首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Woodpeckers (family Picidae) show promise as indicators of avian diversity in forests because their populations can be reliably monitored, and their foraging and nesting activities can positively influence the abundance and richness of other forest birds. A correlation between woodpecker richness and richness of forest birds is known to exist at the landscape scale, but uncertainty remains whether this correlation occurs at the smaller stand-level spatial scales where forest management activities take place. We used data collected under a diverse range of forest types, harvest treatments, and forest health conditions during a long-term study of bird communities in interior British Columbia, Canada, to examine two basic questions: (1) at the level of individual forest stands, is woodpecker richness correlated with bird richness (measured as richness of all other bird species)? and (2) do woodpecker richness and bird richness have similar habitat correlates? Bird richness was positively correlated with woodpecker richness (β = 0.59, SE = 0.22, 95% CI = [0.14 1.03]). Richness of both woodpeckers and all other birds were positively correlated with tree species richness and negatively correlated with density of pines, and the effect for forest harvest type was similar for both measures of avian richness (uncut < partial harvest < clearcut with reserves). The effect of density of lodgepole pines killed by mountain pine beetles differed between the two richness measures, being positive for woodpecker richness and negative for forest bird richness. We conclude that the richness of woodpeckers is indeed correlated with the richness of other birds at the stand-level, and can serve as a reliable indicator of overall bird richness in most forest stands and conditions, except during insect outbreaks when differential responses by woodpeckers and the rest of the avian community may decouple the relationship between bird richness and woodpecker richness.  相似文献   

2.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

3.
We examined the influence of habitat characteristics at the microhabitat, macrohabitat, and landscape spatial scales on small mammals occurring in 12 forest patches within four agricultural landscapes of Prince Edward Island (Canada). Landscape features were important determinants of small mammal variables at all levels, but especially at the community level, whereas microhabitat characteristics tended to influence small mammals at the population level. Macrohabitat characteristics had only minor effects on small mammals occurring in our study sites. Species richness was most strongly influenced by patch area, reaching a threshold at forest patches of roughly 8-10 ha. The proportions of both forest and hedgerow cover within 400 m from the study site were also significant determinants of small mammals species diversity, possibly reflecting their ability to perceive suitable habitats, forage in areas outside the forest patches, and/or disperse in agricultural landscapes. At least one small mammal species (Napaeozapus insignis) benefitted from the presence of agricultural fields at distances up to 1000 m. Tamias striatus benefitted from the presence of hedgerow cover within 400 m from forest patches, possibly allowing them to move between forest patches. Clearly, the maintenance of forest patches of 8-10 ha and of forest cover within 400 m from them is fundamental for the conservation of small mammals inhabiting agricultural landscapes on the Island. Conservation strategies should also consider the establishment of more effective regulations to prevent and/or reduce hedgerow removal on Prince Edward Island.  相似文献   

4.
North American beavers (Castor canadensis) were introduced into southern South America in 1946. Since that time, their populations have greatly expanded. In their native range, beavers shape riparian ecosystems by selectively feeding on particular plant species, increasing herbaceous richness and creating a distinct plant community. To test their effects as exotic engineers on sub-Antarctic vegetation, we quantified beaver impacts on tree canopy cover and seedling abundance and composition, as well as their impacts on herbaceous species richness, abundance and composition on Navarino Island, Cape Horn County, Chile (55°S). Beavers significantly reduced forest canopy up to 30 m away from streams, essentially eliminating riparian forests. The tree seedling bank was greatly reduced and seedling species composition was changed by suppressing Nothofagus betuloides and Nothofagus pumilio, but allowing Nothofagus antarctica. Herbaceous richness and abundance almost doubled in meadows. However, unlike beaver effects on North American herbaceous plant communities, much of this richness was due to invasion by exotic plants, and beaver modifications of the meadow vegetation assemblage did not result in a significantly different community, compared to forests. Overall, 42% of plant species were shared between both habitat types. Our results indicate that, as predicted from North American studies, beaver-engineering increased local herbaceous richness. Unlike in their native range, though, they did not create a unique plant community in sub-Antarctic landscapes. Plus, the elimination of Nothofagus forests and their seedling bank and the creation of invasion pathways for exotic plants together threaten one of the world’s most pristine temperate forest ecosystems.  相似文献   

5.
6.
Unprecedented deforestation is currently underway in Southeast Asia. Since this trend is likely to continue, it is critical to determine the value of human-modified habitats (e.g., mixed-rural habitat) for conserving the regional native forest avifauna. The impacts of ongoing deforestation on the highly endemic avifauna (33%) of Sulawesi (Indonesia) are poorly understood. We sampled birds in primary and secondary forests in the Lore Lindu National Park in central Sulawesi, as well as the surrounding plantation and mixed-rural habitats. Species richness, species density and population density of forest birds showed a consistent decreasing trend in the following order: primary forests > secondary forests > mixed-rural habitat > plantations. Although primary forests contained the highest proportion (85%) of a total of 34 forest species recorded from our point count surveys, 40-yr old secondary forests and the mixed-rural habitat showed high conservation potential, containing 82% and 76% of the forest species, respectively. Plantations recorded only 32% of the forest bird species. Fifteen forest species had the highest abundance in primary forests, while two species had higher abundance outside primary forests. Our simulations revealed that all forest birds that were sensitive to native tree cover could be found in areas with at least 20% continuous native tree cover. Our study shows that although primary forests have the highest conservation value for forest avifauna, the potential of degraded habitats, such as secondary forests and the mixed-rural habitat, for conserving forest species can be enhanced with appropriate land use and management decisions.  相似文献   

7.
We investigated how vegetation features and temporal variation influenced web spider richness, abundance and composition along an edge between Araucaria forest and pasture in southern Brazil. Web spiders and vegetation were surveyed four times over a 1-year period, in five 5 × 5 m plots randomised in four locations: 50 m into the pasture, 0, 50 and 250 m into the forest. We collected a total of 836 web spiders (33 morphospecies and six families). We found different web spider assemblages occurring at the pasture edge and forest interior. The richness and abundance of web spiders decreased up to 50 m towards the forest interior in all seasons, and we found a positive influence of vegetation richness on web spider abundance. In conclusion, web spider assemblages are influenced by an edge gradient, this pattern is consistent throughout the year and is strongly related to vegetation features.  相似文献   

8.
Habitat loss and fragmentation promote relatively predicable shifts in the functional signature of tropical forest tree assemblages, but the full extent of cascading effects to biodiversity persistence remains poorly understood. Here we test the hypotheses that habitat fragmentation (a) alters the relative contribution of tree species exhibiting different reproductive traits; (b) reduces the diversity of pollination systems; and (c) facilitates the functional convergence of reproductive traits between edge-affected and early-secondary forest habitats (5-32 years old). This study was carried out in a severely fragmented 670-km2 forest landscape of the Atlantic forest of northeastern Brazil. We assigned 35 categories of reproductive traits to 3552 trees (DBH ? 10 cm) belonging to 179 species, which described their pollination system, floral biology, and sexual system. Trait abundance was calculated for 55 plots of 0.1 ha across four habitats: forest edges, small forest fragments (3.4-83.6 ha), second-growth patches, and core tracts of forest interior within the largest available primary forest fragment (3500 ha) in the region. Edge-affected and secondary habitats showed a species-poor assemblage of trees exhibiting particular pollination systems, a reduced diversity of pollination systems, a higher abundance of reproductive traits associated with pollination by generalist diurnal vectors, and an elevated abundance of hermaphroditic trees. As expected, the reproductive signature of tree assemblages in forest edges and small fragments (edge-affected habitats), which was very similar to that of early second-growth patches, was greatly affected by both habitat type and plot distance to the nearest forest edge. In hyper-fragmented Atlantic forest landscapes, we predict that narrow forest corridors and small fragments will become increasingly dominated by edge-affected habitats that can no longer retain the full complement of tree life-history diversity and its attendant mutualists.  相似文献   

9.
Effect of selective logging on vascular epiphyte diversity was investigated in a moist lowland forest of Eastern Himalaya. Three epiphytic groups viz. orchids, pteridophytes and non-orchid angiosperm epiphytes were specifically studied in closed, selectively logged and in unlogged forests with treefall gaps. Logging reduced the structural complexity of the forests and altered their microclimate. With logging, there was a general decline in richness and abundance of epiphytes except orchids. The abundance and species composition of pteridophytes and non-orchid angiosperm epiphytes were related to microclimate and substrate features while their richness were correlated only with canopy cover. In contrast, orchid species composition was related to forest structure. A combination of management strategies is required for conservation of all epiphyte groups. A mosaic of logged and unlogged forest patches with undisturbed forests in proximity would maintain the diversity of pteridophytes and other angiosperms. However, for full representation of orchids, it is necessary to maintain the structural diversity of the tree forms.  相似文献   

10.
The relative effects of road traffic and forest cover on anuran populations   总被引:1,自引:0,他引:1  
Road traffic and the loss of forests are both known to have negative effects on anurans. However, the relative importance of these two predictors is poorly understood because forest cover in the landscape is usually negatively correlated with the density of roads and traffic. To evaluate the independent effects of traffic and forest cover, we selected 36 ponds near Ottawa, Canada, at the center of four landscape types: low forest/low traffic; low forest/high traffic; high forest/low traffic; and high forest/high traffic, where traffic and forest cover were measured within 100-2000 m of the edge of each pond. We surveyed all ponds in 2005 and re-surveyed a 23-pond subset in 2006. The negative association between species richness and traffic density was stronger (partial R2 = 0.34; P < .001) than the positive association of species richness with forest cover (partial R2 = 0.10; P > .05) in the landscape. Three of six common species showed stronger associations with traffic density than with forest cover - Bufo americanus, Rana pipiens, and Hyla versicolor; two species - Pseudacris crucifer and Rana sylvatica - showed stronger associations with forest cover than with traffic; while Rana clamitans showed similar associations with traffic and forest cover. Our results show that the overall negative effect of traffic on anuran populations in northeastern North America is at least as great as the negative effect of deforestation, and also that the relative effects of these two predictors on anuran abundance vary between species.  相似文献   

11.
Bacteria in peat forest soil play important role in global carbon cycling. The distribution of bacteria population in different peat soils as a whole and how forest management practices alter the bacterial populations are still poorly known. Using pyrosequencing analysis of 16S rRNA gene, we quantified the diversity and community structure of bacteria in eight peat forest soils (pristine and drained) and two mineral forest soils from Lakkasuo, Finland with either spruce-dominant or pine-dominant tree species. In total, 191,229 sequences which ranged from 15,710 to 22,730 per sample were obtained and affiliated to 13 phyla, 30 classes and 155 genera. The peat forest soils showed high bacterial diversity and species richness. The tree species seems to have more strong impact on the bacterial diversity than the type of peat soil, which drives the changes in bacterial community structure. The dominant taxonomic groups across all soils (>1% of all sequences) were Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes and Verrucomicrobia. The relative abundance of bacteria phylum and genus differed between soil types and between vegetation. Significant differences in relative abundance of bacteria phyla were only found for Gemmatimonadetes and Cyanobacteria between the pristine and the drained peat forest soils. At genus level, the relative abundance of several genera differed significantly between the peat soils with same or different tree species, including Burkholderia, Caulobacter, Opitutus, Mucilanginibacter, Acidocella, Mycobacterium, Bradyrhizobium, Dyella and Rhodanobacter.  相似文献   

12.
Strict protected areas are a critical component in global biodiversity conservation, but the future of biodiversity conservation may well depend upon the ability to experiment successfully with a range of institutional forms, including those that permit human use. Here, we focus on forest commons in human-dominated landscapes and their role in biodiversity conservation at the same time as they provide livelihood benefits to users. Using a dataset of 59 forest commons located in Bhutan, India, and Nepal, we estimated tree species richness from plot vegetation data collected in each forest, and drew on interview data to calculate a livelihoods index indicating the overall contribution of each forest to villager livelihoods for firewood, fodder, and timber. We found that tree species richness and livelihoods were positively and significantly correlated (rho = .41, p < 0.001, N = 59). This relationship held regardless of forest type or country, though significance varied somewhat across these two factors. Further, both benefits were similarly associated with several drivers of social-ecological change (e.g., occupational diversity of forest users, total number of users, and forest size), suggesting identification of potential synergies and complexes of causal mechanisms for future attention. Our analysis shows that forest commons in South Asia, explicitly managed to provide livelihoods for local populations, also provide biodiversity benefits. More broadly, our findings suggest that although strict protected areas are effective tools for biodiversity conservation, a singular focus on them risks ignoring other resource governance approaches that can fruitfully complement existing conservation regimes.  相似文献   

13.
Agricultural landscapes with spatial and temporal variations interact with each other to affect the existing biodiversity. Though rice fields provide important habitats for birds all over the world, studies so far have rarely explored the effects of landscape heterogeneity on bird species in rice paddy areas. This study investigated the effects of habitat cover and landscape variables on the species richness and the abundance of birds in rice paddy areas in Japan. Data on bird occurrence and the environment were collected at 32 grid squares (1 × 1 km) in the Tone River basin. The richness and the abundance of agricultural wetland species were particularly high in landscapes with large areas of rice fields in summer, when rice fields were irrigated, but in those with large areas of open water in winter, when rice fields were drained. It is important to maintain a combination of rice fields and open water to satisfy multiple habitat requirements by agricultural wetland species throughout the year. Grassland species were positively associated with a rich diversity of land cover including fallow fields and open water, indicating the importance of a simultaneous existence of multiple landscape elements. Forest cover in landscapes positively affected edge species and woodland species. Since forest cover had a relatively strong correlation with edge density, the responses of bird species to changes in forest cover and edge density need to be explored further. This study illustrates the importance of spatial and temporal landscape complementation for bird species in rice paddy areas.  相似文献   

14.
In highly-modified agricultural landscapes, regrowth (secondary) forest on abandoned farmland offers the potential for passive landscape restoration for biodiversity conservation. While numerous studies have investigated the ecological values of regrowth for fauna recovery at the local-level (1-10 ha), there is a dearth of studies quantifying the contribution of regrowth forest at the landscape-level (100-1000s ha). To address this critical knowledge gap we question how the age and amount of regrowth forest in the landscape influence species richness and abundance of mature forest dependent species? Using woodland dependent birds in fragmented sub-tropical brigalow landscapes in southern Queensland, Australia, we applied model averaging and hierarchical partitioning analyses to test and rank the relative importance of the amount of regrowth forest in the landscape in three age classes (<15, 15-30, and >30 years) compared to local (grazing disturbance, abundance of aggressive miners, mistletoe abundance and patch age) and landscape measures of habitat (amount of mature forest and number of mature forest patches). Response variables included the species richness of woodland dependent birds and sub-groupings of foraging guilds, and the abundance of selected individual species. The importance of explanatory variables differed considerably among response groups. Local attributes, such as patch age and the abundance of mistletoe plants, had the strongest influences on woodland dependent birds. However, we found that the amount of regrowth forest, particularly >30 years, also had a strong influence on both species richness and abundance. This study confirms that regrowth, especially older regrowth, can make an important contribution to landscape restoration in highly-modified agricultural landscapes.  相似文献   

15.
The Hainan gibbon (Nomascus hainanus) is one of the most endangered primates in the world, confined to mature natural forest in Hainan Island, China. We assessed changes in habitat condition on the island between 1991 and 2008, using vegetation maps generated by remote-sensing images. We defined forest suitable for gibbons based on composition, tree size and canopy cover. During the 17-year period, the area of suitable gibbon forest decreased by 540 km2 (35%) across the whole island, and by 6.3 km2 (7%) in the locality of the sole remaining gibbon population at Bawangling National Nature Reserve. The forest patches large enough (>1 km2) to support a gibbon group decreased from 754 km2 to 316 km2 in total area, and from 92 to 64 in number. Suitable natural forest was mainly replaced by plantations below 760 m, or degraded by logging, grazing and planting of pines above 760 m. Meanwhile, forests in former confirmed gibbon areas became more fragmented: mean area of patches decreased by 53%. We mapped the patches of natural forest in good condition which could potentially support gibbons. We recommend a freeze on further expansion of plantations between core patches at Bawangling, Jiaxi-Houmiling and Yinggeling Nature Reserves in accordance with forest protection regulations; establishment of nature reserves in currently unprotected natural forest patches elsewhere in line with the local government’s nature reserve expansion policy; and active natural-forest restoration between remaining fragments at Bawangling.  相似文献   

16.
Over the past few decades, the montane forests of Peninsula Malaysia have been severely impacted by the cultivation of exotic crops and urban sprawl. To guide conservation initiatives, montane bird communities were studied to determine their response along a disturbance gradient with the aim of identifying key factors influencing their distribution. Habitat types surveyed included primary and secondary montane forests, a tea plantation, rural, and urban areas in Cameron Highlands and Fraser’s Hill. Response variables included species richness and density quantified via point counts and mistnet surveys. Explanatory variables measured were related to vegetation structure, food abundance and land-use cover. Estimated ‘true’ species richness was higher for pristine and minimally disturbed sites, lower in tea plantation and lowest in heavily developed town centres. Nonmetric multidimensional scaling revealed that both vegetation structure (e.g. canopy density) and land-use cover (e.g. proportion of forest cover) influence species distribution; certain invasive lowland birds were tolerant of extreme development and native montane birds, in general, endured only slight habitat disturbances. A simulation indicated that montane forest dependant species richness started to decline when more than 20% of the canopy cover was lost. Less than a third of the species richness remained when more than 40% of the canopy cover was cleared. The logistic regression model suggested that sensitive species nested lower, were restricted to montane habitats and foraged in mid or high canopy. The dominance of lowland invasives in highly developed urban sites reveals that homogenisation of bird communities can occur even at higher altitudes (>1400 m a.s.l.). The results indicated that native montane birds communities are sensitive to habitat loss and degradation. Thus, any development in the highlands must proceed with minimal disturbance to montane forests, of which, keeping the canopy cover intact should be a crucial consideration.  相似文献   

17.
Afforestation often causes direct habitat losses for farmland birds of conservation concern, but it is uncertain whether negative effects also extend significantly into adjacent open land. Information is thus required on how these species react to wooded edges, and how their responses are affected by edge and landscape characteristics. These issues were examined in Mediterranean arable farmland, using bird counts at 0, 100, 200, 300 and >300 m from oak, pine and eucalyptus edges, embedded in landscapes with variable amounts and spatial configurations of forest plantations. Bird diversity declined away from edges, including that of woodland, farmland and ground-nesting birds. Positive edge responses were also found for overall and woodland bird abundances, and for five of the nine most widespread and abundant species (Galerida larks, stonechat, linnet, goldfinch and corn bunting). Strong negative edge effects were only recorded for steppe birds, with reduced abundances near edges of calandra larks and short-toed larks, but not of little bustards and tawny pipits. Edge contrast affected the magnitude of edge effects, with a tendency for stronger responses to old and tall eucalyptus plantations (hard edges) than to young and short oak plantations (soft edges). There were also species-specific interactions between edge and fragmentation effects, with positive edge responses tending to be strongest in less fragmented landscapes, whereas steppe birds tended to increase faster away from edges and to reach the highest species richness and abundances in large arable patches. Results suggest that forest plantations may increase overall bird diversity and abundance in adjacent farmland, at the expenses of steppe birds of conservation concern. Clustering forest plantations in a few large patches and thus reducing the density of wooded edges at the landscape-scale might reduce such negative impacts.  相似文献   

18.
Forest management policies in Mediterranean areas have traditionally encouraged land cover changes, with the establishment of tree cover (Aleppo pine) in natural or degraded ecosystems for soil conservation purposes: to reduce soil erosion and to increase the vegetation structure. In order to evaluate the usefulness of these management policies on reduced erosion in semi-arid landscapes, we compared 5 vegetation cover types (bare soil, dry grassland, shrublands, afforested dry grasslands and afforested thorn shrublands), monitored in 15 hydrological plots (8 × 2 m), in the Ventós catchment (Alicante, SE Spain), over 4 years (1996 to 1999). Each cover type represented a different dominant patch of the vegetation mosaic on the north-facing slopes of this catchment. The results showed that runoff coefficients of vegetated plots were less than 1% of the precipitation volume; whereas runoff in denuded areas was nearly 4%. Soil losses in vegetation plots averaged 0.04 Mg ha− 1 year− 1 and increased 40-fold in open-land plots. The evaluation of these forest management policies, in contrast with the natural vegetation communities, suggests that: (1) thorn shrublands and dry grassland communities with vegetation cover could control runoff and sediment yield as effectively as Aleppo pine afforestation in these communities, and (2) afforestation with a pine stratum improved the stand's vertical structure resulting in pluri-stratified communities, but reduced the species richness and plant diversity in the understorey of the plantations.  相似文献   

19.
Differences in alpha and beta bat diversity among montane rainforest and five shaded coffee plantations under different management regimes, as well as some environmental factors and vegetation parameters influencing bat richness, were evaluated for the first time in southeastern Chiapas, Mexico. In each site, bats were captured every 2 months from March 2004 to July 2005, with six mist-nets, during two nights, using the capture-recapture method. We captured 2970 individuals of 43 bat species. Montane rainforest had the greatest alpha diversity (H′ = 2.681; n = 37), whereas alpha diversity was similar among coffee plantations (H′ = 2.229-2.364; n = 23-26). The number of frugivorous and nectarivorous species was similar among the sites; the greatest exchange in species composition (beta diversity) occurred for insectivorous bats, which reduce their number in coffee plantations as pesticides are incorporated. Bat richness species was significantly related to the number of vegetation strata, height, and cover of trees. We suggest that coffee plantations could act as corridors, facilitating connection among different elements of the landscape in the Sierra Madre de Chiapas for some frugivorous and nectarivorous bats.  相似文献   

20.
I examined the lingering effects of past timber management practices on the vegetation structure and bird community of Kibale National Park, Uganda. I compared four forest treatments: unlogged native forest (UL), two that were selectively logged at low (LL) and high (HL) intensities in the 1960s, and a conifer plantation (PL). Forest-dependent birds were best represented at UL. LL was similar to UL in both vegetation structure and bird community composition, although some forest-dependent bird species were missing from the former. HL had significantly less canopy closure and lower tree density than other plots as a result of the combination of extensive secondary damage and natural disturbance patterns that prevented the reclosure of the forest canopy. Thirty-one percent of the forest-dependent bird species observed during the study were not detected at HL. At PL, bird species richness and bird abundance were about a third of those observed in other plots. There were significant correlations between heterogeneity of tree distribution (horizontal heterogeneity) and abundance and species richness of birds across plots. Abundance and species richness of all, forest-dependent, and forest generalist birds were highest in plots with intermediate measures of horizontal heterogeneity, which were mostly unlogged or lightly logged. If reduced-impact logging practices are not implemented during selective logging operations in tropical forests, consequent long-term changes in vegetation structure may result in significant declines in the populations of some forest-dependent species, as was observed in Kibale National Park.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号