首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A new application of conventional electroless nickel plating to improve the interfacial properties of PBO fibers was reported. The relationship between surface morphology and interfacial properties of nickel-plated PBO fiber was explored. The continuous nickel coating consisted of nickel and phosphorus elements determined by Energy dispersive spectrometer (EDS) and transmission electron microscope (TEM), exhibiting high adhesive durability. The influence of bath temperature and plating time on the crystal structure, microstructure and mechanical properties of nickel-plated PBO fibers was systematically investigated. X-ray diffractometer (XRD) results revealed that the crystal structure among nickel-plated PBO fibers did not show differences. Scanning electron microscope (SEM) and Atomic force microscope (AFM) images showed that the process parameters had a great influence on surface morphology and roughness of nickel-plated PBO fibers, which could directly affect the interfacial properties of nickel-plated PBO fibers. Single fiber pull-out testing results indicated that the interfacial shear strength (IFSS) of PBO fibers after electroless nickel plating had a significant improvement, which reached maximum at 85 °C for 20 min. Single fiber tensile strength of nickel-plated PBO fibers was slightly lower than that of untreated one. Thermo gravimetric analysis (TGA) indicated that nickel-plated PBO fiber had excellent thermal stability.  相似文献   

2.
Kevlar fibers were treated in three kinds of coupling agents’ solutions by Co60 γ-ray co-irradiation. After the treatment, the interlaminar shear strength (ILSS) values of Kevlar fibers/epoxy composites were all improved. Surface elements of the fibers were determined by energy dispersive X-ray microanalysis (EDX). X-ray photoelectron spectroscopy (XPS) indicated that the oxygen/carbon ratio of the treated fibers was increased and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fiber surface. The tensile strength of the fibers was evaluated by statistical analysis using the Weibull distribution. The wettability of the fiber surface was also enhanced by the treatment. The possible mechanisms of γ-ray co-irradiation treatment are proposed by the radical reactions. The results indicated that γ-ray co-irradiation technique modified the physicochemical properties of Kevlar fibers and improved the interfacial adhesion of its composites.  相似文献   

3.
The surface of polysulfonamide (PSA) fiber was modified by air plasma to improve its wettability and interfacial bonding performance. The surface morphology and chemical composition of the fiber were then evaluated with fieldemission scanning electron microscopy (FESEM) and X-ray photoelectron spectrometry (XPS). Moreover, the wettability and interfacial bonding performance of fiber before and after air plasma treatment were examined by water absorption time and interfacial shear strength (IFSS). FESEM observation confirmed that PSA fiber surface roughened with prolonged treatment duration. XPS analysis showed that the O/C atomic ratio on the PSA fiber surface can be increased from 19.69 % to 38.59 % after 3 min of treatment. Water absorption time dropped from as much as 400 s to about 0 s, indicating that the wettability of the fiber greatly improved. Under the experimental conditions of 40 Pa pressure, 100 W power, and 3 min treatment duration, IFSS increased by 57.01 %, and the interfacial bonding performance of fiber greatly improved.  相似文献   

4.
To improve interfacial adhesion between carbon fiber and epoxy resin, the epoxy matrix is modified with N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (YDH602) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (YDH792), respectively. And the effect of matrix modification on the mechanical performance of carbon/epoxy composites is investigated in terms of tensile, flexural and interlaminar properties. The flexural properties indicate that the optimum concentration of silane coupling agents YDH602 and YDH792 for the matrix modification is approximately 0.5 wt% of the epoxy resin system, and the mechanical properties of the YDH792-modified epoxy composites is better than that of the YDH602-modified epoxy composites at the same concentration. Compared to unmodified epoxy composite, the incorporation of 0.5 wt% YDH792 results in an increase of 4, 44 and 42 % in tensile, flexural and interlaminar shear strength (ILSS) values of the carbon/epoxy composite, respectively, while the corresponding enhancement of tensile and flexural modulus is 3 and 15 %. These improvements in mechanical properties can be considered to be an indication of better fiber/matrix interfacial adhesion as confirmed by SEM micrographs of the fracture surface after interlaminar shear testing. The viscosity of the modified epoxy resin system can be reduced by incorporation of silane coupling agent YDH792, which is beneficial for fiber impregnation or wetting during liquid composite molding process.  相似文献   

5.
The tribological performance of PA6 and carbon fiber reinforced polyamide 6 (CF/PA6) under dry sliding condition was examined. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyamide 6 composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PA6 and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled polyamide 6 have superior tribological characteristics to unfilled polyamides 6. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol%.  相似文献   

6.
Depositing of TiO2 nanoparticles on cellulose fiber surface has potential technological applications in the field of photocatalysis. With this motivation, multilayers composed of lignosulfonates (LS) and TiO2 nanoparticles were constructed on cellulose fiber surface via layer-by-layer (LBL) self-assembly technique. X-ray photoelectron spectroscopy (XPS), zeta potential measurement and atomic force microscopy (AFM) were used to characterize the LS/TiO2 multilayers on cellulose fiber surface. Moreover, the photocatalytic activities of modified cellulose fibers (decomposition of methyl orange and antibacterial test) were investigated. The decomposition efficiency of methyl orange for a (LS/TiO2)5 multilayer modified cellulose fibers was 74.7 % under 5 h UV irradiation. Photocatalytic decomposition efficiency of methyl orange by LS/TiO2 multilayer modified cellulose fibers under the same UV irradiation time increased linearly with the number of bilayers. Antibacterial tests results revealed that the cellulose fibers modified with LS/TiO2 multilayers exhibited excellent antibacterial activity against E.coil. The degree of E.coil growth inhibition for a (LS/TiO2)5 multilayer modified cellulose fiber reached as high as 93 %. In addition, the effect of LS/TiO2 multilayers on properties of handsheets made from modified cellulose fibers was also considered. The air permeability of the handsheet prepared from fibers modified with TiO2/LS multilayers had 6.1–24.3 % higher compared with that of handsheet prepared from original fibers. The wetting properties measurement results demonstrated that the water contact angle of handsheet oscillated with the increasing number of layers depended on building block which was in the outermost layer.  相似文献   

7.
Nanostructured silver thin films were sputtered onto the aromatic thermotropic liquid crystalline fibers of Vectran by magnetron sputtering technology. Plasma treatment was used as pre-treatment in order to improve the deposition of the coating layer. Surface morphology of the coated fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A full energy dispersive X-ray analysis (EDX) was used to detect the elemental composition of the material. Its conductivity and mechanical properties were measured and analyzed as well. The study revealed that a very thin conductive silver deposition exhibited high electrical conductivity as well as less influence on the mechanical properties of the pre-treated Vectran fiber. The plasma treatment could improved the deposition of the coating layer, but the surface roughness caused by plasma treatment also affected the surface conductivity. It was found that the surface resistivity could reach very low value of 1.66×10−3 Ω·cm after sputtering deposition for 30 min.  相似文献   

8.
The current study examines the tribological performance of poly(vinylidene fluoride) (PVDF) and carbon fiber reinforced PVDF (CF/PVDF) under dry sliding condition. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyimide composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PVDF and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled PVDFs have superior tribological characteristics to unfilled PVDFs. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol %.  相似文献   

9.
Jute fibers have immense potential to be used as natural fillers in polymeric matrices to prepare biocomposites. In the present study jute fibers were surface treated using two methods: i) alkali (NaOH) and ii) alkali followed by silane (NaOH+Silane) separately. Effects of surface treatments on jute fibers surface were characterized using fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analyses. Further, the effects of surface treatments on jute fibers properties such as crystallinity index, thermal stability, and tensile properties were analyzed by X-ray diffraction method (XRD), thermo gravimetric analysis (TGA), and single fiber tensile test respectively. The effects of surface treatment of jute fibers on interphase adhesion between of poly(lactic acid) (PLA) and jute fibers were analyzed by performing single fiber pull-out test and was examined in terms of interfacial shear strength (IFSS) and critical fiber length.  相似文献   

10.
In this study, jute fabrics were modified by alkali, micro-emulsion silicon (MS) and fluorocarbon based agents (FA) in order to enhance the interfacial adhesion between the polyester matrix and the jute fiber. X-ray photoelectron spectroscopy (XPS) and contact angle measurements were used to characterize fiber surfaces. The effects of various surface treatments on the mechanical and morphological of jute/polyester composites were also studied. All surface treatments were shown to improve the tensile, flexural strengths and interlaminar shear strengths of the composites. Moreover, the maximum improvement in the mechanical properties was obtained for the FA treated jute/polyester composites. SEM micrographs of the tensile fracture surface of jute/unsaturated polyester composites also exhibited improvement of interfacial and interlaminar shear strengths by the alkali, MS and FA treatments of jute fibers.  相似文献   

11.
A useful reinforcement for carbon fiber (CF) composites was found by performing the assisted electrophoretic deposition (EPD) of graphene oxide (GO) for carbon nanotubes (CNTs) onto the CF surface. GO-assisted EPD of CNTs was conducted without the use any other pre-treatment or additives in order to avoid destroying the structure of the CNTs and to facilitate preparation of stable dispersion that was suitable for EPD. The presence of GO-CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the epoxy (EP). In contrast to the pristine CF/EP composite, the GO-CNTs/CF/EP composite exhibited a 64.6 % increase in interlaminar shear strength. Meanwhile, the water absorption of the composites decreased from 0.36 wt.% to 0.14 wt.%. The variable surface morphology, surface roughness, surface free energy and surface chemical composition of the CF were considered to have had an effect on the interfacial properties of the CF/EP composites; these effects could be seen using atomic force microscopes, scanning electron microscopes, X-ray photoelectron microscopes and contact angle analysis characterizations.  相似文献   

12.
The surface of para-aramid fiber was modified by phosphoric acid solutions (H3PO4) based on an orthogonal experimental design and analysis method. Statistical results indicate that treatment temperature is the most significant variable in the modification processing, while treatment time was the least important factor. The structure and morphology of the modified fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction instrument (XRD), and scanning electron microscope (SEM). The results showed that some polar groups were introduced into the molecular structure of aramid fibers and the physical structure of the treated fibers was not etched obviously. The interfacial properties of aramid fiber/epoxy composites were investigated by the single fiber pull-out test (SFP), and the mechanical properties of aramid fibers were investigated by the tensile strength test. The results showed that the interfacial shear strength (IFSS) of aramid/epoxy composites was remarkably improved and the breaking strength of aramid fibers was not affected appreciably after surface modification.  相似文献   

13.
A novel hollow fiber composite Nanofiltration (NF) membrane was fabricated by an improved preparation procedure. Using hollow fiber ultrafiltration (UF) membrane modules as the supporting modules, hollow fiber composite NF modules were fabricated by the one-step interfacial polymerization method. The effects of preparation conditions (such as concentration of the monomers, reaction time of monomers and ambient relative humidity, etc.) on the performance of the hollow fiber composite membranes were studied. When tested at 0.6 MPa, room temperature, the hollow fiber composite membrane had a rejection sequence of MgSO4>Na2SO4>MgCl2>NaCl and a permeate flux sequence of NaCl>Na2SO4> MgSO4>MgCl2. The nagative charge character of the membrane surface was examined by streaming potential methods. The effect of the surface electrolyte properties on the membrane separation performance was investigated. The morphologies of the hollow fiber composite Nanofiltration membranes were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM).  相似文献   

14.
Polyacrylonitrile (PAN) precursor fibers were modified for different periods of time using hydrogen peroxide aqueous solution. A variety of tests were employed to characterize the fibers. The modification could induce cyclization and oxidation in the precursor fibers, as reflected by the changes in length and diameter of the fibers, and the results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Compared with the unmodified fiber, the modified fibers released less heat during a heating process similar to stabilization of PAN precursor fiber. Also, the modified fibers showed lower characteristic temperatures on differential scanning calorimetry (DSC) thermograms, and lower onset temperature of weight loss on thermal gravimetry (TG) curves. The modified fibers had more surface defects and hence exhibited lower tenacity and tensile modulus. Compared with the unmodified fibers, however, the modified fibers had smoother surface and fewer defects after stabilization. The strain decreased with increasing temperature under a constant tension for all the fibers. At the temperatures above 200 °C, the shrinkage of the fibers decreased with the increase of modification time, because a certain degree of cyclization and oxidation occurred in modified fibers, making them shrink less in the temperature range equivalent to stabilization.  相似文献   

15.
The application of poly (p-phenylene-2, 6-benzobisoxazole) (PBO) fiber as reinforcement in composite material was restricted by its photo-degradation, therefore, some measures should be considered to protect PBO fiber against UV aging. In this study, A series of multilayer coating for (POSS/TiO2)n was prepared on PBO fiber surface via LbL assembly technique for enhancement of UV resistance. TiO2 as UV absorbing material was used to relieve UV-degradation of PBO. Surface elemental composition, surface morphology, mechanical and interfacial properties, and UV resistance of uncoated and coated PBO fibers were investigated. These experimental results show multilayer coating of (POSS/TiO2)n was uniform deposition on fiber surface after treatment, tensile strength decreased to certain extent, interfacial shear strength increased in a small range and UV resistance is obvious enhanced. After the same accelerated aging time under UV irradiation, the retention of tensile strength and intrinsic viscosity of coated PBO fibers were much better than that of untreated PBO fibers.  相似文献   

16.
Lignin, nature’s abundant polymer with a remarkably high carbon content, is an ideal bio-renewable precursor for carbon fiber production. However, the poor mechanical property of lignin-derived fibers has hindered their industrial application as carbon fiber precursor. In this work, process engineering through the application of computational modeling was performed to optimize wet-spinning conditions for the production of lignin precursor fibers with enhanced mechanical properties. Continuous lignin-derived precursor fibers with the maximum possible lignin content were successfully produced in a blend with polyacrylonitrile, as a wet-spinning process facilitator. Response surface methodology was employed to systematically investigate the simultaneous influence of material and process variables on mechanical properties of the precursor fibers. This allowed generating a mathematical model that best predicted the tensile strength of the precursor fibers as a function of the processing variables. The optimal wet-spinning conditions were obtained by maximizing the tensile strength within the domain of the developed mathematical model.  相似文献   

17.
Plant fiber reinforced thermoplastic composites have gained much attraction in structural applications such as building and automotive products. Agricultural residues such as wheat straw, bagasse, and corn stover can also be exploited as readily available natural fiber resources for similar applications. The objective of this study was to extract fibers from wheat straw and also to determine the usefulness of fungal retting of wheat straw before extracting the fibers. Wheat straw was mechanically defibrillated using a laboratory-scale mechanical refiner before and after fungal retting. Fiber characteristics such as physico-chemical and mechanical properties, surface characteristics, and thermal properties of the resultant fibers were measured in order to explore the possibilities of using the fibers as reinforcing materials. Retted fibers were stronger than un-retted fibers. The length and diameter of the retted fibers were lower than the un-retted fibers. FT-IR spectroscopic analysis of the wheat straw fibers indicated the fractional removal of hemicelluloses and lignin from the retted fiber. X-ray photoelectron spectroscopy (XPS) of the fibers showed the partial removal of extractives from the surface of the retted fibers. Also, the oxygen to carbon ratio (O/C) of the fibers illustrated that there is more lignin type surface structure for both retted and un-retted fibers. However, slightly higher ratio of oxygen to carbon in the retted fiber indicated a more carbohydrate-rich fiber than the un-retted fiber. Thermal degradation characteristics demonstrated the suitability of processing wheat straw fibers with thermoplastics.  相似文献   

18.
This study uses polypropylene (PP)/high-density polyethylene (HDPE) polyblends (80/20 wt.%) as matrices, which are then melt-blended with inorganic carbon fibers (CF) as reinforcement to form electrically conductive PP/HDPE composites. Tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) are performed to evaluate different physical properties of samples. A surface resistance and electromagnetic interference shielding effectiveness (EMI SE) measurements are used to evaluate the electrical properties of the PP/HDPE/CF composites. Test results show that an increasing content of carbon fibers results in an 18 %, 23 %, and 60 % higher tensile strength, flexural strength, and impact strength, respectively. SEM results show that carbon fibers break as a result of applied force, thereby bearing the force and increasing the mechanical properties of composites. DSC and XRD results show that the addition of carbon fibers causes heterogeneous nucleation in PP/HDPE polyblends, thereby increasing crystallization temperature. However, the crystalline structure of PP/HDPE composites is not affected. Surface resistivity results show that 5 wt.% of carbon fibers can form a conductive network in PP/HDPE polyblends and reduce the surface resistivity from 12×1012 ohm/sq to 4×103 ohm/sq. EMI SE results show that, with a 20 wt.% CF and a frequency of 2-3 GHz, the average EMI SE of PP/HDPE/CF composites is between -48 and -52 dB, qualifying their use for EMI SE, which is required for standard electronic devices.  相似文献   

19.
徐山青 《中国麻业》2002,24(6):33-35,32
本文通过对Henequen纤维表面进行硅烷化改性,使得纤维与树脂间存在化学键合,提高了Henequen纤维与聚羟基丁酸与戍酸酯(PHBV)树脂复合材料界面剪切强度。Henequen纤维/PHBV复合材料界面剪切强度的大小用微粘结法(Microbond)测试,结果表明纤维经硅烷处理后可使界面剪切强度从未处理情况下的5.05Mpa提高6.34Mpa。  相似文献   

20.
The fuzzing and pilling of untreated, chlorinated and oxidized wool knitted fabrics were compared with frictional coefficients measured by capstan method, surface modification observed by scanning electron microscopy (SEM), the surface roughness and the scale height assessed by atomic force microscopy (AFM), and hairiness imaged on the three-dimensional rotational microscopy. The pilling comparative experiments of the corresponding knitted fabrics were conducted by means of Pillbox method. Experimental results showed that some scales on the oxidized fiber surface were partially cleaved and some grooves generated. With oxidization treatment, the anti- and with-scale of friction coefficient increase with decreasing the thickness of scales and the yarn hairiness. There is good correlation between the result of AFM and the change in frictional coefficients. The pilling grade of knitted fabric comprised of oxidization wool is 2.5, and the average numbers of pills per 25 cm2 is 25. It is postulated that the surface topography, the frictional properties of oxidized wool fibers and surface hairs of corresponding yarns may limit the ability of those surface fibers to form fuzz and of those fuzz for pill formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号