首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black soldier fly larvae (BSFL) are an alternative protein source for animals, including dogs and cats. Dietary calcium source is an essential nutrient for BSFL development in the pupal stage. Calcium carbonate (CaCO3) and calcium chloride (CaCl2) are common calcium sources but differ in solubility, acid-binding capacity, and calcium concentration. A high calcium concentration in BSFL may affect how well nitrogen and amino acids (AA) are digested by animals consuming them, thereby affecting feed conversion efficiency. Our objective was to determine the effects of dietary calcium form and concentration on nutrient composition, AA digestibility, and digestible indispensable amino acid score (DIAAS)-like values of BSFL intended for use in animal feeds using the precision-fed cecectomized rooster assay. All BSFL tested in this study were harvested at 18 d after hatch. Industry standard rearing conditions were maintained and a commercial layer ration was fed to all BSFL until 11 d post-hatch. From day 11 to 18, BSFL were fed a combination of distiller’s dried grains with solubles from a distillery, bakery byproduct meal, and varied calcium sources. All BSFL diets contained 0.2% calcium in the basal diet plus additional calcium in the following amounts and forms: BSFLA: 1.2% CaCl2, BSFLB: 1.2% CaCO3, BSFLC: 0.75% CaCO3, and BSFLD: 0.6% CaCO3 + 0.6% CaCl2. On day 18, BSFL were washed and frozen. Prior to the rooster assay, BSFL were lyophilized and ground. In total, 16 cecectomized roosters (4 roosters per substrate) were randomly assigned to test substrates. After 24 h of feed withdrawal, roosters were tube-fed 20 g of test substrates. Following crop intubation, excreta were collected for 48 h. Endogenous corrections for AA were made using five additional cecectomized roosters. All data were analyzed using a completely randomized design and the GLM procedure of SAS 9.4. Nutrient and AA digestibilities were not different among substrates. DIAAS-like values were calculated to determine protein quality according to the Association of American Feed Control Officials nutrient profiles and National Research Council recommended allowances for dogs and cats. Although AA digestibilities did not differ, those containing CaCO3 generally had higher DIAAS-like reference values than the diet containing CaCl2 alone (BSFLA). Aromatic AA (Phe + Tyr) and sulfur AA (Met + Cys) were often first-limiting AA. Our results suggest that calcium sources fed to BSFL did not affect AA digestibility and protein quality.  相似文献   

2.
Plant-based protein sources are generally less variable in chemical composition than animal-based protein sources. However, relatively few data are available on the nutrient digestibilities of plant-based protein sources by companion animals. The effects of including selected soybean protein sources in dog diets on nutrient digestion at the ileum and in the total tract, as well as on fecal characteristics, were evaluated. Six protein sources were used: soybean meal (SBM), Soyafluff 200W (soy flour), Profine F (traditional aqueous-alcohol extracted soy protein concentrate [SPC 1]), Profine E (extruded SPC [SPC 2]), Soyarich I (modified molecular weight SPC [SPC 3]), and poultry meal (PM). All diets were extruded and kibbled. Test ingredients varied in CP and fat contents; however, diets were formulated to be isonitrogenous and isocaloric. Nutrient intakes were similar, except for total dietary fiber (TDF), which was lower (P < 0.01) for dogs fed the PM diet. Apparent ileal digestibilities of DM, OM, fat, and TDF were not different among treatments; however, CP digestibility at the terminal ileum was higher (P < 0.01) for diets containing soy protein sources than for PM. Total tract CP digestibility was greater (P < 0.01) for soy protein-containing diets than for PM. Apparent total tract digestibilities of DM, OM, fat, and TDF were not different among treatments. Apparent amino acid digestibilities at the terminal ileum, excluding methionine, threonine, alanine, and glycine, were higher (P < 0.01) for soy protein-containing diets than for PM. Dogs fed SPC diets had lower (P < 0.01) fecal outputs (g asis feces/g DMI) than dogs fed the SF diet, and dogs fed SBM tended (P < 0.11) to have lower fecal outputs than dogs fed the SF diet. However, dogs fed the PM diet had lower (P < 0.03) fecal outputs than dogs fed SPC-containing diets. Fecal outputs and scores reflected the TDF and nonstructural carbohydrate contents of the soy protein fraction. Soy protein sources are well utilized by the dog prior to the terminal ileum, and SPC offers a viable alternative to PM as a protein source in dry, extruded canine diets.  相似文献   

3.
Canola meal (CM) contains less crude protein (CP) and more fiber and anti-nutritional factors such as glucosinolates than soybean meal (SBM) and consequently has a lower nutrient digestibility. Therefore, processing strategies that may increase the feeding value of CM warrant study. In two experiments, the effects of extrusion of Brassica napus CM on apparent (AID) and standardized ileal digestibility (SID) of amino acids (AA), apparent total tract digestibility (ATTD) of gross energy (GE) in growing pigs, and growth performance and diet digestibility in weaned pigs were assessed. Solvent-extracted CM was extruded using a single-screw extruder at three screw speeds: 250 (CM-250), 350 (CM-350), or 450 (CM-450) rpm. In exp. 1, in a double 4 × 4 Latin square, eight ileal-cannulated barrows (initial body weight [BW], 68.1 kg) were fed corn starch-based diets containing 50% CM or extruded CM. The CM sample contained 43.2% CP, 33.2% total dietary fiber (TDF), and 8.9 µmol of total glucosinolates/g on a dry matter (DM) basis. Extrusion increased (P < 0.05) the AID of CP, reduced (P < 0.05) apparent hindgut fermentation of CP, and decreased (P < 0.05) predicted net energy (NE) value of diets. Extrusion increased diet AID and CM SID of most indispensable AA by 3.1 to 5.3%-units. In exp. 2, 200 weaned pigs (initial BW, 8.3 kg) were fed diets containing 20% SBM, CM, or extruded CM starting 2 wk postweaning for 3 wk. The CM sample contained 42.7% CP, 28.3% TDF, and 5.3 µmol total glucosinolates/g DM. Wheat-based diets provided 2.3 Mcal NE/kg and 5.1 g SID Lys/Mcal NE. Dietary inclusion of extruded CM replacing SBM decreased (P < 0.05) diet ATTD of DM, GE and CP, and DE value. Average daily feed intake, average daily gain (ADG), and gain:feed (G:F) of pigs did not differ between extruded CM and SBM diets and were not affected by extrusion, but increasing extruder screw speed linearly increased (P < 0.05) ADG for day 1 to 7 and G:F for the entire trial. In conclusion, extrusion increased diet AID and CM SID of AA but not DE and predicted NE values of CM. However, increasing extruder speed did not further increase the SID of most of the AA of CM in growing pigs. Dietary inclusion of 20% CM or extruded CM did not affect the growth performance in weaned pigs.  相似文献   

4.
The objectives of this study were to determine the ileal and total tract digestibility of individual fatty acids, ether extract, energy, protein, and AA in a mix of flax and field pea (FP) and to determine whether extrusion improves the nutritive value of this mix. Five barrows (23-kg initial BW) fitted with a T-cannula at the distal ileum were fed 5 diets at 3 times the maintenance energy requirement according to a 5 x 5 Latin square design: a wheat and soybean meal control diet and 4 diets containing 30% raw or coextruded FP plus 70% control diet and chromic oxide as an indigestible marker. The 4 extrusion treatments included the following: 1) FP0, ground, nonextruded; 2) FP1, single-screw extruded; 3) FP2, twin-screw extruded with low intensity (screw speed 120 rpm; die temperature 110 degrees C; water input 5 kg/h); and 4) FP3, twin-screw extruded with high intensity (300 rpm; 125 degrees C; 11 kg/h). The ether extract concentration was 17.8, 19.6, 17.7, and 17.3% (as fed) in FP0, FP1, FP2, and FP4, respectively. The ADF concentration was 13.2, 11.1, 11.4, and 13.7% (as fed) in FP0, FP1, FP2, and FP4, respectively. After a 7-d acclimation, feces were collected for 2 d, and then ileal digesta was collected for 2 d. Energy digestibility in the test ingredients was calculated using the difference method. Extrusion of FP did not affect the apparent total tract digestibility (ATTD) and apparent ileal digestibility (AID) of DM, OM, and CP for grower-finisher pigs. Extrusion increased (P < 0.05) the ATTD of GE and ether extract and the DE content of FP, and the AID of the Arg, Ile, Leu, Lys, Phe, Thr, and Val, and total fatty acids. Extrusion tended to increase (P < 0.10) the AID of linolenic acid. Single-screw extrusion resulted in a greater (P < 0.05) ATTD of GE, OM, ether extract, and DE content of FP and AID of SFA than twin-screw extrusion. Single-screw extrusion resulted in a trend for greater (P < 0.10) AID of linolenic acid and total fatty acids than twin-screw extrusion. Twin-screw extrusion at high intensity resulted in less (P < 0.05) AID of SFA than twin-screw extrusion at low intensity, indicating that equipment and conditions should be carefully controlled for the extrusion of FP. In conclusion, coextrusion of FP increased digestibility of ether extract, fatty acids, energy, and AA.  相似文献   

5.
Five Holstein steers (450 kg) with cannulas in the rumen, proximal duodenum, and terminal ileum were used in a 5 x 5 Latin square design to study the effects of extrusion temperature on site of digestion of nitrogenous compounds in whole soybeans. The basal diet contained 50% corn silage, 24% alfalfa hay, 16.6% corn starch, 4.05% ground corn, 1% urea, and 3.4% soybean oil. Raw soybeans or soybeans extruded at 116, 138, or 160 degrees C (diets 116, 138, and 160, respectively) replaced the soybean oil and most of the corn starch in the test diets. Total N (g/d) reaching the duodenum was 232, 293, 285, 308, and 299 for the basal, raw, 116, 138, and 160 diets, respectively. No differences were observed between the raw and extruded soybeans (P = 0.81), or for the linear or quadratic effects of extrusion temperature (P = 0.56 and P = 0.45, respectively). Nonbacterial N (g/d) reaching the duodenum was 63.1, 104.6, 106.7, 101.9, and 113.9 for the same diets, respectively, and was not influenced by extrusion or extrusion temperature. Nitrogen disappearance from the small intestine (g/d) was 150 for the basal diet, 194 for the raw soybean diet, and 187,221, and 213 for the 116,138, and 160 degrees C extruded diets, respectively; no differences were observed between the raw and the extruded soybeans, or for diets containing soybeans extruded at different temperatures. Nitrogen disappearance (% of N entering) from the small intestine was lower (P < 0.05) for steers fed the basal diet than for steers fed the soybean-supplemented diets (64.1 vs 68.5%). No differences (P > 0.10) due to extrusion temperature were detected for flows of individual, essential AA, nonessential AA, and total AA at the duodenum. As extrusion temperatures increased, there were linear increases (P < 0.10) in disappearance (g/d) of all individual AA from the small intestine except for methionine and glycine. Essential, nonessential, and total AA disappearance from the small intestine were increased linearly (P < 0.10) with increasing extrusion temperature. Extrusion of soybeans can protect soy protein against extensive ruminal degradation without compromising intestinal digestibility.  相似文献   

6.
The objectives of this study were to determine differences in apparent total tract energy and macronutrient digestibility, fecal and urine characteristics, and serum chemistry of domestic cats fed raw and cooked meat-based diets and extruded diet. Nine adult female domestic shorthair cats were utilized in a replicated 3 × 3 Latin square design. Dietary treatments included a high-protein extruded diet (EX; 57% CP), a raw beef-based diet (RB; 53% CP), and a cooked beef-based diet (CB; 52% CP). Cats were housed individually in metabolic cages and fed to maintain BW. The study consisted of three 21-d periods. Each period included diet adaptation during d 0 to 16; fecal and urine sample collections during d 17 to 20; and blood sample collection at d 21. Food intake was measured daily. Total feces and urine were collected for determination of nutrient digestibility. In addition, a fresh urine sample was collected from each cat for urinalysis, and a fresh fecal sample was collected from each cat for determination of DM percentage and ammonia, short-chain fatty acid (SCFA), and branched-chain fatty acid (BCFA) concentrations. All feces were scored after collection using a scale ranging from 1 (hard, dry pellets) to 5 (watery, liquid that can be poured). Blood was analyzed for serum metabolites. Apparent total tract DM, OM, CP, fat, and GE digestibilities were greater (P ≤ 0.05) in cats fed RB and CB than those fed EX. Total fecal SCFA concentrations did not differ among dietary treatments; however, molar ratios of SCFA were modified by diet, with cats fed RB and CB having an increased (P ≤ 0.05) proportion of fecal propionate and decreased (P ≤ 0.05) proportion of fecal butyrate compared with cats fed EX. Fecal concentrations of ammonia, isobutyrate, valerate, isovalerate, and total BCFA were greater (P ≤ 0.05) in cats fed EX compared with cats fed RB and CB. Our results indicated that cooking a raw meat diet does not alter apparent total tract energy and macronutrient digestibility and may also minimize risk of microbial contamination. Given the increasing popularity of feeding raw diets and the metabolic differences noted in this experiment, further research focused on the adequacy and safety of raw beef-based diets in domestic cats is justified.  相似文献   

7.
Two trials were conducted to assess the acceptance, safety and digestibility of diets containing various inclusion levels of partially defatted black soldier fly (Hermetia illucens) larvae (BSFL) meal and BSFL oil by dogs. In trial 1, 5 extruded diets were evaluated for acceptance in adult Beagle dogs (n = 20; 10 male, 10 female) during a 48-hr period. Diets contained graded levels of BSFL meal (5.0%, 10.0%, and 20.0%), or graded levels of BSFL oil (2.5% and 5.0%), and all diets were well accepted. Thus, a digestibility trial (trial 2) was run with 56 adult dogs (16 male, 40 female) allocated into 7 dietary treatments; dogs were offered an extruded control diet containing no BSFL meal or oil, or extruded diets where BSFL meal partially replaced poultry by-product meal and corn meal at dietary levels of 5%, 10%, or 20% inclusion, or diets with BSFL oil partially replacing poultry fat at a 1:1 ratio at levels of 1%, 2.5%, or 5% inclusion. The treatment diets were fed for 28 d, during which time dogs were monitored for health (via physical examinations, clinical observations, and blood chemistry and hematology) and ingredient evaluation (via body weight, feed consumption, stool observation, and fecal nutrient apparent total tract digestibility). There were no significant differences in body weight or food consumption between treatment groups (P > 0.05) and daily observations indicated that the general health of the animals was maintained throughout the study. Stool quality was maintained at 3.2 to 3.4 (on a 5-point scale with a score of 1 being watery diarrhea and a score of 5 being hard, dry, and crumbly) per treatment group over the fecal observation period (days 22 to 27), indicating a well formed, sticky stool. All group mean hematology and blood chemistry parameters remained within normal limits for dogs. Apparent total tract digestibility of dry matter, protein, fat, and calories was not affected by treatment (P > 0.05). In general, amino acid digestibility was not impacted by treatment although some minor changes were observed. Apparent total tract digestibility was high for all nutrients examined. Overall, it was concluded that BSFL meal and BSFL oil are well tolerated by dogs and their consumption results in no impact to physiology that would be concerning. Based on these data, BSFL meal and oil did not affect general health and could be included safely in dog diets.  相似文献   

8.
The digestibility of AA in dry extruded-expelled soybean meal (DESBM) and regular, solvent-extracted soybean meal (SBM) were determined in pigs and poultry. In the pig assay, 4 Cotswold barrows (average initial BW of 80.4 kg) fitted with a T-cannula at the distal ileum were allotted to 4 semipurified diets in a 4 x 4 Latin square design. Diet 1, a low protein diet (5% casein), was used to quantify endogenous CP and AA losses. Diets 2, 3, and 4 were formulated to contain 35% regular, solvent-extracted SBM; batch 1 of DESBM (DESBM-1); and batch 2 of DESBM (DESBM-2), respectively, as the sole source of protein. The DESBM samples were obtained from 2 different batches but were subjected to the same processing conditions. Chromic oxide (0.3%) was included as a digestibility marker in all diets. Compared with DESBM-1 and DESBM-2, apparent ileal digestibility of DM in SBM was greater (P < 0.05). Apparent and true ileal digestibilities of AA in SBM were greater (P < 0.05) compared with DESBM-2. In the poultry assay, 4 dietary treatments were each assigned to adult cecectomized roosters in a completely randomized design. Treatment 1 was a nonnitrogenous diet (NND; 90% sucrose and 10% vegetable oil) used to estimate endogenous N and AA losses. Treatments 2, 3, and 4 contained SBM, DESBM-1, and DESBM-2 as the only source of protein. Each of these diets was fed in 25-g quantities formulated to provide 5 g of CP from the respective soybean meal source. The SBM had greater (P < or = 0.05) true digestibility for isoleucine, leucine, cysteine, proline, serine, and tyrosine compared with DESBM-1. The results indicate that, relative to regular, solvent-extracted soybean meal, AA digestibilities of different batches of dry extruded-expelled soybean meal varied in pigs and poultry.  相似文献   

9.
Soya bean protein concentrate (SPC) with two particle sizes were evaluated on extrusion parameters, kibble formation, digestibility and palatability of dog foods. Eight diets were extruded: PBM—control diet based on poultry by‐product meal (PBM); GM—a diet in which corn gluten meal (GM) replaced 45% of the diet protein; cSPC15%, cSPC30% and cSPC45%—diets in which SPC of coarse particle size (600 μm) replaced 15%, 30% and 45% of the diet protein; and sSPC15%, sSPC30% and sSPC45%—diets in which SPC of small particle size (200 μm) replaced 15%, 30% and 45% of the diet protein. The digestibility of nutrients was evaluated for the PBM, GM, cSPC45% and sSPC45% diets, using six dogs per food. The PBM, GM and cSPC45% diets were compared for palatability. Data were submitted for analysis of variance, and the means were compared by polynomial contrasts or Tukey's test (p < .05). The cSPC increased the specific mechanical energy (SME) application, extrusion temperature and pressure linearly, resulting in lower kibble density and higher expansion and starch gelatinization (SG) (p < .01). When comparing the PBM, GM, cSPC45% and sSPC45% diets, higher SME, extrusion temperature and pressure, SG and kibble expansion were verified for the cSPC45% diet (p < .05). The DM, fat and crude protein digestibility were similar among diets. Faecal pH, ammonia and lactate did not differ, demonstrating that the removal of oligosaccharides and soluble non‐starch polysaccharides of SPC produces an ingredient with mostly non‐fermentable fibre. Dogs preferred the PBM to the GM diet (p < .05), but consumed the PBM and cSPC45% foods equally. In conclusion, SPC exhibited good extrusion functionality, favouring kibble expansion and SG, with high digestibility, similar to that of PBM. The removal of soluble compounds from soya beans resulted in an ingredient with low fermentable fibre content, which did not alter faecal formation or characteristics.  相似文献   

10.
Protein quality was evaluated for mechanically separated chicken meat (MSC) and salmon protein hydrolysate (SPH), and for extruded dog foods where MSC or SPH partially replaced poultry meal (PM). Apparent total tract digestibility (ATTD) of crude protein (CP) and amino acids (AA) in the protein ingredients and extruded foods was determined with mink (Neovison vison). The extruded dog foods included a control diet with protein from PM and grain, and two diets where MSC or SPH provided 25% of the dietary CP. Nutrient composition of the protein ingredients varied, dry matter (DM) was 944.0, 358.0 and 597.4 g/kg, CP was 670.7, 421.2 and 868.9 g/kg DM, crude fat was 141.4, 547.8 and 18.5 g/kg DM and ash was 126.4, 32.1 and 107.0 g/kg DM for PM, MSC and SPH respectively. The content of essential AA (g/100 g CP) was more than 10.0 percentage units lower in SPH than in PM and MSC. The ATTD of CP differed (p < 0.001) between protein ingredients and was 80.9%, 88.2% and 91.3% for PM, MSC and SPH respectively. The ATTD of total AA was lowest (p < 0.001) for PM, and similar (p > 0.05) for MSC and SPH. In the extruded diets, the expected higher ATTD of CP and AA from replacement of PM with MSC or SPH was not observed. The ATTD of CP was determined to be 80.3%, 81.3% and 79.0% for the PM, MSC and SPH extruded foods respectively. Furthermore, the ATTD of several AA was numerically highest for the PM diet. Possibly, extrusion affected ATTD of the diets differently due to different properties and previous processing of the three protein ingredients.  相似文献   

11.
The objective of this study was to compare ileal and total tract nutrient digestibilities and fecal characteristics of dogs fed selected animal and plant protein sources incorporated into grain-based diets. Four crude protein sources--soybean meal (SBM), poultry meal (PM), poultry by-product meal (PBPM), and beef and bone meal (BBM)--were fed to four ileal cannulated dogs in a 4 x 4 Latin square design. Intakes of dry matter, organic matter, crude protein, and fat by dogs were similar. Total dietary fiber (TDF) intake was highest for the SBM treatment compared to other treatments. Ileal digestibilities of DM, OM, CP, fat, and TDF were not affected by treatment. Total tract digestibility of DM was lower for the BBM and SBM diets, while OM digestibility was lower for the SBM treatment only. Total tract CP digestibility was similar for BBM, PBPM, and SBM treatments and was higher for the PM treatment. As-is fecal excretion [g/d] was greater when dogs received the SBM treatment. Fecal output on a DM basis was higher for the SBM treatment compared to the other treatments. All diets were well utilized by the dogs as assessed by ileal and total tract digestibility data and fecal characteristics.  相似文献   

12.
Crossbred gilts (n = 180) and barrows (n = 180) from the Louisiana State University (LSU) Agricultural Center and the University of Illinois (UI) were used to compare the effect of soybean meal in swine diets, relative to other protein sources, on growth performance and carcass traits of growing-finishing pigs. Four replications with five pigs each at each location were allotted to nine dietary treatments: soybean meal control (SBM), crystalline AA (corn-AA), extruded soybeans (ESB), canola meal (CAN), peanut meal (PNT), sunflower meal (SFLR), ground peas, meat and bone meal (MBM), and poultry by-product meal (PLTY). The diets were formulated to meet or exceed NRC nutrient requirements and to have equal Lys:ME according to dietary phase and sex. Corn was the grain source in all diets and the protein sources were the sole source of supplemental protein in all diets except when AA were added to meet the requirement. Pigs (three per pen at each location) were killed at an average final BW of 114 kg in the LSU or UI Meat Science Laboratories. Pigs fed SBM had greater (P < 0.05) ADG than pigs fed the corn-AA, CAN, SFLR, MBM, or PLTY and greater (P < 0.05) ADFI relative to pigs fed the corn-AA, ESB, MBM, or PLTY. Gain:feed was decreased (P < 0.05) in pigs fed corn-AA or SFLR but increased (P < 0.05) in pigs fed ESB compared with pigs fed the SBM diet. Loin muscle area was decreased (P < 0.05) in pigs fed the corn-AA or MBM diets compared with pigs fed the SBM diet. Tenth-rib backfat thickness was greater (P < 0.10) in pigs fed corn-AA, peas, or MBM than in those fed SBM. The NPPC percentage acceptable quality lean and kilograms of lean were decreased (P < 0.10) in pigs fed corn-AA, peas, or MBM compared with those fed SBM. Results from this experiment suggest that pigs fed SBM have equal or better growth performance and carcass traits than pigs fed other protein sources.  相似文献   

13.
An experiment was conducted to measure the effect of thermal treatment on the digestibility of CP, AA, starch, NDF, ADF, and energy in field peas fed to growing pigs. Five pea-containing diets were formulated. The peas included in these diets were either not heat-treated (control) or extruded at 75, 115, or 155 degrees C or pelleted at 75 degrees C. A N-free diet was also included in the experiment to measure basal endogenous losses of CP and AA. The 6 diets were fed to 6 growing pigs (initial BW: 69.3 +/- 2.9 kg) that were allotted to dietary treatments in a 6 x 6 Latin square design. A T-cannula was installed in the distal ileum of each pig, allowing for the collection of ileal digesta. Each experimental period lasted 9 d; fecal samples were collected on d 6 and 7, and ileal samples were collected on d 8 and 9 of each period. Apparent ileal digestibilities (AID) for CP, AA, starch, and energy and standardized ileal digestibility values (SID) for CP and AA were calculated. Apparent total tract digestibilities (ATTD) for NDF, ADF, starch, and energy were also calculated. As the extrusion temperature increased, the AID and SID for CP and all AA, except Pro, increased (quadratic, P < 0.05). In contrast, except for Arg and Pro, the peas that were pelleted at 75 degrees C had AID and SID for CP and AA that were similar to those obtained for the control peas but less (P < 0.05) than the AID for the peas that were extruded at 75 degrees C. The AID for starch and energy increased (linear, P < 0.001) as the extrusion temperature increased to 155 degrees C (from 89.8 to 95.9% and from 71.5 to 79.0%, respectively), but the AID for starch and energy in the pelleted diet was not different from the AID in the control diet (90.1 vs. 89.8% and 69.1 vs. 71.5%, respectively). The ATTD for starch varied from 98.6 to 99.7% and did not differ among treatments. Likewise, no differences were observed for the ATTD of NDF and ADF. However, the ATTD for energy in the diets increased from 89.0 to 93.3% (linear and quadratic, P < 0.05) as field peas were extruded, and the ATTD for energy in the pelleted diet was also greater (P < 0.05) than that of the control diet (91.6 vs. 89.0%). In conclusion, extrusion of field peas increases the AID of CP, AA, starch, and energy and the ATTD of energy. Pelleting field peas at 75 degrees C does not influence the AID of nutrients or energy but improves the ATTD of energy.  相似文献   

14.
The experiment was designed to assess whether corn fractions or extrusion of corn can result in feed ingredients with a greater nutritional value than corn. Corn grain (8.0% CP, 0.21% P, 9.8% NDF) was processed by extrusion (82.8 degrees C, 345 kPa steam pressure for 12 s) or by dry milling to derive fractions rich in germ (13.1% CP, 1.19% P, 17.2% NDF), hulls (8.1% CP, 0.27% P, 32.6% NDF), and endosperm, namely tails (6.6% CP, 0.07% P, 3.6% NDF) and throughs (7.4% CP, 0.15% P, 4.5% NDF). Relative recovery in each fraction was 16, 20, 44, and 20%, respectively. Ileal digestibility of DM, P, and amino acids was determined using diets containing 7.0% CP from soybean meal and 5.3% CP from one of the test products. To allow for determination of standardized ingredient, ileal digestibility, basal endogenous AA losses were determined using a protein-free diet (74.6% cornstarch and 18.7% sucrose). Soybean meal ileal digestibility was determined using a diet (12.3% CP) based on soybean meal (23.3%). Eight barrows (27 +/- 2 kg) fitted with T-cannulas were fed 8 experimental diets (5-d adaptation and 2-d collection period) such that each diet was evaluated in at least 5 barrows. Relative to corn (77.9 +/- 1.2%), ileal digestibility of DM was greater for extruded corn (82.5%; P = 0.02), tails (85.9%; P < 0.01), and throughs (85.0%; P < 0.01), but it was lower for hulls (62.2%; P < 0.01) and germ (51.1%; P < 0.01). For P, corn (41.6 +/- 9.5%), throughs (47.2%), and hulls (57.3%) had similar ileal digestibility, but germ (7.9%) had lower ileal digestibility (P = 0.02) than corn; tails (27.6%) and extruded corn (23.5%) were not different from corn or germ but were lower than throughs and hulls. For total AA, corn (84.7 +/- 2.4%), throughs (84.3%), and hulls (85.8%) had similar ileal digestibility, but germ (76.6%) had lower ileal digestibility (P < 0.01) than corn; tails (82.0%) and extruded corn (81.7%) were intermediate. In conclusion, germ and hulls have a low ileal DM digestibility; germ also has low AA and P digestibility. Extrusion improved the ileal DM digestibility of corn. To maximize the ileal digestibility, removal of germ and hull from corn or extrusion of corn may thus be of interest.  相似文献   

15.
Bacillus coagulans GBI-30, 6086 is a commercially available spore-forming non-toxigenic microorganism approved for use in dog foods with high resiliency to stresses associated with commercial manufacturing. The objectives of this research were to examine the effect of B. coagulans on stool quality, nutrient digestibility, and intestinal health markers in healthy adult dogs. Extruded diets containing graded levels of B. coagulans applied either to the base ration before extrusion or to the exterior of the kibble as a topical coating after extrusion were randomly assigned to 10 individually housed adult beagle dogs (7 castrated males and 3 spayed females) of similar age (5.75 ± 0.23 yr) and body weight (12.3 ± 1.5 kg). The study was designed as a 5 × 5 replicated Latin square with 16-d adaptation followed by 5-d total fecal collection for each period. Five dietary treatments were formulated to deliver a dose of 0-, 6-, 7-, 8-, and 9-log10 colony-forming units (CFU) per dog per day for the control (CON), extruded B. coagulans (PEX), and low, moderate, and high B. coagulans coating levels (PCL, PCM, and PCH), respectively. Food-grade TiO2 was added to all diets at a level of 0.4% to serve as an indigestible dietary marker for digestibility calculations. Data were analyzed using a mixed model through SAS (version 9.4, SAS Institute, Inc., Cary, NC) with treatment as a fixed effect and room (i.e., replicate), period, and dog(room) as random effects. Apparent total tract digestibility of organic matter, crude protein, crude fat, and gross energy calculated by the marker method were numerically greatest for dogs fed the 9-log10 dose treatment with increases (P < 0.05) observed in gross energy and organic matter digestibility compared with the negative control. No significant differences were observed in food intake, stool quality, fecal pH, fecal ammonia, fecal short-chain fatty acids, or branched-chain fatty acids for the extruded B. coagulans treatment (PEX) or the coated B. coagulans treatments (PCL, PCM, and PCH) compared with CON. These results suggest that B. coagulans has a favorable impact on nutrient digestibility and no apparent adverse effects when added to extruded diets at a daily intake level of up to 9-log10 CFU in healthy adult dogs.  相似文献   

16.
This experiment was designed to evaluate the effects of selected soybean (SB) processing byproducts (gums, oil, soapstock, weeds/trash) when added back to soybean meal (SBM) during processing on the resulting nutrient composition, protein quality, nutrient digestibility by swine, and true metabolizable energy (TMEn) content and standardized AA digestibility by poultry. To measure ileal DM and nutrient digestibility, pigs were surgically fitted with a T-cannula in the distal ileum. The concentration of TMEn and the standardized AA digestibility by poultry were determined using the precision fed cecectomized rooster assay. Treatments in the swine experiment included SBM with no by-products; SBM with 1% gum; SBM with 3% gum; SBM with 0.5% soapstock; SBM with 1.5% soapstock; SBM with 2% weeds/trash; SBM with a combination of 3% gum, 1.5% soapstock, and 2% weeds/trash; SBM with 5.4% soybean oil; and roasted SB. A 10 x 10 Latin square design was utilized. The experiment was conducted at the University of Illinois, Urbana-Champaign, and at The Ohio State University, Columbus. In the swine experiment, apparent ileal DM, OM, CP, and AA digestibilities were reduced (P < 0.05) when pigs consumed the combination by-product diet compared with the diet containing no by-products. Apparent ileal digestibilities of DM, CP, and total essential, total nonessential, and total AA were lower (P < 0.05) for any diet containing by-products compared with the diet with no by-products. Apparent ileal digestibilities of DM, OM, CP, and AA were lower (P < 0.05) for the roasted SB-compared with the SB oil-containing diet. In the rooster experiment, TMEn values were greater (P < 0.05) for roasted SB compared with SBM with no by-products and increased linearly as the addition of soapstock increased. Individual, total essential, total nonessential, and total AA digestibilities were lower (P < 0.05) for roosters fed roasted SB versus SBM devoid of by-products. Gums, soapstock, and weeds/trash reduce the nutritive value of the resultant meal when they are added back during processing.  相似文献   

17.
Six ileal-cannulated pigs that averaged 100 kg BW and 16 adult cecectomized cockerels that averaged 2.35 kg BW were used to determine apparent and true digestibilities of amino acids (AA) in a complete crystalline AA mixture and in casein. A protein-free (PF) diet was included as a treatment to estimate endogenous AA losses. Fasted cockerels were compared to cockerels fed PF diets for calculation of true digestibility of AA in cockerels. For the AA diet, true digestibility of indispensable AA in the pig ranged from a low of 97.2% for leucine to a high of 100.5% for arginine (Arg). True digestibility of indispensable AA in casein ranged from a low of 93.5% for isoleucine (Ile) to a high of 99.9% for Arg. Correcting for endogenous losses increased digestibilities of lysine (Lys) and threonine (Thr) in pigs fed the AA diet by 2.4 and 7.1%, respectively, and increased Lys and Thr digestibility in pigs fed the casein diet by 1.8 and 6.1%, respectively. Feeding a PF diet to chickens to correct for endogenous losses resulted in higher true digestibility values for all AA with the exception of tryptophan, methionine, and Arg than those obtained using fasted animals. True digestibilities of Thr were 88.3 and 86.6% for AA and casein diets, respectively, using fasted controls but were 97.5 and 94.5% when the PF control was used. Proline digestibility was increased (P < .05) substantially in both pigs and cockerels when the PF control was used to correct for endogenous AA losses. Regardless of species, Ile in casein had a lower true digestibility value than any other indispensable AA. The results of this study indicated that true digestibilities of AA in a mixture of crystalline AA and in casein are essentially 100% in both pigs and cockerels.  相似文献   

18.
Cereal grains represent 30 to 60% of the DM of many companion animal diets. Once incorporated into a diet, the starch component of these grains can provide an excellent source of ME. However, crystallinity and form of starch are variable and can cause incomplete digestion within the gastrointestinal tract. Diets fed in this experiment included one of six high-starch flours as the main source of carbohydrate. The flours originated from barley, corn, potato, rice, sorghum, and wheat. The diets were extruded and kibbled. Starch fraction concentrations of flours consisted of nearly 100% rapidly digestible starch (RDS) and slowly digestible starch (SDS) combined. Starch fraction concentrations of diets paralleled concentrations in flours. Flours varied widely in concentrations of CP, fat, starch, and total dietary fiber. Ileal OM and CP digestibilities were lowest for the potato flour treatment (74 and 64%, respectively). Ileal and total tract starch digestibilities were different (P<.05) among treatments; however, the starch component of all diets was nearly completely digested (>99%). Total tract digestibility of DM and OM was lowest for sorghum (80 and 84%, respectively) compared to all other diets. Crude protein digestibility was highest for corn (87%). Wet fecal weights tended (P<.08) to be greatest for dogs fed the barley treatment (175 g/d). However, dry fecal weights (dried at 55 degrees C) were greatest for dogs consuming the sorghum diet (51 g/d). Fecal scores were consistently greater (i.e., looser stools) for the barley treatment. Any of these flours could be used without negative effects on digestion at either the ileum or in the total tract. Fecal consistency data for dogs consuming the barley treatment indicate that diets containing large amounts (>50%) of barley may not be advantageous for dog owners who house their animals indoors for most of the day.  相似文献   

19.
Human-grade (HG) pet foods are commercially available, but they have not been well studied. Our objective was to determine the apparent total tract digestibility (ATTD) of HG pet foods and evaluate their effects on fecal characteristics, microbiota, and metabolites, serum metabolites, and hematology of dogs. Twelve dogs (mean age = 5.5 ± 1.0; BW = 11.6 ± 1.6 kg) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). The diets included 1) Chicken and Brown Rice Recipe (extruded; Blue Buffalo); 2) Roasted Meals Tender Chicken Recipe (fresh; Freshpet); 3) Beef and Russet Potato Recipe (HG beef; JustFoodForDogs); and 4) Chicken and White Rice Recipe (HG chicken; JustFoodForDogs). Each period consisted of 28 d, with a 6-d diet transition phase, 16 d of consuming 100% of the diet, a 5-d phase for fecal collection, and 1 d for blood collection. All data were analyzed using the Mixed Models procedure of SAS 9.4. Dogs fed the extruded diet required a higher (P < 0.05) daily food intake (dry matter basis, DMB) to maintain BW. The ATTD of dry matter (DM), organic matter (OM), energy, and acid-hydrolyzed fat (AHF) were greater (P < 0.05) in dogs fed the HG diets than those fed the fresh diet, and greater (P < 0.05) in dogs fed the fresh diet than those fed the extruded diet. Crude protein ATTD was lower (P < 0.05) for dogs fed the extruded diet than those fed all other diets. Dogs fed the extruded diet had greater (P < 0.05) fecal output (as-is; DMB) than dogs fed fresh (1.5–1.7 times greater) or HG foods (2.0–2.9 times greater). There were no differences in fecal pH, scores, and metabolites, but microbiota were affected by diet. Dogs fed HG beef had higher (P < 0.05) relative abundance of Bacteroidetes and lower (P < 0.05) relative abundance of Firmicutes than dogs fed the fresh or HG chicken diets. The Actinobacteria, Fusobacteria, Proteobacteria, and Spirochaetes phyla were unchanged (P > 0.05), but diet modified the relative abundance of nearly 20 bacterial genera. Similar to previous reports, these data demonstrate that the fecal microbiota of dogs fed HG or fresh diets is markedly different than those consuming extruded diets, likely due to ingredient, nutrient, and processing differences. Serum metabolites and hematology were not greatly affected by diet. In conclusion, the HG pet foods tested resulted in significantly reduced fecal output, were highly digestible, maintained fecal characteristics, serum chemistry, and hematology, and modified the fecal microbiota of dogs.  相似文献   

20.
Several experiments were conducted to evaluate the protein quality of various raw and rendered animal by-product meals commonly used in companion animal diets. Six freeze-dried raw animal meals (beef lungs, pork lungs, sheep lungs, pork livers, oceanfish, chicken necks) and 3 rendered animal meals (lamb meal, regular ash poultry by-product meal, and low ash poultry by-product meal) were fed in chick assays to determine Lys and TSAA bioavailability, protein efficiency ratio (PER), and net protein ratio (NPR). Each experimental diet was offered to 4 replicates of 5 chicks per pen in all growth assays. Furthermore, each animal by-product meal was fed to mature White Leghorn roosters for determination of true AA digestibility. All freeze-dried, raw animal meals were offered to 5 replicate roosters, and all rendered animal meals were offered to 4 replicate roosters. Most raw animal meals exhibited moderate to high protein quality. Lysine bio-availabilities ranged from 86 to 107% and 70 to 99% for raw and rendered animal meals, respectively. Bio-availability of TSAA ranged from 64 to 99% and 61 to 78% for raw and rendered animal meals, respectively. The PER values ranged from 2.83 to 4.03 and 2.01 to 3.34 for raw and rendered animal meals, respectively. The NPR values ranged from 3.83 to 4.8 and 3.05 to 4.12 for raw and rendered animal meals, respectively. Despite a numeric increase in NPR vs. PER values, the overall ranking of animal meals remained similar. Lamb meal had the poorest PER and NPR values, and pork lungs had the greatest values. Total essential AA digestibility and total AA digestibility ranged from 93.6 to 96.7 and 90.3 to 95.5%, respectively, for raw animal meals and 84.0 to 87.7 and 79.2 to 84.8%, respectively, for rendered animal meals. Rendered animal meals generally had lower protein quality than raw animal meals, with lamb meal consistently having the poorest protein quality and pork livers having the greatest protein quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号