首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
应用免疫组织化学SP法和原位杂交法研究了催产素(oxytocin,OT)及OT mRNA在成年发情期奶山羊下丘脑中的分布和表达。结果,OT免疫反应阳性细胞主要分布在视上核和室旁核,在视上弥散核、弓状核、室周核和乳头体各核团也存在免疫阳性神经元;在室旁核、视上弥散核、正中隆起和第三脑室附近有较多数量的强阳性神经纤维,在交叉上核有少量阳性神经纤维。在下丘脑23个核团(区)中均能检测出OT mRNA的阳性细胞。结果表明,OT和OT mRNA在下丘脑中分布广泛,且OT可能通过轴突传递和血液运输,将OT mRNA合成的OT运送到别的核团;OT在奶山羊发情过程中发挥了重要作用。  相似文献   

2.
应用免疫组化PAP法(非标记抗体过氧化物酶-抗过氧化物酶法)研究了鸡下丘脑催产素(Oxytocin,OT)免疫反应阳性神经元的分布.结果,OT阳性神经元存在于下丘脑室旁核各亚核、视前室旁核、视上核、视前大细胞核、下丘脑外侧核、室周核、室周弓状核,在下丘脑背侧区、视前外侧区和丘脑背外侧核也有零星的OT阳性神经元,视上背侧交叉和正中隆起存在大量的OT阳性纤维和纤维末梢.此外,还观察到视前区和下丘脑前部脑基底表面以及视上核的外缘有OT阳性神经元和纤维(?)达脑的外表,在第三脑室室管膜上存在OT阳性神经元,室旁核的OT阳性细胞突起伸入到室管膜上或突出于第三脑室室腔。结果表明,OT阳性神经元在下丘脑的分布较广泛,OT向脑脊液的释放可能是多途径的.  相似文献   

3.
IFN-γR和ER在大鼠下丘脑中的共存   总被引:3,自引:0,他引:3  
为了探讨神经-免疫-内分泌网络中生物活性物质间相互调节和平衡的关系,本试验应用免疫组化双标记法对成年SD雌性大鼠下丘脑中IFN-γ受体(IFN-γR)和雌激素受体(ER)的共表达进行了研究。结果发现,IFN-γR和ER广泛存在于大鼠下丘脑中,其中在视前交叉上核、视前内侧核、室周核、交叉上核、下丘脑前核、下丘脑内侧核、下丘脑外侧核、乳头体前背侧核、乳头体前腹侧核等13个核团中存在大量的IFN-γR和ER双标记细胞,双标记细胞约占全部阳性标记细胞的60.9%;双标记细胞胞质呈黑褐色、胞核呈棕黄色;ER单标着色细胞以神经胶质细胞居多。研究结果表明,IFN-γ和雌激素可以分别以其各自受体为介质进行信号传递和信息整合,同时也通过在同一细胞中的相互作用而参与机体的神经-免疫-内分泌调节。  相似文献   

4.
用免疫组化ABC法,对发情周期中奶山羊下丘脑-垂体-卵巢轴催产素(OT)分布进行了观察研究.结果表明,下丘脑中分泌OT的神经元主要分布在室旁核和视上核,在穹窿周核、腹内侧核、腹外侧核、交叉上核、背内侧核、乳头体、下丘脑外侧区、下丘脑前核等核团也有一定数量的阳性神经元;阳性神经纤维仅见于室旁核、下丘脑前核、视上核等少数核团,在正中隆起和第3脑室室周可见到一定数量的阳性神经纤维.在垂体前叶未见到OT免疫反应阳性产物,自垂体柄和正中隆起的一侧可见到平行排列的OT阳性神经纤维断续地延伸至神经部.卵巢的卵泡及间质未见OT免疫阳性反应,,在黄体组织中存在数量较多的免疫反应阳性细胞,阳性细胞主要呈圆形、卵圆形,小梁两侧及黄体中央近腔区域的阳性细胞呈长梭形,有相当数量的阳性细胞具有突起.连续切片HE染色对照观察显示,黄体中OT主要由大黄体细胞产生,但小黄体细胞也存在OT免疫阳性反应.  相似文献   

5.
用免疫组化ABC法,对发情周期中奶山羊下丘脑—全体—卵巢轴催产素(OT)分布进行了观察研究。结果表明,下丘脑中分泌OT的神经元主要分布在室旁核和视上核,在穿窿周核、腹内侧核、腹外侧核、交叉上核、背内侧核、乳头体、下丘脑外侧区、下丘脑前核等核团也有一定数量的阳性神经元;阳性神经纤维仅见于室旁核、下丘脑前核、视上核等少数核团,在正中隆起和第3脑室室周可见到一定数量的阳性神经纤维。在全体前叶未见到OT免疫反应阳性产物,自垂体柄和正中隆起的一例可见到平行排列的OT阳性神经纤维断续地延伸至神经部。卵巢的卵泡及间质未见OT免疫阳性反应,在黄体组织中存在数量较多的免疫反应阳性细胞,阳性细胞主要呈圆形、卵圆形,小梁两侧及黄体中央近腔区域的阳性细胞呈长梭形,有相当数量的阳性细胞具有突起。连续切片HE染色对照观察显示,黄体中OT主要由大黄体细胞产生,但小黄体细胞也存在OT免疫阳性反应。  相似文献   

6.
为研究济宁青山羊生后发育阶段GnRH及GnRHR在下丘脑内的形态学分布和变化规律,采用链霉亲和素-生物素-过氧化物酶复合物(Strept Avidin Biotin-Peroxidase Complex,SABC)免疫组织化学方法,对0、2、4和6月龄雌性济宁青山羊下丘脑中GnRH及GnRHR的分布进行了同步研究。结果显示,GnRH和GnRHR免疫阳性细胞在下丘脑内广泛存在,主要分布于视前内侧区、乳头体、视上核和视交叉上核。随月龄增长,GnRH和GnRHR阳性细胞不断增大,数量不断增多,其中0~2月龄是最快的时期。结果提示,下丘脑分泌的GnRH及GnRHR对生后发育阶段青山羊性成熟的启动及维持有重要作用。  相似文献   

7.
为了寻找Leptin在下丘脑水平调控生殖内分泌的形态学证据,用原位杂交和免疫组织化学相结合的方法,研究了5头三元杂交仔猪前脑内Leptin长形受体(OB-Rb)mRNA和黄体生成素释放激素(LHRH)免疫反应阳性物质的共存关系。结果表明,OB-Rb mRNA和LHRH免疫反应阳性神经元在下丘脑、海马结构、大脑皮层和杏仁核内共存,即上述结构内一些表达Leptin长形受体mRNA的神经元也含有LHRH免疫反应阳性物质。在下丘脑,双阳性神经元主要位于室旁核、室周核、腹内侧核、外侧区、弓状核;在大脑皮层(额叶和顶叶)内,双阳性神经元主要位于Ⅲ~Ⅴ层;在海马结构内,双阳性神经元主要位于齿状回的多形层和颗粒层以及海马的锥体细胞层。结果提示,Leptin可能通过其受体直接作用于下丘脑的促性腺激素释放激素(GnRH)神经元调节动物的生殖和内分泌活动。  相似文献   

8.
1促性腺激素释放激素促性腺激素释放激素(GnRH),由下丘脑内侧视前区,下丘脑前部,弓状核和视交叉上核的神经核团分泌。哺乳动物下丘脑分泌的GnRH均为由9种氨基酸组成的直链式十肽,禽类、两栖类和鱼类的分子结构与哺乳类略有差异。下丘脑与垂体间没有直接的神经支配,而是通  相似文献   

9.
应用免疫组织化学方法研究了突触素 (SVP- 38)免疫反应产物在鸡产蛋前后下丘脑中生殖内分泌核团内的表达和发育情况。结果显示 ,前联合区、视前室旁核、室周弓状核、下丘脑室旁核、乳头体内侧核、乳头体外侧核等生殖核团内突触素免疫反应强度 ,在 3个年龄组间差异显著。 2 40 d组反应强度最高 ,70 d组次之 ,5 0 0 d组最低。结果表明 ,产蛋高峰期下丘脑内的突触可塑性增强 ,突触素产蛋高峰期表达强度最高 ,后随日龄增加而强度下降。说明突触素的表达与生殖内分泌激素的分泌有依赖性。  相似文献   

10.
促性腺激素释放激素(GnRH)由分布于下丘脑内侧视前区,下丘脑前部、弓状核、视交叉上核的神经内分泌小细胞(PvC)分泌,其分泌活动不仅受内分泌激素的反馈调节,而且受中枢神经递质的调节。在GnRH-PvC周围既有儿茶酚胺神经纤维分布,又有较高含量的儿茶酚胺类神经递质存在。刺激中枢去甲肾上腺素能(NE)或肾上腺素能神经纤维,或在第三脑室灌注NE或肾上腺素激动剂,均可抑制下丘脑的GnRH分泌。阿片样肽及其激动剂具有类似的GnRH释放抑制作用。相反,阿片样肽拮抗剂可以促进下丘脑分泌GnRH。促肾上腺皮质激素释放激素通过增强阿片样肽的活性而抑制GnRH的释放。研究GnRH释放的神经调节机制,对于进一步开发家畜繁殖新技术和治疗家畜不育症,具有重要意义。  相似文献   

11.
Many studies have demonstrated the physiological effects of oxytocin (OT), atrial natriuretic peptide (ANP) and vasopressin (VP) in the homoeostasis of body fluids during physical exercise. However, a little information is available about the related immunohistochemical changes in hypothalamic magnocellular neurosecretory system during and after the training. The aim of the present work was to study the immunohistochemical changes in OT, ANP and VP levels in the hypothalamic paraventricular nucleus during and after resistance exercise protocol. Three groups of Wistar rats were trained by a rung ladder protocol for 15, 30 and 45 days, respectively; a fourth group was left to rest for 15 days after the training. Finally, four sedentary groups were used as controls. The results show that resistance training induces a significant reduction in the percentage of OT‐positive neurons, compared with sedentary controls. In contrast, this protocol did not induce any change in VP levels, and ANP levels did not change significantly. However, VP increased after the resting period of 15 days. Our work shows that neurons of the paraventricular nucleus are involved in body fluid homoeostasis during and after resistance exercise. The functional significance of these changes in OT and VP levels, during and after the protocol, needs to be further investigated.  相似文献   

12.
This study investigated possible integrated links in the neuroanatomical pathways through which the activity of neurones in the paraventricular nucleus and arcuate nucleus may modulate suppression of gonadotrophin‐releasing hormone (GnRH) secretion during stressful situations. Double‐label immunofluorescence and laser scanning confocal microscopy were used to examine the hypothalamic sections from the follicular phase ewes. Noradrenergic terminals were in close contact with 65.7 ± 6.1% corticotrophin‐releasing hormone (CRH) and 84.6 ± 3.2% arginine vasopressin (AVP) cell bodies in the paraventricular nucleus but not with β‐endorphin cell bodies in the arcuate nucleus. Furthermore, γ‐amino butyric acid (GABA) terminals were close to 80.9 ± 3.5% CRH but no AVP cell bodies in the paraventricular nucleus, as well as 60.8 ± 4.1%β‐endorphin cell bodies in the arcuate nucleus. Although CRH, AVP and β‐endorphin cell terminals were identified in the medial pre‐optic area, no direct contacts with GnRH cell bodies were observed. Within the median eminence, abundant CRH but not AVP terminals were close to GnRH cell terminals in the external zone; whereas, β‐endorphin cells and terminals were in the internal zone. In conclusion, neuroanatomical evidence is provided for the ewe supporting the hypothesis that brainstem noradrenergic and hypothalamic GABA neurones are important in modulating the activity of CRH and AVP neurones in the paraventricular nucleus, as well as β‐endorphin neurones in the arcuate nucleus. These paraventricular and arcuate neurones may also involve interneurones to influence GnRH cell bodies in medial pre‐optic area, whereas the median eminence may provide a major site for direct modulation of GnRH release by CRH terminals.  相似文献   

13.
用HRP追踪法、高尔基技术和免疫组化方法研究了鸡第三脑室接触脑脊液神经元的结构、分布和化学性质.结果证实,鸡第三脑室的接触脑脊液神经元主要分布在室旁器、乳头体隐窝、漏斗隐窝顶壁和侧壁的室管膜,散在于室周区、室旁核、视前大细胞核以及弓状核.接触脑脊液神经元可分为4种类型:室管膜上神经元、室管膜内神经元、室管膜下神经元和远位神经元.这些神经元含有神经肽——VP和OT.提示第三脑室接触脑脊液神经元有直接释放OT和VP的功能.  相似文献   

14.
The study evaluated, in early post‐partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre‐ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF2αand prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 IU of eCG, immediately after PGF2α treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 ± 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 ± 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14‐dihydro‐15‐keto prostaglandin F2α (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre‐ovulatory period was not effective in inhibiting PGFM release, which was lower in P4‐primed than in non‐primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4‐primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.  相似文献   

15.
采用免疫组化链霉素抗生物素蛋白-过氧化物酶法(SP法),检测羔羊期和性成熟期雌性奶山羊下丘脑中催产素表达的变化规律.结果显示,催产素免疫反应阳性神经元在羔羊和性成熟羊的视上核、室旁核、乳头体内侧核等核团均有分布,在羔羊的室周核、视前内侧核等核团广泛分布,但在性成熟羊的这些核团却未见分布.在视上核、室旁核、乳头体内侧核等核团的催产素免疫阳性神经元数量,性成熟羊显著高于羔羊(P<0.01);这些核团中催产素免疫阳性产物的平均灰度值,羔羊显著低于性成熟羊(P<0.01),在其他核团则羔羊高于性成熟羊,且大部分差异明显(P<0.01).结果提示,性成熟羊下丘脑中除室周核、视前内侧核等核团外,室旁核、视上核、乳头体内侧核、乳头体后核等核团,催产素的表达高于羔羊,说明这些核团对生殖系统的发育成熟可能有重要作用.  相似文献   

16.
The present study aimed to determine estrogen feedback action sites to mediate prepubertal restraint of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release in female rats. Wistar-Imamichi strain rats were ovariectomized (OVX) and received a local estradiol-17β (estradiol) or cholesterol microimplant in several brain areas, such as the medial preoptic area (mPOA), paraventricular nucleus, ventromedial nucleus and arcuate nucleus (ARC), at 20 or 35 days of age. Six days after receiving the estradiol microimplant, animals were bled to detect LH pulses at 26 or 41 days of age, representing the pre- or postpubertal period, respectively. Estradiol microimplants in the mPOA or ARC, but not in other brain regions, suppressed LH pulses in prepubertal OVX rats. Apparent LH pulses were found in the postpubertal period in all animals bearing estradiol or cholesterol implants. It is unlikely that pubertal changes in responsiveness to estrogen are due to a change in estrogen receptor (ER) expression, because the number of ERα-immunoreactive cells and mRNA levels of Esr1, Esr2 and Gpr30 in the mPOA and ARC were comparable between the pre- and postpubertal periods. In addition, kisspeptin or GnRH injection overrode estradiol-dependent prepubertal LH suppression, suggesting that estrogen inhibits the kisspeptin-GnRH cascade during the prepubertal period. Thus, estrogen-responsive neurons located in the mPOA and ARC may play key roles in estrogen-dependent prepubertal restraint of GnRH/LH secretion in female rats.  相似文献   

17.
Oxytocin (OT) stimulates endometrial secretion of prostaglandin (PG) F(2 alpha) during corpus luteum regression in swine but there is differential responsiveness to OT among endometrial cell types. To determine if progesterone influenced responsiveness of luminal epithelial, glandular epithelial, and stromal cells to 100 nM OT during luteolysis in swine, cells were isolated from endometrium of 15 gilts by differential enzymatic digestion and sieve filtration on day 16 postestrus and cultured continuously in the presence of 0, 10 or 100 nM progesterone. For phospholipase C (PLC) activity and PGF(2 alpha) secretion, stromal cells were most responsive to OT (P<0.01) in the absence of progesterone, whereas luminal epithelial cells were unresponsive and glandular epithelial cells displayed an intermediate response to OT (P<0.09). Progesterone enhanced PLC activity linearly in glandular epithelial cells (P<0.05) and influenced it quadratically in stromal cells (P=0.05). The effect of OT and progesterone on PLC activity in luminal epithelial cells was not significant, and progesterone did not increase PLC activity in response to OT in any cell type. Culture in the presence of progesterone, enhanced PGF(2 alpha) secretion in response to OT in luminal epithelial cells (P<0.05) but not in glandular epithelial or stromal cells. Progesterone also increased overall PGF(2 alpha) release from glandular epithelial (P<0.05) and stromal cells (P<0.06) across both levels of OT treatment. These results indicate that progesterone enhanced PGF(2 alpha) secretion from luminal epithelial cells in response to OT and increased basal PGF(2 alpha) release from glandular epithelial and stromal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号