首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
针对遥感与抽样相结合的农作物种植面积估算方法中,子总体的作物种植面积估算需要新的抽样体系设计和样本野外调查等繁重工作,缺少基于总体下对子总体的作物种植面积估算的方法,以沙湾县、玛纳斯县和呼图壁县为总研究区,提出了基于遥感和PPS抽样相结合的总体抽样下子总体追加抽样设计的子总体研究区呼图壁县棉花种植面积估算方法,并以新疆建设兵团统计局公布数据为真值对其估算结果进行对比分析。结果显示,基于总体抽样下子总体追加抽样设计后,子总体研究区估计量的变异系数为0.023 3,远低于0.05,而追加抽样设计前变异系数为0.122 3,说明样本在该方法下的代表性得到极大提高。以新疆建设兵团统计局公布数据为真值进行对比发现,子总体研究区棉花种植面积提取精度达到94.2%,能够有效提取子总体中的棉花种植面积,同时避免了重新建立子总体研究区抽样体系所需要的人力、物力、财力等资源的消耗。  相似文献   

2.
针对传统抽样调查工作面临着野外调查工作量大、资料时效性较低且难以满足人们对数据现势性的高要求等一系列缺点,以新疆棉花种植主棉区沙湾县、玛纳斯县、呼图壁县为研究区,结合遥感技术提出了一种基于PPS分层抽样的空间抽样设计方案,并将该方案用于研究区棉花种植面积的估算。结果显示,PPS抽样与分层抽样结合后极大地提高了PPS抽样反推总体的方法优势。分配样本时分别采用按每层辅助变量之和的期望的算术平方根与该层待抽样单位总数之积、每层辅助变量之和进行比例分配的2种分配方法,其对应的反推总体的估计量变异系数分别为0.008、0.009,相对误差分别为0.016、0.017,分层后的样本变异程度极低,为反推结果的高精度打下了基础。2种样本分配方式的棉花种植面积提取精度均高于94%。该方法不仅精度高,而且在实际操作中简单方便。  相似文献   

3.
HJ-1号卫星数据与统计抽样相结合的冬小麦区域面积估算   总被引:18,自引:0,他引:18  
【目的】探讨利用HJ-1号卫星遥感数据进行冬小麦种植面积测量的可行性,并进一步结合统计抽样的方法,估算区域冬小麦种植面积,解决单靠遥感进行冬小麦种植面积测量时多期影像信息误差积累和生长差异性影响的问题。【方法】以北京市为研究区,采用多时相HJ-1号卫星遥感数据与分层抽样相结合的方法进行冬小麦种植面积测量:利用多时相HJ-1号卫星遥感数据获取冬小麦遥感识别结果(56506.67hm2),结合耕地地块数据建立入样总体,以耕地地块内冬小麦遥感识别面积作为分层标志进行分层随机抽样,反推得到北京市冬小麦面积总量(59680hm2)。【结果】多时相冬小麦遥感识别结果MAE为0.17,bias为-0.05,抽样反推区域总量面积提高了约5%,在一定程度上纠正了HJ-1号卫星多期遥感影像提取冬小麦区域面积偏低的问题。【结论】本文方法能够准确测量出区域冬小麦总量面积,具有较强的应用性和普适性,为采用HJ-1号卫星遥感数据进行农作物种植面积遥感测量进行了先期的方法探讨,深化了该遥感数据源的应用。  相似文献   

4.
基于高分1号卫星数据的农作物面积遥感测量   总被引:1,自引:0,他引:1  
针对传统农作物面积统计方法探测周期长、时效性差、难以保证信息准确度等问题,以高分1号(GF-1)卫星遥感影像为数据基础,提出一种将遥感技术与统计学方法相结合的农作物面积测量方法。首先,基于物候期影像进行作物分类,提取目标农作物空间分布信息;然后,构建含有目标作物的抽样总体,进行样本的分层随机抽选;接着,采集光谱信息点,进行实地调查,获取准确的样方调查结果;最后,结合遥感识别结果,采用分层比估计方法反推出测区目标作物面积,计算变异系数值,估计总体测量结果的推算精度。根据此方法估算出辽宁省义县2015年玉米种植面积为95 746.1 hm2,与实际测量结果较为相近,说明此方法是可行的。  相似文献   

5.
【目的 】四川气候多云雨天气,通过全覆盖遥感影像解译来掌握主要农作物种植面积、分布非常困难,采用野外实地抽样调查与遥感影像分类相结合是有效可行的方法。【方法 】文章以遥感和GIS为手段,充分利用“两区”划定耕地基础数据,采用两级空间分层抽样方法和实验最优空间抽样体系的设计来建立长期的野外调查样方。采用空间分析技术、传统抽样方法相结合的两级空间分层抽样技术,在不同研究区内,以误差、变异系数和抽样个数为抽样效率的评价指标,实验和确定不同层的样方大小、抽样方法和抽样比例的最优抽样体系;通过确定的最优抽样体系,反推2022年研究区油菜和小麦面积,验证其精度。【结果 】抽样体系中样方大小为0.5 km×0.5 km、抽样方法为分层顺序抽样方法或分层麦士比抽样方法、抽样个数为25个左右,误差和变异系数较小,为最优抽样体系。【结论 】经验证,用最优抽样体系反推的2022年油菜小麦面积精度均在93%以上,建立了适用于四川省不同区域的最优抽样体系,布设了长久的野外调查样方。  相似文献   

6.
基于信息熵概念和最大似然分类后验概率设计了信息熵和信息量指标作为冬小麦遥感抽样的分层标志,与传统面积规模指标进行对比分析,验证了该方法的有效性。试验结果表明,信息熵和信息量指标相较传统面积规模指标,在不同尺寸抽样单元下,能够有效提高抽样反推的估算精度。在种植结构单一、地块规整的汤阴县,上述2个指标在(80 m×80 m)~(400 m×400 m)抽样单元下,均能不同程度地提高反推结果的相对精度;在种植结构复杂、地块较破碎的中牟,上述2个指标能够在192 m×192 m以下抽样单元下有效提高估算精度。  相似文献   

7.
【目的】在遥感与空间抽样相结合进行农作物面积调查中,由于传统的基于面积规模的分层指标设计中缺失对遥感识别结果分类误差的表达,一定程度上影响抽样效率,因此提出基于遥感分类误差校正面积的分层标志--误差校正面积,以期改进农作物种植面积抽样调查效率。【方法】选取北京市通州、大兴区为研究区域,以冬小麦为例,选择16 m分辨率GF-1号影像(获取时间2015年4月4日)为遥感数据源,进行抽样方案的设计。设计与计算高效分层指标,先从像元尺度判断像元相应的错入、错出方向并计算其对应的误差面积,再在抽样单元尺度上统计所有像元的误差面积,将其用于面积规模的校正,校正后结果即为所提出的分层抽样指标--误差校正面积(Scorrect);构建边长为90-300 m的规则正方形格网为抽样框,并完成设置分层层数、确定分层界限方法、样本量分配方式、总体估计方式等空间抽样方案设计。基于设计的抽样方案进行试验,进行研究区冬小麦的区域总量面积反推。以误差校正面积指标和传统分层指标--面积规模为分层指标,进行多次种植面积抽样推断后进行指标有效性分析和精度评价,通过对相关性、典型区域分类错误像元误差分布、总体方差、平均相对误差 、CV值等方面的对比分析,验证所提出指标的可行性与优势。【结果】(1)通过结合原始影像、目标真值分布、遥感分类结果图、分类错误像元误差分布图的对比分析,从像元尺度验证了该指标能校正分类错误像元,从而改善分类结果;在试验抽样框下,误差校正面积的相关系数相较于面积规模略有提高,且数值大于0.7,可保证其与真值较高且稳定的相关性。验证了该指标作为分层指标的有效性。(2)在试验抽样框下,使用误差校正面积作为分层指标进行多次外推面积得到的总体方差在1.70×1013-2.41×1013,面积规模的总体方差为2.05×1013-3.11×1013,误差校正面积在推断稳定性方面高于面积规模;采用误差校正面积作为分层指标得到的 为4.21%-5.00%,面积规模的 为4.87%-5.98%,误差校正面积指标能稳定提高近1%的精度;选择误差校正面积指标作为分层指标进行抽样估算结果的CV值在试验抽样框下始终低于面积规模的推断结果,能稳定减少近0.8%。因此误差校正面积指标在与目标真值相关性、抽样精度、推断稳定性等方面均优于传统面积规模分层指标。【结论】误差校正面积指标可在一定程度上提高种植面积抽样调查精度,保证推断的稳定性,验证了遥感识别误差校正面积指标作为分层标志的有效性,能够提高抽样效率,其相较面积规模指标更具有优势。  相似文献   

8.
基于多时相GF-1遥感影像的作物分类提取   总被引:1,自引:0,他引:1  
为了提高遥感影像数据对作物分类提取的精度,更多地反映作物的空间分布结构和物候差异,以黑龙江农垦赵光农场为研究对象,提出一种基于分区与决策树分层分类相结合的作物遥感分类方法,利用2014年高分一号卫星(GF-1)WFV遥感影像数据(4景)开展主要作物的识别分类提取。首先,结合实地调查与影像光谱特征信息的总体分布,将研究区分割成3个子区域(西南区、北部区和东南区);其次,基于多时相遥感影像序列,分析主要作物的反射光谱和植被指数的时序变化特征,构建基于决策树分层分类的主要作物遥感分类模型,成功提取了赵光农场主要作物的空间种植信息。结果表明,2种分类方法的精度都很高,总体精度均在97.00%以上,Kappa系数均在0.900 0以上。分区分类更优于整幅图像非分区分类,总体精度达到98.10%,Kappa系数达到0.960 7;非分区分类总体精度为97.50%,Kappa系数为0.948 3。研究表明,基于分区与决策树分类法相结合的作物分类结果精度,明显优于不使用分区分类的结果。由分区与决策树分层相结合的分类方法能够有效提高黑龙江垦区主要种植作物分类的准确性和精度。  相似文献   

9.
基于无人机可见光遥感的棉花面积信息提取   总被引:2,自引:0,他引:2  
【目的】针对传统大区域棉花种植信息提取方法相对落后的问题,运用面向对象的影像分析方法,对无人机遥感试验获取的可见光影像进行棉花种植信息的提取。【方法】选用双子星MyFlyDream MTD固定翼无人机搭载佳能EF-M 18-55相机,获取新疆建设兵团第八师135团的可见光影像,借助eCognition软件平台,运用面向对象的方法对研究区内棉花种植信息进行提取试验。【结果】目视解译提取的棉花种植面积为0.35 km2,面向对象提取的棉花种植面积为0.33 km2,分类结果精度为94.29%,误差系数为5.71%,可以有效地提取研究区域棉花种植信息。【结论】面向对象的分类方法相比于传统的基于像素的分类方法提取精度更高,更加接近于目视解译的提取结果。  相似文献   

10.
湖南省中稻种植面积遥感监测方法研究   总被引:1,自引:0,他引:1  
综合考虑大面积水稻种植区耕地地块破碎,种植结构复杂,插花、套种、错季种植现象明显,影像解译、分类难度大等特点,充分利用国产卫星GF-1数据,以湖南省中稻种植为例,通过精确作物识别与混合像元处理,实现像元尺度的中稻识别;结合国土资源土地调查数据,统计中稻的像元数量与丰度(种植面积比)水平,并扣除耕地图斑内的非耕地成份,建立中稻种植面积估算模型,最终得到精确到县级报告单元的种植面积估算结果。结果表明:通过遥感数据估算面积和地面样方调查计算结果的可决系数达到0.869 6,说明遥感监测方法在湖南省中稻种植面积估算中行之有效。GF-1卫星遥感数据的空间分辨率、波段覆盖范围、影像覆盖能力等能满足大面积农作物种植面积监测要求,基于抽样技术的地面调查与遥感影像分类相结合提取作物种植面积信息的方法可用于省级、区域级的粮食种植面积遥感监测。  相似文献   

11.
棉花遥感识别最佳时相的选择是棉花遥感监测系统快速有效建立和正常运行的关键性、基础性环节之一,它必须兼顾作物遥感识别和监测系统中各模型对遥感时相选择的要求,综合考虑多方面的影响因素.从新疆三大棉区棉花和其它主要农作物的光谱差异和物候历的差异,同时参考太阳高度和土壤光谱噪声的变化以及棉花面积的代表性等方面,初步确定新疆三大棉区的棉花遥感识别最佳时相期,同时提出了最佳时相选择时还有待试验和解决的问题,以供进一步研究参考.  相似文献   

12.
新疆渭-库绿洲棉花种植面积遥感监测研究   总被引:1,自引:0,他引:1  
渭干河-库车河三角洲绿洲是新疆的棉花主要生产区域之一,准确掌握该区种棉面积及空间分布情况,对新疆棉田的优化布局和棉花产业的可持续发展具有重要意义。本文利用TM遥感影像及野外调查数据,建立研究区典型地物类型解译标志,通过遥感分类确定了渭-库绿洲种棉区域范围。结果显示,研究区棉花主要集中分布于西南和南边沿塔里木河北边的新开垦地,零星分部于中部和北部。遥感监测得到的研究区棉花总面积为155210 hm2,2011年统计面积为147493 hm2,棉花面积信息提取总精度为94.77%;库车县、沙雅县、新和县的棉花面积遥感提取精度分别为92.16%、97.83%和93.19%。研究表明,利用TM遥感影像并结合野外调查是区域尺度快速提取棉花种植面积信息的有效手段。  相似文献   

13.
棉花种植方式的优化选择   总被引:1,自引:0,他引:1  
根据新疆生产建设兵团29团大面积推广应用农业高新技术的调查,特别是棉花大面积不同品种、不同种植、灌溉方式的产量结构和实际产量的调查,提出了棉花种植方式的优化选择问题,即采用膜下滴灌技术,采用68cm 8cm的宽窄行、适宜机采棉的株行距,选用结铃性强、适于机械采收的棉花品种是目前棉花较好的配置选择。  相似文献   

14.
北疆棉花叶绿素密度的高光谱估算研究   总被引:1,自引:0,他引:1  
利用非成像高光谱仪,对4水平种植密度下的2个北疆棉花品种在5个关键生育时期进行冠层光谱测定,分析棉花反射光谱及微分光谱生育期的变化规律,并对棉花冠层叶绿素密度(CH.D)与光谱数据进行回归分析,结果表明,近红外729 nm波段处一阶微分光谱数值与CH.D高度相关(r=0.937 2**,n=20),用此波段建立的CH.D估算模型,精度达84.3;,标准差为0.234g/m2,RMSE=0.156 9.研究表明,可以用高光谱数据对新疆棉花冠层CH.D进行遥感估算.  相似文献   

15.
新疆生产建设兵团耕地土壤养分现状及演变规律   总被引:3,自引:0,他引:3  
为了调查掌握新疆生产建设兵团耕地土壤养分变化特征,探索提高耕地质量的方法和机制.运用土壤养分分级标准和数理统计方法对2005-2011年国家测土配方施肥财政专项补贴项目土壤理化数据进行统计分析.结果表明,新疆生产建设兵团13个农业师22个主要耕作土壤类型耕层土壤肥力水平表现为有机质3级、全氮2级、碱解氮3级、有效磷4级、速效钾3级、pH值中偏碱性.与第二次土壤普查数据比较,有机质、全氮、速效钾呈下降趋势,其中有机质下降幅度较小,速效钾下降幅度较大(31.66%);碱解氮、有效磷呈上升趋势,其中有效磷提高幅度较大(172.25%);pH值变化不大.根据兵团耕地土壤养分现状与演变特点,在今后农业生产中建议采取“调控氮素、稳定磷素、补充钾素”的施肥策略,同时全面实施秸秆还田和增施有机肥等培肥措施、科学有效地推进测土配方施肥技术,以达到土壤养分平衡发展,保证农业生产持续优质、高产、高效发展.  相似文献   

16.
不同布点方式的膜下滴灌棉田土壤水分的空间变异研究   总被引:2,自引:0,他引:2  
以新疆生产建设兵团石河子国家农业科技园区的膜下滴灌棉田作为试验区,采用随机法布点方式和均匀布点方式,利用地统计学理论分析了棉花膜下滴灌条件下土壤含水率的空间变异规律。结果表明,随机采样布点方式优于均匀采样布点方式;膜下滴灌棉田不同采样方式下的0~20 cm层的变异性变化最大,其它层的变化较小;膜下滴灌棉田土壤含水率20~40 cm和40~60 cm层的空间变异强度属弱变异,60~80 cm和80~100 cm层的空间变异强度属弱变异及中等变异。  相似文献   

17.
AGB (aboveground fresh biomass) is one of the most important parameters of the crop condition monitored with remote sensing. Hyper spectrum remote sensing with the fine spectrum information becomes the efficient method estimating the vegetation AGB. The research was conducted in Xinjiang, the largest cotton planting region of China. The paper analyzed the correlation between the cotton AGB and reflective spectrum and the first derivative spectrum, and the variation coefficient of the waveband reflectance. According to the analysis above, all of 23 parameters, including the hyper spectrum reflectance, the first derivative spectrum parameters and normalization vegetation indexes, were established. And then the estimation models on cotton AGB of relaxing and compact canopy type were established and tested respectively. The tested results showed that Fgo1, [901,502], [901,629], [901,672] among the reflective spectral parameters and D525, D956, D1019, D1751 among the first derivative spectral parameters had the homogenous effect on different cotton canopy types, and the determination coefficients of the models above all arrive at the significant level of 0.99 confidence interval. At last, the tested results of the homogeneity models for different canopy types indicated the parameters of [901, 502], [901,629], [901,672] have more satisfying veracity than others, and the relative errors are as low as 17.0, 16.3 and 16.7% correspondingly; in contrast, the estimation veracity of the first derivative spectrum parameters of single waveband is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号