首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

2.
The effects of varying the proportion of three noodle dough components (water, gum, and starch) on the texture (maximum load and strain at break), amount of fat absorbed, and percent rehydration of instant fried noodles were studied. The Instron Universal testing machine was used to measure noodle texture, whereas quality attributes were determined using fat absorption and rehydration parameters. The results showed that changes in maximum load, strain at break point, fat absorption, and rehydration% of instant noodles depended on interactions between the ingredients. Increasing the gum content, starch content (for amounts >4% kg/kg of flour) and moisture content (35–40% kg/kg of flour) enhanced the elasticity and extensibility of cooked instant fried noodles. Addition of starch decreased fat absorption but showed mixed effect on rehydration%. The effect of gum addition at 0.1, 0.2, and 0.3% on fat absorption was significant but reduced considerably or showed a reverse effect at higher starch addition levels. Increasing moisture, and gum contents increased rehydration% of cooked instant noodles. Appropriate combinations of gum, starch and moisture contents could be used to optimize textural and quality characteristics of fried instant noodles.  相似文献   

3.
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications.  相似文献   

4.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles.  相似文献   

5.
The effects of four inorganic phosphates on the thermodynamic and pasting properties of whole wheat flour as well as color, cooking quality, textural properties, and structural characteristics of whole wheat noodles were studied. The addition of phosphates increased the gelatinization temperature and enthalpy of melting of starch in whole wheat flour. Rapid visco analysis showed that all phosphates significantly increased whole wheat flour peak viscosity and final viscosity. Moreover, the whole wheat noodles prepared with disodium phosphate, trisodium phosphate, and sodium tripolyphosphate (STPP) exhibited brighter appearance, and the use of STPP and sodium hexametaphosphate reduced the cooking loss of whole wheat noodles. Texture profile analysis of cooked noodles revealed that the addition of phosphates significantly decreased the hardness and slightly increased the springiness, cohesiveness, and resilience. The microstructure of whole wheat noodles showed a larger degree of connectivity of the protein network and coverage of starch granules in the presence of inorganic phosphates. The results suggested that inorganic phosphates exhibited substantial effects on improving the quality of whole wheat noodles. Of the four phosphates studied, STPP appeared to be the most effective one in improving the overall properties of whole wheat noodles when they were normalized to constant phosphate content.  相似文献   

6.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

7.
Physicochemical properties and protein composition of 39 selected wheat flour samples were evaluated and correlated with the textural properties of Chinese hard‐bite white salted noodles. Flour samples were analyzed for their protein and wet gluten contents, sedimentation volume, starch pasting properties, and dough mixing properties by farinograph and extensigraph. Molecular weight distribution of wheat flour proteins was determined with size‐exclusion (SE) HPLC, SDS‐PAGE, and acid‐PAGE. Textural properties of Chinese hard‐bite white salted noodles were determined through texture profile analysis (TPA). Hardness, springiness, gumminess, and chewiness of cooked noodles were found to be related to the dough mixing properties. Both protein content and protein composition were found to be related to TPA parameters of noodles. The amount of total flour protein was positively correlated to hardness, gumminess, and chewiness of noodles. The absolute amounts of different peak proteins obtained from SE‐HPLC data showed positive correlations with the hardness, gumminess, chewiness, and springiness of noodles. The proportions of these peak proteins were, however, not significantly related to texture parameters. The proportions of low‐molecular‐weight glutenins/gliadins and albumins/globulins, as observed from SDS‐PAGE, were correlated positively and negatively, respectively, to the hardness, gumminess, and chewiness of cooked noodles. Among the alcohol‐soluble proteins (from acid‐PAGE data), β‐gliadins showed strong correlations with the texture properties of cooked noodles. For the selected flour samples, the total protein content of flour had a stronger relationship with the noodle texture properties than did the relative proportion of different protein subgroups. Prediction equations were developed for TPA parameters of cooked noodles with SE‐HPLC and rapid visco analysis data of the 30 flour samples, and it was found that about 75% of the variability in noodle hardness, gumminess, and chewiness values could be explained by protein composition and flour pasting properties combined together. About 50% of the variations in cohesiveness and springiness were accounted for by these prediction equations.  相似文献   

8.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein).  相似文献   

9.
The practical applications of flour from waxy (amylose‐free) hexaploid wheat (Triticum aestivum L.) were assessed. The applications evaluated were bread, cakes, white salted noodles, and pasta for gyoza. An excessive addition of waxy hexaploid wheat flour to total wheat flour (>20%) resulted in poorer functional properties (sticky, lumpy, or less crispy textures) in almost every end use product. However, incorporation of <20% waxy hexaploid wheat flour, produced considerable improvement in shelf‐life characteristics. After one day of storage, the bread from flour including waxy hexaploid wheat flour maintained moistness, softness, and stickiness. This application of waxy hexaploid wheat flour as an antistaling ingredient was also confirmed in cake products. Tests were also conducted on alimentary pasta products. In alimentary pasta, waxy hexaploid wheat flour was most effective when utilized for frozen fried dumplings (gyoza). By using flour including 30 or 50% waxy hexaploid wheat flour, the problem of firmness was solved without other ingredients. In conclusion, flour from waxy hexaploid wheat may be useful in developing more increased staling‐ and freezing‐tolerant grain‐based foods. Starch properties could be responsible for these improved characteristics.  相似文献   

10.
Batters were prepared, using rice flour as the main component, and analyzed for their oil uptake properties during frying. Rice flour resisted oil absorption better but was less effective as a thickening agent than wheat flour. Of the rice components, increased amylose in the amylopectin/amylose ratio of the starch decreased the batter oil uptake, whereas increased protein content had the opposite effect. Various additives were introduced and investigated for their ability to develop viscosity and other desirable characteristics for the batter. As additives to the rice flour batters, phosphorylated starch and gelatinized rice flour enhanced both the thickening and oil-reducing capacities of the batter. Compared with values for batters from wheat flour, the percent batter oil uptake in the fried crust for the modified rice flour batters was decreased by up to 62%, and the percent total oil uptake for the whole coated drumstick was reduced by up to 59%.  相似文献   

11.
A hard white spring wheat was milled to yield three patent flours with different starch damage levels by manipulating reduction grinding conditions, and each flour was sieved to give three different particle sizes (85–110, 110–132, 132–183 μm). Raw alkaline noodles were prepared using either 1% w/w kansui (sodium and potassium carbonates in 9:1 ratio) or 1% w/w sodium hydroxide. Noodles prepared with sodium hydroxide were significantly brighter, less red, and more yellow than those made with kansui. Differences in noodle color among flour treatments were evident but were attributable to differences in flour refinement rather to than particle size or starch damage. Noodles were rested for 1 hr after processing before cooking. Alkaline reagent was the main factor associated with cooking loss, being ≈50% greater for sodium hydroxide noodles because of higher pH compared with kansui noodles. Cooked sodium hydroxide noodles were thicker than kansui noodles, and cooked strands for both noodle types became thicker as starch damage increased and as particle size became coarser. Instrumental assessment of cooked noodle texture showed that maximum cutting stress (MCS), resistance to compression (RTC), recovery (REC), stress relaxation time (SRT), chewiness (CHE), and springiness (SPR) were influenced by the type of alkaline reagent. Flour particle size and starch damage also influenced noodle texture but the magnitude of the effects and the trends were dependent on alkaline reagent. MCS of kansui noodles was much greater than for sodium hydroxide noodles. MCS of kansui noodles increased as starch damage increased but, in contrast, MCS of sodium hydroxide noodles decreased with increasing starch damage. REC of kansui noodles increased with increasing starch damage and decreased with larger particle size, whereas for sodium hydroxide noodles REC decreased with increasing starch damage and declined dramatically with larger particle size. Kansui noodles exhibited significantly shorter SRT than sodium hydroxide noodles. SRT of kansui noodles was only moderately affected by starch damage and particle size, whereas for sodium hydroxide noodles, SRT became much shorter as flour became coarser and starch damage became higher. CHE of kansui noodles was greater than for sodium hydroxide noodles. CHE of kansui noodles increased as starch damage increased. In contrast, CHE of sodium hydroxide noodles decreased as starch damage increased and also decreased as flour became coarser. SPR of both noodle types decreased as flour became coarser and starch damage became greater. On the basis of these experiments, flour of smaller particle size is an asset to the cooking quality of sodium hydroxide noodles, but high starch damage is to be avoided. For kansui noodles, the impact of flour particle size on cooked noodle texture was less evident and low starch damage, rather than high starch damage, was an asset.  相似文献   

12.
The rheological properties of cooked white salted noodles made from eight wheat cultivars with varied amylose content were analyzed at small and large deformation. Their dynamic shear viscoelasticity was measured using a rheometer with parallel plate geometry. Compressive force and creep‐recovery curves were measured using various probes and sample shapes. Noodles with lower amylose content showed a lower storage shear modulus (G′) and a higher frequency dependence of G′. The G′ values of noodles were highly correlated with amylose content in wheat flour and with G′ values of 30 and 40% starch gels. Remarkable differences in the characteristics of creep‐recovery curves were observed between cultivars. The difference in amylose content in wheat flour reflected the creep‐recovery properties of noodles. A negative correlation was demonstrated between amylose content and both maximum creep and recovery compliance. The compressive force required for 20, 50, 80, and 95% strains was compared. At 20 and 50% strain, noodles made from lower amylose wheat flour showed lower compressive force. Noodles of waxy wheat had a higher compressive force than nonwaxy noodles when the strain was >80%, indicating the waxy wheat noodles are soft but difficult to completely cut through.  相似文献   

13.
The Waxy (Wx) gene in hexaploid wheat (Triticum aestivum L.) encodes granule‐bound starch synthase (GBSS1), which is involved in the synthesis of amylose, a mostly linear glucan polymer that makes up ∼25% of wheat starch. A null mutation of the Wx gene in each of the three genomes is associated with starch almost entirely consisting of the branched glucan polymer amylopectin (waxy starch), with corresponding changes in functionality. However, the rheological behavior of partially waxy starch remains unclear. The objective of this study was to characterize flour and baking quality in 16 near‐isogenic lines, null at the Wx locus on zero, one, two, or all three genomes, grown in four different environments. Across allelic groups, significant variations in amylose concentrations, flour paste viscosity, loaf structure and texture, dough stability, and proximate variables were observed. Because waxy wheat starch has greater water absorbance and resistance to retrogradation than normal starch, its inclusion in flour blends has been suggested as a means of improving the texture and appearance of bakery products and noodles. The results indicate that wheat encoding <3 functional homeologs of GBSS1 produces starch that has potential in the production of certain food items, such as Asian noodles. However, further research is necessary to determine the optimal amylose‐to‐amylopectin ratio to improve baking quality.  相似文献   

14.
The effects of wheat protein and starch on yellow‐alkaline noodles have not been fully clarified. Twenty‐four hard winter wheats with varying protein, hot‐water swelling power (SP95), and polyphenol oxidase (PPO) activity were milled into long‐patent and short‐patent flours. Protein, SP95, and PPO activity in the 48 flours were 8.2–12.9%, 16.2–24.1 g/g, and 80–157 ΔA480/mg of protein/min, respectively. Lightness of raw noodles declined with increasing protein and PPO levels but yellowness decreased and then increased. Tensile force to break the cooked noodles was positively correlated with SP95 and protein. Compression (50%) force of noodles made from flour with high SP95 ≈21 g/g, averaged ≈20% below those made from low SP95 ≈17 g/g of flour. Compression force was measured in the long dimension of a single noodle strand using a rectangular probe. The instrumental measurements suggest that alkaline noodles made from a single‐null partial‐waxy wheat with medium SP95 ≈19.9 g/g will have a tender bite and a cohesive texture compared with those from a low SP95 wheat with a hard bite and fracturable texture. Furthermore, alkaline noodles from a double‐null partial‐waxy wheat with high SP95 will have an extra soft bite unless flour protein is above ≈12.5%. Hard‐white, dual‐purpose wheat should have a low level of PPO and, depending on the preferred noodle‐eating texture, a low to medium SP95 level. Such wheats with medium protein levels (11–12%) are well suited for alkaline noodles because of improved color and surface smoothness, whereas the same wheats with 12–13% protein are well suited for bread. Wheats with medium SP95 also reduce cooking loss and increase cooked yield.  相似文献   

15.
Durum wheat straight‐grade flour samples, representing the cultivars Commander and Strongfield, a composite cargo mixture of Canada Western Amber Durum cultivars and a Japanese commercial durum flour were used to make yellow alkaline noodles. A Canada Western Red Spring common wheat composite straight‐grade flour was included in the study for comparative purposes. Alkaline noodles were prepared using 1% w/w kansui reagent (sodium and potassium carbonates, 9:1) and stored for 1, 2, 3 and 7 days at 4°C to duplicate a normal convenience store operation. The raw noodle color of the durum alkaline noodles exhibited significantly better noodle brightness, L*, and yellowness, b*, as compared to noodles prepared from common wheat at all storage periods. The number of discolored specks in the durum flour based noodles was significantly lower as well as significantly lighter than those of common wheat at all time intervals. Noodles prepared from Commander, Strongfield, or the cargo composite flours displayed significantly lower water uptake during cooking than both the commercial durum flour and the common wheat noodles. The commercial durum flour noodles displayed the thinnest cooked noodles, while the common wheat flour noodles were the thickest. Evaluation of cooked noodle texture, immediately after production and subsequent storage of the raw noodles at 4°C for 1, 2 and 3 days before cooking showed a general increase in maximum cutting stress (MCS) with storage. Noodles prepared from Commander flour consistently display MCS values exceeding those of CWRS as well as the highest resistance to compression (RTC) and recovery (REC) measurements. The visual improvements in noodle brightness, enhanced yellowness, reduced speck numbers and darkness in combination with equivalent to improved cooked noodle texture attributes compared with common wheat flour suggests that durum flours are an ideal material for fresh, refrigerated yellow alkaline noodles.  相似文献   

16.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

17.
The independent effects of flour protein and starch on textural properties of Chinese fresh white noodles were investigated through reconstitution of fractionated flour components. Noodle hardness decreased with decreased protein content, whereas it unexpectedly increased as protein content decreased to a very low level (7.0%). Noodle cohesiveness, tensile strength, and breaking length increased with increased protein content. Higher glutenin‐to‐gliadin ratio resulted in harder and stronger noodles at constant protein content. Increased starch amylose content resulted in increased flour peak viscosity. When water absorption remained the same during noodle making, hardness and cohesiveness of cooked noodles also increased with increased starch amylose content, while springiness did not vary significantly. Increased starch damage of ≈5.5–10.4% effectively improved noodle hardness; however, starch damage >10.4% decreased it. Increased starch damage also enhanced noodle springiness while it decreased cohesiveness.  相似文献   

18.
Roller milled flours from eight genotypes of hull‐less barley (HB) with normal, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch were incorporated at 20 and 40% (w/w) with a 60% extraction Canada Prairie Spring White (CPSW, cv. AC Vista) wheat flour to evaluate their suitability as a blend for yellow alkaline noodles (YAN). The barley flour supplemented noodles were prepared using conventional equipment. Noodles containing 40% HB flour required less work input than the corresponding 20% blend noodles due to a higher water absorption at the elevated level of HB flour addition, which probably caused them to soften. The addition of any HB flour at either level to the CPSW flour resulted in significantly decreased brightness (L*) and yellowness (b*), elevated redness (a*), concomitant with a significantly greater number of specks per unit area of noodle sheet compared with the control flour. The addition of 40% HB flour to YAN decreased cook time and cooking losses. Noodle firmness, as determined by maximum cutting stress (MCS), was significantly increased by the addition of 40% HB flour. Noodle chewiness, as determined by the texture profile analysis (TPA), was affected by the type of starch in the barley samples; the addition of waxy and ZAW HB flour decreased chewiness, whereas normal and HA HB flour increased chewiness of composite noodles.  相似文献   

19.
不同品种小麦粉的粉质特性对速冻熟制面条品质的影响   总被引:2,自引:3,他引:2  
为研究不同品种小麦粉与速冻熟制面条质构特性之间的关系,选取30种小麦制粉,用FOSS定氮仪、快速黏度仪、粉质仪和拉伸仪等测定面粉品质指标,制作速冻熟制面条,用质构仪测定质构特性。采用描述性统计、主成分和聚类分析方法对30种小麦面粉和速冻熟制面条的质构关系进行了分析。结果表明:不同品种小麦粉的湿面筋、糊化温度、弱化度、粉质质量指数与硬度呈极显著相关(P0.01);蛋白质、湿面筋、总淀粉含量、最终黏度、回生值、糊化温度、粉质吸水率、粉质曲线稳定时间、面团形成时间、弱化度、粉质质量指数、拉伸曲线面积、拉伸阻力、最大拉伸阻力与剪切力呈极显著相关(P0.01);小麦粉的粉质特性,除衰减值、峰值时间和延伸度外,均与拉伸力呈极显著相关(P0.01)。根据方差贡献率提取出可以反映原变量84.023%信息的5个因子,因子1主要反映面粉的粉质拉伸特性,因子2反映小麦粉糊化特性,因子3反映蛋白质特性,因子4和因子5共同反映小麦粉的淀粉特性。这些性状在小麦粉的评价方面起着重要作用,在加工中要注重对它们的选择。聚类分析将30种小麦粉分为4类,结果表明,不能仅凭小麦粉的指标数据和质构数据来选择制作速冻熟制面条的原料,还需考虑到感官评价的影响。该结论可为小麦粉在速冻熟制面条加工应用方面提供一定的理论参考。  相似文献   

20.
Whole grain oats are widely regarded as conferring significant health benefits. Composite flour of whole grain oat flour, wheat flour, and tapioca starch in the ratio 1:1:0.16 was formulated to make oat noodles with the addition of gluten at various levels. The influence of gluten on pasting and gelling properties of composite flour, and on cooking, textural, and sensory properties of salted oat noodles was evaluated. Addition of gluten decreased the paste viscosity, reduced hardness and springiness of gel, reduced cooking yield, cooking loss, and broken ratio during cooking, and increased the tensile strength and firmness of cooked noodles. Scanning electron microscopy showed that gluten tightened the network of protein in the noodles by forming oriented fibrils. Addition of gluten had little effect on the color of raw and cooked oat noodles, which were somewhat yellow. Sensory evaluation indicated that addition of gluten could enhance the overall acceptability of cooked oat noodles. This study may stimulate further interest in using functional whole grain cereal ingredients in developing healthy staple foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号