reduced survival after 7‐h salinity stress was present in shrimp fed MI0 diet as compared to those fed MI4800 diet. Dietary MI requirement for glutathione peroxidase activity of L. vannamei was 2705 mg/kg diet.  相似文献   

20.
This 45‐day work aimed to determine the response of juvenile pacu (Piaractus mesopotamicus) to balanced digestible protein (BDP) and to use these responses to determine whether the optimum economic levels of BDP would differ depending on the form in which the fish is sold. Six isoenergetic diets containing 163, 201, 238, 272, 315 and 348 g/kg BDP (dry‐matter basis) were prepared through the serial dilutions of a high‐protein diet with the low‐protein diet. Fish (initial average body weight, 10.82 ± 0.14 g) were fed with respective experimental diets three times a day until apparent satiation. The optimum biological level of BDP was calculated as 326 g/kg (dry‐matter basis) by the quadratic regression model for maximum body weight gain of juvenile pacu. To maximize economic returns (US$/kg) for different end products, the optimum economic levels of BDP were calculated as 311, 317 and 319 g/kg (dry‐matter basis) by an economic model for whole‐body, eviscerated and sliced juvenile pacu respectively. This finding revealed that obtaining maximum biological performance of fish in the case of high feed costs or low prices of the end product in consumer market would substantially reduce the economic returns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号