首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]研究 AL 型雄性不育育性恢复基因的遗传模型.[方法]通过 AL 型小麦不育系(♀)与恢复系(♂)杂交,获得杂交后代分离群体,采用植物数量性状主基因+多基因混合遗传模型分离分析法对亲本 P1 和 P2 以及杂种后代 Fl 和 F2 群体 4 个世代的育性进行分析.[结果]AL 型育性恢复基因的最适遗传模型为 E-1,育性恢复基因由两对加性-显性-上位性主基因和加性-显性多基因共同控制,主基因遗传率为 85.92;.[结论]小麦 AL 型雄性不育育性恢复基因由两对主效基因和多对微效基因控制,主效基因遗传力较高,在小麦育种中有较高的利用价值.  相似文献   

2.
利用主基因+多基因混合遗传模型多世代联合分析方法,对万寿菊W217×W203组合的P1、P2、F1、B1、B2和F2共6个世代的叶黄素含量进行遗传分析。结果表明,色素万寿菊叶黄素含量性状最优遗传模型为两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因遗传效应为主,多基因效应为辅。主基因加性效应、显性效应和上位性效应作用很大,在B1群体中主基因遗传率为78.47%,B2群体中主基因遗传率为86.86%、多基因遗传率11.77%,F2群体中主基因遗传率为60.82%、多基因遗传率38.42%。可见,色素万寿菊叶黄素含量性状遗传变异中主基因作用大于多基因作用。  相似文献   

3.
[目的]研究番茄果实的硬度遗传规律。[方法]选择2个番茄果实硬度显著不同的番茄品系,通过P1、P2、F1、F2、B1和B26个世代联合分析的方法,研究番茄硬度的遗传规律。[结果]番茄硬度的遗传符合1对主基因控制的加性-显性模型,主基因加性、显性及显性度分别为:d=17.37,h=-7.96,h/d=-0.46,加性效应为增效,显性效应为负向不完全显性;主基因效应在B1、B2和F23个世代的遗传率分别为88.59%、45.81%和85.62%。[结论]番茄硬度遗传受1对主效基因控制且具有明显的加性、显性效应。  相似文献   

4.
为了揭示小麦籽粒多酚氧化酶活性的遗传特点,应用植物数量性状主基因+多基因混合遗传模型对杂交组合IDO580×宁麦13号、鄂恩1号×IDO580的两套P1、F1、P2、B1、B2和F2的6个世代群体的籽粒多酚氧化酶活性进行了多世代联合分析。结果表明:两组合籽粒多酚氧化酶活性均受2对加性-显性-上位性主基因+加性-显性-上位性多基因(E-0)混合遗传的控制;在两对主基因的一阶遗传参数中,加性效应大于显性效应,但以上位性效应所占比例为最大;在二阶遗传参数中,主基因遗传率远大于多基因遗传率,以主基因遗传为主。在B1、B2和F2的3个分离世代中,以F2世代的主基因遗传率为最高,其在这两个组合中的主基因遗传率分别为80.49%和82.24%。  相似文献   

5.
[目的]为开展水稻耐低磷种质资源的遗传育种研究提供理论依据和遗传基础。[方法]对1个耐低磷水稻基因型和1个低磷敏感基因型,以及它们的正反交F1、RF1及F2后代的根系性状的遗传基础进行研究。[结果]结果表明:F1代的耐低磷性向高值亲本99112偏斜,表现出一定的杂种优势。正反交F1代的表型值几乎没有差异,可以推断为细胞核遗传。F2表现为连续变异性状,即数量性状。[结论]主根长符合E-1模型(2对加性-显性-上位性主基因+加性-显性多基因混合模型),主基因遗传力为62.47%,多基因的遗传力为20.49%;而根干重与根冠比这二个性状符合D-0(1对加性-显性主基因+加性-显性-上位性多基因遗传模型),其主基因遗传力分别为38.73%和59.80%,而多基因的遗传力分别为27.56%和35.60%。  相似文献   

6.
陈凤真 《安徽农业科学》2011,39(5):2620-2622
[目的]为西葫芦果形指数育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1,F1,P2,B1,B2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对6个世代群体果形指数进行多世代联合分析。[结果]2个组合的西葫芦果形指数遗传均为1对加性主基因+加性-显性多基因(D-2)遗传模型,以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果形指数育种宜早代选择。  相似文献   

7.
玉米籽粒淀粉含量主基因+多基因混合遗传模型分析   总被引:1,自引:0,他引:1  
以3个玉米组合济533/PH6WC(组合Ⅰ)、济533/H5818(组合Ⅱ)、2394/PH6WC(组合Ⅲ)的P1、P2、F1、F2、B1、B26世代群体为材料,利用植物数量性状主基因+多基因混合遗传模型,对玉米淀粉含量进行6世代联合遗传分析。结果表明,组合Ⅰ和组合Ⅲ淀粉含量均为E-1模型(2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型),2个组合均表现为以主基因遗传为主,均在F2代主基因+多基因遗传率较高;组合Ⅱ淀粉含量为D-2模型(1对加性主基因+加性-显性多基因模型),在B1世代没有检测到多基因,B2和F2代以多基因遗传为主,在F2代主基因+多基因遗传率较高。  相似文献   

8.
调查玉米GY220×1145组合的RIL群体109个家系(F10;11)及其亲本在2个环境下粗缩病抗性的表型值,运用RIL群体的主基因多基因模型进行遗传分析,探讨玉米粗缩病抗性遗传规律。结果表明:①2008年GY220/1145组合的RILs粗缩病抗性性状的最佳遗传模型为E-1-5模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传;2009年最佳遗传模型为G-0模型,即3对加性-上位性主基因+加性-上位性多基因模型混合遗传。②各主基因效应值不同。③上位性总效应小于主基因总效应。④有单个上位性效应大于单个主基因效应的情形出现。⑤主基因遗传为主,多基因遗传为辅。  相似文献   

9.
甘蓝型油菜白花性状的主基因+多基因遗传分析   总被引:2,自引:1,他引:2  
 【目的】对甘蓝型油菜白花性状进行量化观察,研究其数量遗传特性,为育种利用提供理论依据。【方法】利用扫描仪和颜色提取软件对油菜新鲜花瓣进行处理,获得花瓣颜色特征值(CIE RGB值),选择能反映花瓣颜色差异的B值,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对甘蓝型油菜杂交组合(HW243×HZ21-1和HW243×中油821)的P1、P2、F1、B1、B2和F2世代群体进行分析。【结果】甘蓝型油菜白花性状表现为一数量性状,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因作用为主,多基因的作用相对较小。两对主基因的加性、显性和上位性效应均具有较大的作用。在F2群体中主基因的遗传率为96.94%和95.83%,多基因遗传率为3.93%和2.47%;在B1群体中主基因的遗传率为54.58%和49.57%,多基因遗传率分别为35.64%和46.9%;在B2群体中主基因的遗传率为98.14%和97.67%,多基因遗传率分别为0.98%和2.06%。【结论】甘蓝型油菜白花性状具有数量性状的遗传特性,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因效应为主,多基因效应相对较小。主基因的遗传力较高,受环境影响较小。  相似文献   

10.
辣椒主要病害抗性双列杂交分析   总被引:5,自引:1,他引:5  
 本文用6个亲本,按(1/2)n(n-1)双列杂交法配制15个杂交组合,用Hayman双列杂交分析法对辣椒TMV、CMV、疫病和疮痂病抗性进行遗传参数估算。结果表明,TMV、CMV和疮痂病抗性遗传符合"加性-显性"模型,疫病抗性遗传不符合"加性-显性"模型,还存在显著上位性效应。F1代杂种抗性CMV是纯合的显性基因决定的,疮痂病是杂合的显性基因决定的;疫病抗性F1代杂种显性效应之和和控制性状表现显性的基因组数很少,几乎接近零。  相似文献   

11.
赵刚  吴子恺  王兵伟 《安徽农业科学》2007,35(17):5096-5098,5134
以2个微胚乳超高油玉米组合的P1、F1、P2、B1、B2和F2 6个世代为材料,采用数量性状的主基因+多基因混合遗传模型多世代联合分析法,研究了株高和穗位高的遗传。对2个不同组合的研究结果表明:组合I株高的遗传符合加性-显性-上位性多基因遗传模型;穗位高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为27.27%、37.36%和58.59%。组合II株高的遗传符合1对加性-显性主基因+加性-显性-上位性多基因遗传模型,主基因遗传率在B1、B2和F2分别为18.41%、1.03%和12.61%;穗位高的遗传符合加性-显性-上位性多基因遗传模型。  相似文献   

12.
[目的]为西葫芦果径育种提供依据。[方法]选用西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1,P2,BC1,BC2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对6个世代群体果径进行了多世代联合分析。[结果]2个组合的西葫芦的果径性状遗传为加性-显性-上位性2对主基因(B-1)遗传模型;2个组合F2的主基因遗传率较高,环境影响相对较小。[结论]西葫芦果径育种宜早代选择。  相似文献   

13.
选用吉林农业大学特用玉米研究室育成的糯玉米自交系JN1和JN8组配的P1、P2、F1、B1、B2和F2共6个世代群体为材料,运用主基因+多基因遗传模型和6个世代联合分析方法,对糯玉米支链淀粉含量进行联合分析。结果表明:糯玉米支链淀粉含量性状由2对加性-显性-上位性+加性-显性多基因混合遗传模型控制,主基因遗传率在B1、B2和F2分别为85.35%、53.06%和62.30%,微效多基因遗传率分别为0,0,13.77%,3个世代的主基因遗传率均大于多基因遗传率,糯玉米的支链淀粉含量性状主要受主效基因控制。  相似文献   

14.
以YM型小麦温敏雄性不育系ATM3314与恢复系中国春配制杂交组合,连续2 a对该组合的P1、F1、P2和F2代的育性进行了调查,采用植物数量性状主基因+多基因混合模型4世代联合分析法对YM型小麦温敏雄性不育系育性遗传进行了研究。结果表明,YM型小麦温敏雄性不育系育性受2对加性-显性-上位性主基因+多基因联合控制,主基因遗传率很高,分别为95.62%和90.32%;2008年为加性-显性-上位性多基因控制,2009年为加性-显性多基因控制,多基因遗传率分别为0.058%和6.11%,表明环境对其育性波动有较大影响。  相似文献   

15.
[目的]为西葫芦果长育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果长进行多世代联合分析。[结果]2个组合的西葫芦的果长遗传为1对加性主基因+加性-显性多基因(D-2)遗传模型,组合1以加性效应为主,而组合2以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果长育种宜早代选择。  相似文献   

16.
[目的]为西葫芦果长育种提供依据。[方法]选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F2 6个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果长进行多世代联合分析。[结果]2个组合的西葫芦的果长遗传为1对加性主基因+加性-显性多基因(D-2)遗传模型,组合1以加性效应为主,而组合2以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小。[结论]西葫芦果长育种宜早代选择。  相似文献   

17.
棉花海陆杂交杂种优势的研究与利用是有效改善棉花纤维品质的新途径.以海陆杂交P1、P2、F1、F2、BC1、BC2六个世代为研究材料,采用莫惠栋改进的世代均值分析的加性-显性模型和加性-显性-上位性模型估计有关研究性状的遗传背景效应(m)、加性效应(a)、显性效应(d)、加性×加性上位性效应(i)、加性×显性上位性效应(j)和显性×显性上位性效应(l),并进一步探讨杂种优势产生的遗传机制.试验结果表明衣分的遗传以加性效应为主;单铃重的遗传比较复杂,不符合加性-显性模型和加性-显性-上位性模型;株铃数和皮棉产量均存在加性效应、显性效应、加性×加性上位性效应和显性×显性上位性效应,其遗传方式符合加性-显性-上位性模型;绒长和马克隆值只存在加性效应和显性效应,其遗传方式符合加性-显性模型;比强度、整齐度、伸长率都存在着加性、显性和上位性作用,其遗传方式均符合加性-显性-上位性模型.  相似文献   

18.
利用植物数量性状主基因+多基因混合遗传模型,以高淀粉玉米杂交组合"郑单958"的P1、F1、P2、B1∶2、B2∶2和F2∶36个家系世代为材料,多世代联合分析了高淀粉玉米主要性状的遗传效应。结果表明:穗长、穗位高由多基因控制;百粒重、单穗重、行粒数、株高由1对加性主基因+加性-显性多基因控制;秃尖长由1对加性-显性主基因+加性-显性多基因控制。  相似文献   

19.
普通丝瓜果实性状的遗传分析   总被引:8,自引:1,他引:7  
应用植物数量性状主基因+多基因混合遗传模型对普通丝瓜品种50-5(黑籽短圆筒)×20-4(桂林水瓜)杂交组合6个世代群体的5个果实性状(果柄长、果长、果径、果形指数和单果质量)进行了联合分析,结果表明:50-5 ×20-4组合果柄长的遗传符合2对加性-显性-上位性主基因+加性-显性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.49%、70.53%和82.07%,环境方差占总表型方差的比例分别是31.50%、29.47%和17.92%;果长遗传符合2对加性+显性+上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.85%、84.55%和81.68%,环境方差占总表型方差的比例分别是31.15%、15.44%和18.32%;果径遗传符合2对加性-显性-上位陛主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,73.06%和73.82%.环境方差占总表型方差的比例分别是34.62%、26.94%和26.13%;果形指数遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,62.80%和78.89%,环境方差占总表型方筹的比例分别足34.76%,37.19%和21.11%;单果质量遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基凶遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为70.71%、85.35%和89.64%,环境方差占与总表型方差的比例分别是29.29%、14.64%和10.36%.果柄长性状的主基因遗传率较小,宜采用个体选择法(基因型选择法),宜在分离晚世代进行选择;果长、果径、果形指数和单果质量性状的主基因遗传率较大,宜采取混合选择法(表型选择法),可在分离早世代进行选择;且宜对5个果实性状进行综合选择.5个果实性状的环境方差占总表型方差的比例均较高,故在育种过程中要尽量采取措施以减少环境影响.  相似文献   

20.
[目的]为小麦抗旱育种提供依据。[方法]通过非干旱胁迫与干旱胁迫萌发试验,研究抗旱性不同的高原春小麦品种胚芽鞘长度与α-淀粉酶活性的变化规律及其相互关系。[结果]非干旱胁迫下,抗旱性强的品种胚芽鞘长度均大于干旱敏感的品种;萌发试验60 h或72 h时各品种α-淀粉酶活性达最大,之后迅速下降。干旱胁迫下,干旱敏感的品种胚芽鞘生长受到的抑制作用更加明显;抗旱性强的品种α-淀粉酶活性高于干旱敏感的品种。干旱胁迫下α-淀粉酶活性与胚芽鞘长度呈显著相关(P<0.05),相关系数为0.675。[结论]小麦抗旱育种应选择胚芽鞘较长和干旱胁迫下α-淀粉酶活性受抑制程度较小的基因型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号