首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
【目的】脱落酸(ABA)作为一类逆境激素,在植物生长发育、生物胁迫和非生物胁迫中发挥着重要作用。脱落酸受体蛋白PYR/PYL/PCAR及SNF1相关的蛋白激酶(SnRK2)是介导脱落酸信号转导的重要调控因子。本研究通过预测脱落酸及其信号转导途径中关键基因在谷子白发病致病菌禾生指梗霉(Sclerospora graminicola)中的调控作用,为谷子内源脱落酸响应禾生指梗霉侵染的互作研究提供参考。【方法】通过对禾生指梗霉侵染的晋谷21号谷子进行转录组测序和脱落酸含量测定,基于谷子全基因组对脱落酸信号转导通路上的PYLSnRK2家族基因进行鉴定、分析,利用测定的转录组构建加权基因共表达网络(WGCNA),并与禾生指梗霉侵染引起的寄主内源脱落酸含量进行关联,预测脱落酸及其下游信号转导基因PYLSnRK2在谷子与禾生指梗霉互作调控中的关键核心基因;利用qRT-PCR技术对候选基因进行验证。【结果】谷子中存在禾本科中较为保守的PYLSnRK2家族基因各11个,且在PYLSnRK2家族基因的启动子上均预测到脱落酸响应元件。在禾生指梗霉侵染后,寄主内源脱落酸在第一、第二时期大量积累,含量显著高于对照组,分别为22.50和18.08 ng·mL-1,而在第三、第四和第五时期脱落酸含量下降,低于对照组。在基因共表达网络分析中,利用18 535个基因共构建了34个基因共表达模块。通过对脱落酸含量和PYLSnRK2家族基因的关联分析,预测到MEpaleturquoise和MEbrown模块为核心候选模块。利用GO功能富集和模块关键基因的挖掘共预测到1个PYL家族基因Seita.1G030500和2个SnRK2家族基因Seita.2G394500、Seita.3G03200,以及3个核心基因Seita.4G105600、Seita.6G218100和Seita.9G138400,共6个基因可能在脱落酸及其信号转导调控过程中参与谷子与禾生指梗霉的互作。对预测到的3个核心基因在水稻和拟南芥数据中进行比对,鉴定到Seita.4G105600为转导蛋白/WD40重复超家族蛋白、Seita.6G218100为WRKY57转录因子、Seita.9G138400为TIFY转录因子。qRT-PCR分析表明Seita.2G394500、Seita.4G105600和Seita.6G218100基因在谷子白发病早期表达均上调。【结论】谷子在受到禾生指梗霉侵染后脱落酸会在体内大量积累,预测到1个PYL家族基因、2个SnRK2家族基因、2个转录因子基因和1个WD40家族蛋白基因参与谷子内源脱落酸响应禾生指梗霉侵染过程。qRT-PCR结果表明1个SnRK2家族基因、1个WD40家族蛋白基因和1个WRKY57转录因子基因共3个基因可能在谷子脱落酸响应禾生指梗霉侵染过程中发挥重要作用。  相似文献   

2.
【目的】鉴定丝瓜果长和果径发育基因共表达模块并筛选关键调控基因,为后续丝瓜果形控制的分子机制研究提供理论依据。【方法】以丝瓜9个发育阶段(开花前2 d以及花后0、2、4、6、8、10、15和20 d)果实为研究材料,测定各阶段的果长和果径,利用WGCNA方法联合分析转录组与果长和果径数据,鉴定与果长和果径发育相关的共表达基因模块,筛选关键调控基因。【结果】利用WGCNA鉴定出14个共表达模块,与果长和果径显著相关(相关系数的绝对值=0.9)的共表达模块有2个,显著正相关的模块为Turquoise模块,显著负相关的模块为Lightpink4模块。KEGG富集分析发现,Turquoise模块显著富集在内吞作用和苯丙烷生物合成通路,与果实膨大、伸长调控密切相关,可作为研究丝瓜果长和果径的关键基因模块。根据Turquoise模块内基因的连接度以及功能注释,筛选出10个关键调控基因,包括木葡聚糖内转葡糖基酶/水解酶基因XTH23、肌动蛋白解聚因子基因ADF2、伴侣蛋白基因DnaJ10、扩展蛋白基因(EXPA1、EXPA4和EXLA5)、驱动蛋白基因Kinesin-13A、生长素反应基因SAUR2...  相似文献   

3.
苏博美利奴羊毛囊发育相关lncRNA与mRNA共表达网络的构建   总被引:1,自引:0,他引:1  
【目的】 随着高通量测序技术的发展和完善,海量的转录组测序数据随之涌现,基因网络的方法也越来越多被用于研究中;细毛羊毛囊发育受多个基因及lncRNA共同调控,单独研究某一分子并不足以发现其调控机制,本研究旨在构建毛囊发育相关lncRNA和mRNA的共表达网络,挖掘细毛羊毛囊发育的潜在候选基因。【方法】 以苏博美利奴羊胎龄65 d(D65)、85 d(D85)、105 d(D105)、135 d(D135)的胎儿以及出生后7 d(A7)、30 d(A30)的羔羊肩胛部皮肤组织,每个时期有3个生物学重复,共18个样本,进行转录组测序以获得6个不同发育时期的lncRNA与mRNA表达谱数据,筛选出相邻时期的差异表达lncRNA与mRNA,运用加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA)方法构建共表达模块,使用DAVID在线工具进行GO(gene ontology)和 KEGG pathway富集分析以找到与毛囊发育相关的模块,最后从目标模块筛选高连通度的lncRNA与mRNA使用Cytoscape软件进行网络可视化。【结果】 从表达谱数据中筛选得到9 070个差异表达的lncRNA与mRNA,运用WGCNA方法得到11个模块,使用DAVID富集分析发现honeydew1、paleturquoise、skyblue2模块中的基因富集在皮肤发育、毛囊发育、毛囊形态发生、Wnt信号通路负调控、细胞粘附等生物过程,以及Wnt信号通路、TGF-β信号通路、Hedgehog信号通路、紧密连接、MAPK信号通路、ECM-受体相互作用等毛囊发育相关的信号通路,并筛选这3个模块中连通度高的lncRNA和mRNA构建了子网络,得到包括TGFB2CTSBSFNSPINT1FAM83GGSDMAMPZL3VIMCRABP1在内的毛囊发育相关基因,预测出ENSOART00000029117、TCONS_00489976、TCONS_00376759等24个lncRNA的可能靶基因。【结论】 首次运用WGCNA方法构建了苏博美利奴羊毛囊发育相关lncRNA与mRNA的共表达网络,鉴别出3个毛囊发育相关的共表达模块,发现多个与毛囊发育相关的潜在候选基因,并预测出24个lncRNA可能的靶基因。  相似文献   

4.
牛筋草对草甘膦的抗药性   总被引:3,自引:0,他引:3  
【目的】明确广东省果园或菜田田埂牛筋草(Eleusine indica)对草甘膦(glyphosate)的抗药性水平。【方法】利用整株测定法测定广东省广州市、惠州市、梅州市等地共7个点牛筋草对草甘膦的抗药性水平;采用紫外分光光度计测定抗性水平差异最大的2种牛筋草体内莽草酸含量的差异;采用光纤型双通道PAM-100测定抗性水平差异最大的2种牛筋草叶片各自叶绿素荧光参数的差异。【结果】惠州市杨村番石榴园(以下简称杨村)牛筋草对草甘膦的相对抗性指数达11.0,试验结果与田间实际反映情况相吻合;莽草酸含量测定结果表明,1 845 g a.i./hm2草甘膦处理后0-7 d,杨村牛筋草植株内部莽草酸含量较低,与对照相当,而广州番禺牛筋草植株内部积累了较多莽草酸,草甘膦处理后7 d,其莽草酸含量(623.1 µg•g FW-1)为杨村牛筋草(68.1 µg•g FW-1)的9.1倍;叶片荧光参数结果表明,杨村牛筋草Fv/Fm(PSⅡ最大原初光能转化效率)、α(PSII光响应曲线的初始斜率,代表了植物对光能的利用效率)值均高于广州番禺牛筋草,且值较稳定,而广州番禺牛筋草Fv/Fm和α在草甘膦处理5 d后均降为0。【结论】广东省部分果园或菜田田埂牛筋草对草甘膦已产生不同程度的抗药性,其中杨村牛筋草抗性最高;杨村牛筋草体内积累的莽草酸很低,植株光合系统基本未受到影响,光合作用正常进行。  相似文献   

5.
【目的】研究草甘膦胁迫下甘薯生理指标以及EPSPS和AKR 2个基因相对表达水平的变化,探讨甘薯耐草甘膦的分子机制。【方法】选取对草甘膦敏感性不同的2个甘薯品种N3589(草甘膦敏感型品种)和鄂薯11(草甘膦抗性品种)为试验材料,以喷施清水为对照,研究喷施草甘膦后甘薯莽草酸和脯氨酸含量及根系活力的变化,以及EPSPS和AKR基因的表达情况。【结果】与喷施清水对照相比,喷施草甘膦后,草甘膦敏感型甘薯品种N3589叶片的莽草酸含量显著升高,草甘膦抗性甘薯品种鄂薯11的莽草酸含量升高不显著;2个品种甘薯块根和叶片的脯氨酸含量均显著升高;植株的根系活力均显著降低。q-PCR结果显示,在喷施草甘膦后,草甘膦敏感型甘薯品种N3589的EPSPS基因显著下调,AKR基因先上调表达后下调表达;而草甘膦抗性甘薯品种鄂薯11的EPSPS基因显著上调,AKR基因先下调表达后上调表达。【结论】甘薯耐草甘膦主要是因为喷施草甘膦之后,EPSPS基因迅速上调表达,从而减少体内莽草酸累积对植株造成的伤害;与此同时,喷施草甘膦后AKR基因迅速上调表达,参与了甘薯体内草甘膦的代谢。  相似文献   

6.
【目的】叶片宽度和长度等叶形特性是决定植株形态,进而影响种植密度的重要农艺性状,通过转录组测序技术筛选并挖掘玉米叶片形态建成相关的代谢路径及调控基因,为深入认识叶片发育的分子机理和鉴定叶宽、叶长候选基因奠定基础。【方法】以极端窄叶自交系NL409和宽叶自交系WB665为材料,利用RNA-Seq技术鉴定7叶期第七片叶近基部的差异表达基因(DEGs),通过生物信息学分析,筛选与叶片发育密切相关的代谢通路,利用qRT-PCR验证不同激素路径叶形相关基因的表达结果,并结合启动子区域的序列差异挖掘叶形功能基因。【结果】分析对照(WB665)和样品(NL409)高通量测序结果,在叶宽形成关键部位共筛选出5 199个DEGs,其中,2 264(43.55%)个基因表达上调,2 935(56.45%)个基因下调表达,下调基因明显多于上调基因;GO功能富集分析表明,差异基因主要富集在细胞膜相关的细胞组分中,涉及代谢过程和细胞响应刺激;KEGG富集分析表明,差异基因主要参与到核糖体、植物激素信号转导、苯丙烷类代谢、乙醛酸和二羧酸代谢等过程,其中核糖体、植物激素信号转导、鞘脂类代谢下调表达基因较多的路径与叶片发育密切相关。核糖体路径富集到多个PRS(PRESSED FLOWER)基因,分析发现PRS13PFL2)可能在调控窄叶发育过程中发挥重要作用。鞘脂代谢路径富集的基因几乎全部下调表达,引起抑制叶片发育的AP1(APETALA1)类和MAPK(Mitogen-Activated Protein Kinase)类基因上调,以及促进叶片发育的LFYLEAFY)下调,与窄叶发育受抑制的表型一致。植物激素信号转导路径富集到的油菜素内酯(BR)响应基因和赤霉素(GA)代谢基因下调,细胞分裂素(CTK)和大部分生长素(Auxin)响应基因上调,与窄叶中DELLA蛋白基因上调表达,抑制GA并促进CTK基因表达的作用模式一致。通过qRT-PCR对18个叶片发育相关基因进行分析,结果表明,其表达趋势与转录组结果一致,分析发现BR相关的ROT3、Auxin相关的NAL7-likeAGO7-like以及TCP类转录因子CYC/TB1等基因与窄叶的形成密切相关。【结论】明确了一些与玉米叶片发育密切相关的代谢路径,还发现植物激素间的动态平衡对叶片发育有着重要影响,尤其是生长素与油菜素内酯、细胞分裂素与赤霉素之间的相互作用对调控叶片形态可能发挥重要作用。  相似文献   

7.
【目的】脱落酸(ABA)作为一类逆境激素,在植物生长发育、生物胁迫和非生物胁迫中发挥着重要作用。脱落酸受体蛋白PYR/PYL/PCAR及SNF1相关的蛋白激酶(SnRK2)是介导脱落酸信号转导的重要调控因子。本研究通过预测脱落酸及其信号转导途径中关键基因在谷子白发病致病菌禾生指梗霉(Sclerospora graminicola)中的调控作用,为谷子内源脱落酸响应禾生指梗霉侵染的互作研究提供参考。【方法】通过对禾生指梗霉侵染的晋谷21号谷子进行转录组测序和脱落酸含量测定,基于谷子全基因组对脱落酸信号转导通路上的PYL和SnRK2家族基因进行鉴定、分析,利用测定的转录组构建加权基因共表达网络(WGCNA),并与禾生指梗霉侵染引起的寄主内源脱落酸含量进行关联,预测脱落酸及其下游信号转导基因PYL和SnRK2在谷子与禾生指梗霉互作调控中的关键核心基因;利用qRT-PCR技术对候选基因进行验证。【结果】谷子中存在禾本科中较为保守的PYL和SnRK2家族基因各11个,且在PYL和SnRK2家族基因的启动子上均预测到脱落酸响应元件。在禾生指梗霉侵染后,寄主内源脱落酸在第一、第二时期大量积累,含量显著高于对照组,分别为22.50和18.08 ng·mL-1,而在第三、第四和第五时期脱落酸含量下降,低于对照组。在基因共表达网络分析中,利用18 535个基因共构建了34个基因共表达模块。通过对脱落酸含量和PYL、SnRK2家族基因的关联分析,预测到MEpaleturquoise和MEbrown模块为核心候选模块。利用GO功能富集和模块关键基因的挖掘共预测到1个PYL家族基因Seita.1G030500和2个SnRK2家族基因Seita.2G394500、Seita.3G03200,以及3个核心基因Seita.4G105600、Seita.6G218100和Seita.9G138400,共6个基因可能在脱落酸及其信号转导调控过程中参与谷子与禾生指梗霉的互作。对预测到的3个核心基因在水稻和拟南芥数据中进行比对,鉴定到Seita.4G105600为转导蛋白/WD40重复超家族蛋白、Seita.6G218100为WRKY57转录因子、Seita.9G138400为TIFY转录因子。qRT-PCR分析表明Seita.2G394500、Seita.4G105600和Seita.6G218100基因在谷子白发病早期表达均上调。【结论】谷子在受到禾生指梗霉侵染后脱落酸会在体内大量积累,预测到1个PYL家族基因、2个SnRK2家族基因、2个转录因子基因和1个WD40家族蛋白基因参与谷子内源脱落酸响应禾生指梗霉侵染过程。qRT-PCR结果表明1个SnRK2家族基因、1个WD40家族蛋白基因和1个WRKY57转录因子基因共3个基因可能在谷子脱落酸响应禾生指梗霉侵染过程中发挥重要作用。  相似文献   

8.
从基因表达综合数据库下载GSE83514数据集,利用加权基因共表达网络分析(WGCNA)筛选与牛口蹄疫病毒感染的相关模块及枢纽基因,并对整个模块内的基因进行GO功能注释和KEGG通路分析。结果显示,通过构建WGCNA共表达网络,确定与牛口蹄疫病毒感染显著负相关的Darkred模块和显著正相关的Green模块为枢纽模块,它们的枢纽基因分别为MFSD4和RHOH。这两个模块基因共富集到20个生物学过程及14条KEGG信号通路,并且两个模块同时富集到DNA复制通路。本研究为探究牛口蹄疫病毒感染通路变化提供了生物信息学依据,筛选的枢纽基因MFSD4和RHOH有望成为抑制牛口蹄疫病毒感染的治疗靶标。  相似文献   

9.
【目的】比较不同大豆品种经草甘膦处理后植株体内生理指标的变化,阐明转基因抗草甘膦大豆与常规大豆对草甘膦及其剂量的生理生化反应差异。【方法】采用随机区组的设计方法,在第三复叶期喷施不同剂量的41%草甘膦异丙胺盐水剂和10%草甘膦水剂,研究其对不同大豆品种叶片叶绿素含量指数、莽草酸含量和SOD活性等生理指标的影响。【结果】41%草甘膦异丙胺盐水剂和10%草甘膦水剂可以抑制抗草甘膦大豆RR1、RR2和普通大豆晋大75、晋豆27叶片的叶绿素合成,抗草甘膦大豆RR1、RR2对两种药剂的抗性高于普通大豆晋大75和晋豆27。4个大豆品种叶片的莽草酸含量随着草甘膦两种制剂剂量的增加而增加,RR1和RR2的增加趋势明显小于晋大75和晋豆27。草甘膦2种制剂对4个大豆品种叶片SOD活性的影响不大。41%草甘膦异丙胺盐水剂对4个大豆品种叶片莽草酸含量的影响大于10%草甘膦水剂,而对叶绿素含量和SOD活性的影响却小于10%草甘膦水剂。【结论】大豆不同品种对草甘膦的敏感程度不同,总的来说抗草甘膦大豆的抗性>普通大豆,RR1的抗性>RR2,晋豆27(晚熟)的抗性>晋大75(早熟)。在这3个生理指标中,敏感性依次为叶片莽草酸含量>叶绿素含量> SOD活性。  相似文献   

10.
【目的】建立和优化苦荞愈伤组织遗传转化体系,为苦荞基因功能验证及分子育种提供研究工具。【方法】以苦荞品种“西荞二号”为材料,对苦荞愈伤遗传转化条件进行优化,包括苦荞外植体类型、诱导愈伤的激素比例、继代培养基的激素比例及农杆菌类型。利用苦荞类黄酮生物合成关键酶基因FtCHS1的过表达验证优化后的遗传转化体系。通过PCR筛选和荧光观察鉴定阳性株系,采用紫外分光光度法和高效液相色谱法(high performance liquid,HPLC)测定花青素及黄酮醇支路代谢物含量,使用实时荧光定量PCR分析类黄酮合成相关基因的表达,比较FtCHS1过表达愈伤组织与对照组的差异。【结果】苦荞诱导愈伤组织的最佳外植体为下胚轴,其最适诱导培养基为MS+0.8 mg·L-1 6-BA+3.5 mg·L-1 2,4-D,诱导率达72%;最优继代培养基为MS+3 mg·L-1 6-BA+1 mg·L-1 KT,愈伤组织增殖率与增殖系数分别为98%和1.09;转化过程中的最佳农杆菌是GV3101,转化效率达31.3%;FtCHS1过表达愈伤组织中,花青素、芦丁和杨梅素的含量显著高于对照(P<0.05),山奈酚和槲皮素的含量极显著高于对照组(P<0.01);外源FtCHS1的过表达对转基因愈伤组织中5个内源同源基因FtCHSs的表达水平没有影响(P>0.05),而FtCHIFtF3HFtFLS1FtFLS2FtFLS3FtDFR1等黄酮合成途径关键酶基因均上调表达(P<0.05)。此外,特异性正调控黄酮醇合成的转录因子基因FtMYB5FtMYB6上调表达,而花青素合成抑制子基因FtMYB8的表达降低(P<0.05)。【结论】建立了苦荞愈伤组织遗传转化体系,过表达FtCHS1的苦荞愈伤组织通过上调黄酮合成相关基因的表达增加类黄酮物质的积累。  相似文献   

11.
【目的】通过对桃品种‘仓方早生’及其早熟芽变不同发育时期的果实进行转录组分析,挖掘参与调控桃果实成熟的关键因子,为深入研究桃果实成熟调控机理提供理论依据。【方法】以桃品种‘仓方早生’及其早熟芽变为试材,每个品种分别选择长势一致的样品树5株,分别于花后30 d(对应‘仓方早生’c1、早熟芽变y1)、45 d(对应c2、y2)、59 d(对应c3、y3)、71 d(对应c4、y4)及89 d(对应c5)对不同发育时期的桃去皮果肉进行取样和转录组测序,并利用实时荧光定量PCR(qRT-PCR)对筛选的差异表达基因进行定量验证;利用GO和KEGG对‘仓方早生’及其早熟芽变的差异表达基因进行分析;基于差异表达基因构建加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA),从中鉴定出与果实成熟密切相关的枢纽模块和枢纽基因。【结果】将处于果实相同发育时期的转录组数据进行比较,得到y1与c1、y2与c2、y3与c4和y4与c5四组对比数据,共筛选出差异表达基因4 395个,其中上调表达基因2 212个,下调表达基因2 183个。其...  相似文献   

12.
背景 由柑橘黄单胞杆菌柑橘亚种(Xanthomonas citri subsp. citri,Xcc)引起的柑橘溃疡病是柑橘生产上最具毁灭性的一种病害。植物生长素在调控柑橘溃疡病菌引起的寄主侵染部位脓疱形成中起重要作用。生长素早期响应基因GH3通过酰基化吲哚-3-乙酸(indole-3-acetic acid,IAA)调控植物激素动态平衡。前期研究发现柑橘CsGH3.6在调控生长素响应溃疡病侵染中起着重要作用。目的 通过对超量表达CsGH3.6转基因晚锦橙的抗病性、植株表型、细胞和激素变化进行分析,利用RNA-Seq解析CsGH3.6调控的信号通路,探明CsGH3.6调控激素动态平衡影响柑橘溃疡病抗性的内在机制。方法 利用针刺法对离体转基因叶片接种溃疡病菌Xcc,统计接种第10 天时病斑面积和病情指数,以野生型为对照,评价转基因植株的抗性水平;提取感病前后叶片内源激素,利用高效液相色谱技术(high performance liquid chromatography,HPLC )检测转基因植株中激素含量变化;温室中观察转基因植株表型变化;通过测量叶片纵径、横径和厚度分析转基因植株叶型变化特征;制备叶片表皮切片,显微观察表皮细胞和气孔,并统计转基因植株表皮细胞长度和气孔密度;采用RNA-Seq测序技术研究转基因植株转录组变化情况,并利用Nr、Nt、Pfam、COG、SwissProt和gene ontology (GO)数据库注释基因功能,进一步利用KEEG数据库和MapMan软件解析超量表达CsGH3.6影响的重要基因、功能和途径,阐明CsGH3.6调控柑橘溃疡病抗性的分子机制。结果 超量表达CsGH3.6显著增强转基因植株的溃疡病抗性;转基因植株分枝增多且下垂,叶片向上卷曲,变小,颜色浅;转基因植株气孔密度增加,表皮细胞变短;激素含量分析显示,转基因植株自由生长素(IAA)和茉莉酸(jasmonic acid,JA)含量显著降低,而水杨酸(salicylic acid,SA)含量显著增加;转录组测序分析表明,超量表达CsGH3.6显著抑制生长素信号转导相关基因表达,特别是所有注释的Aux/IAA家族基因均下调表达,相反,与生物胁迫相关基因的表达为上调,其中绝大部分基因为病程相关蛋白基因。结论 超量表达CsGH3.6通过酰基化自由IAA抑制生长素信号转导,调控JA和SA的动态平衡,改变细胞和植株的形态建成,从而增强柑橘对溃疡病的抗性。研究结果暗示调控激素动态平衡在柑橘抗病育种中具有潜在价值。  相似文献   

13.
【目的】茄子果色与商品果外观品质和价值密切相关,花青素是决定茄子果色的重要天然色素之一。通过基因表达和代谢物差异比较,解析上位基因互作调控茄子果皮花青素合成的作用机制,为不同果色茄子选育提供理论基础。【方法】以花青素合成结构基因ANS突变的白果色母本19141、花青素合成关键调控基因MYB1突变的白果色父本19147及其紫红果色F1代E3316茄子为试验材料,对商品果期果皮进行转录组测序和广靶代谢组分析。【结果】转录组测序分析表明,19141_vs_19147的差异表达基因(DEGs)最多,其次是E3316_vs_19141,两个比较组DEGs均在类黄酮途径富集程度最高;E3316_vs_19147筛选到的DEGs最少,未在类黄酮途径富集。广靶代谢组共检测分析到218个代谢物。E3316_vs_19141共检测到差异代谢物(DAMs)113个,E3316_vs_19147共检测到差异代谢物98个。转录组和代谢组联合分析发现花青素生物合成关键结构基因CHS、CHI、F3H、DFR和ANS,关键调节基因MYB1、AN1和AN11,修饰基因3GT、5GT、AT和OMT,还有转运基因AN9(G...  相似文献   

14.
15.
【背景】柑橘溃疡病(citrus bacterial canker,CBC)是世界柑橘产业上危害最严重的病害之一,由柑橘黄单胞杆菌柑橘亚种(Xanthomonas citri subsp. citri,Xcc)引起,在国内外被列为检疫对象。由于柑橘分子病理研究相对滞后,导致可供利用的抗性基因资源相对匮乏。WRKY转录因子参与植物抵御生物和非生物胁迫反应,前期研究发现柑橘WRKY转录因子可能在调控寄主抗病反应中起着重要作用。【目的】通过对超量表达CsWRKY50CsWRKY61CsWRKY72转基因晚锦橙(Citrus sinensis)的溃疡病抗性进行评价,明确这些基因在柑橘响应溃疡病菌侵染中的生物学功能和抗病育种价值。进一步利用RNA-Seq解析CsWRKY61调控的信号通路。【方法】利用农杆菌介导法进行柑橘遗传转化,获得超量表达CsWRKY50CsWRKY61CsWRKY72的晚锦橙;利用实时荧光定量PCR(qRT-PCR)分析转基因植株中目的基因的表达水平以及拷贝数;以非转基因植株为对照,采用离体针刺接种评价转基因植株对溃疡病的抗性;通过比较超量表达CsWRKY61和野生型植株的转录组测序结果,探究CsWRKY61提高柑橘溃疡病抗性的内在机制。【结果】分别构建了CAMV 35S启动子控制CsWRKY50CsWRKY61CsWRKY72表达的植物表达载体,通过GUS组织化学染色和PCR鉴定分别获得了6、8和6株转基因晚锦橙。转基因植株中目的基因的表达量有不同程度的提高,大部分转基因植株中外源基因的拷贝数为1,只有超量表达CsWRKY61的转基因植株溃疡病抗性显著增强,其病斑面积明显小于野生型植株,而超量表达CsWRKY50CsWRKY72的转基因植株抗病性与野生型相比无明显差异。转录组分析结果显示,超量表达CsWRKY61的转基因植株中生物胁迫相关途径(包括病原入侵的感知、活性氧爆发、转录因子、防御基因、激素、细胞壁和次生代谢等)和信号转导相关途径(主要是激酶受体)均被显著激活。【结论】超量表达CsWRKY61能够激活与生物胁迫和信号转导相关的途径,增强柑橘对溃疡病的抗性;CsWRKY61在柑橘抗病育种中存在潜在的应用价值。  相似文献   

16.
【目的】谷子适应性强,抗旱耐瘠,是起源于中国的重要作物。通过转录组测序技术分析谷子萌发不同吸水期的转录组差异,以期获得谷子萌发过程中的差异表达基因,寻找调控谷子萌发的重要代谢途径和代谢物。【方法】以晋谷20为材料,构建谷子萌发过程中开始快速吸水期、滞缓吸水期和重新大量吸水期的cDNA文库,进行转录组分析;采用K-Means开展基因表达聚类分析;利用DESeq筛选差异表达基因;通过COG、GO、KEGG等对差异表达基因进行功能注释;利用KEGG富集挖掘不同吸水期调控种子萌发的关键代谢途径和关键基因;并采用qRT-PCR验证其可靠性;用HPLC分析关键代谢物含量。【结果】转录物测序分析获得谷子萌发开始快速吸水期、滞缓吸水期和重新大量吸水期覆盖整个基因组的基因表达谱,共获得33 643个基因,识别9个具有不同表达模式的共表达基因簇。比较种子萌发的开始快速吸水期与滞缓吸水期、滞缓吸水期与重新大量吸水期、开始快速吸水期与重新大量吸水期,分别筛选出3 893、4 612和8 472个差异表达基因。KEGG富集分析表明,3个比较的差异表达基因都显著富集到phenylpropanoid biosynthesis、phenylalanine metabolism、starch and sucrose metabolism代谢途径;开始快速吸水期与滞缓吸水期、开始快速吸水期与重新大量吸水期的差异表达基因还显著富集到plant hormone signal transduction途径。并且3个比较中富集到phenylpropanoid biosynthesis和phenylalanine metabolism代谢途径的差异表达基因数都最多,其中过氧化物酶基因(peroxidase)比例最高。通过qRT-PCR对4个苯丙烷生物合成途径相关基因的分析表明,其表达趋势与转录组分析结果基本一致,其中,4-香豆酸-CoA连接酶3(4-coumarate-CoA ligase 3)在谷子种子中存在已形成mRNA,萌发吸水过程中呈先下调后上调再下调的表达趋势。苯丙烷类相关代谢物含量分析显示,芥子酸在种子中大量储备,在萌发过程中呈下调趋势;阿魏酸、对香豆酸和咖啡酸呈先上调后下调趋势。【结论】谷子萌发过程中,不同吸水期的差异表达基因显著与苯丙烷生物合成途径和苯丙氨酸代谢途径相关;其上游基因4-香豆酰-辅酶A连接酶和下游基因过氧化物酶家族成员在谷子萌发响应水分过程中发挥调控作用;中间产物芥子酸可能参与种子的休眠与萌发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号