首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kernel vitreousness is an important grading characteristic for segregation of subclasses of hard red spring (HRS) wheat in the United States. This research investigated the protein molecular weight distribution (MWD) and the flour and baking quality characteristics of different HRS wheat market subclasses. The U.S. regional crop quality survey samples obtained from six regions for three consecutive growing years were used for subclass segregation based on the dark, hard, and vitreous (DHV) kernel percentage. Flour milled from HRS wheat with greater percentages of DHV kernel showed higher water absorption capacity for breadmaking. Protein MWD parameters could be related to the association between DHV kernel level and water absorption. Specifically, flour protein fractions rich in gliadins and high‐molecular‐weight polymeric proteins in the SDS‐unextractable fraction were identified to have significant and positive correlations with both DHV kernels and flour water absorption levels. An example further showed the importance of flour water absorption on potential economic incentives that can be gained with having a greater percentage of vitreous kernels. This information could help the flour milling and baking industry to segregate the different subclasses of HRS wheat with varying DHV content for their intended end‐use applications.  相似文献   

2.
Various whole‐kernel, milling, flour, dough, and breadmaking quality parameters were compared between hard red winter (HRW) and hard red spring (HRS) wheat. From the 50 quality parameters evaluated, values of only nine quality characteristics were found to be similar for both classes. These were test weight, grain moisture content, kernel size, polyphenol oxidase content, average gluten index, insoluble polymeric protein (%), free nonpolar lipids, loaf volume potential, and mixograph tolerance. Some of the quality characteristics that had significantly higher levels in HRS than in HRW wheat samples included grain protein content, grain hardness, most milling and flour quality measurements, most dough physicochemical properties, and most baking characteristics. When HRW and HRS wheat samples were grouped to be within the same wheat protein content range (11.4–15.8%), the average value of many grain and breadmaking quality characteristics were similar for both wheat classes but significant differences still existed. Values that were higher for HRW wheat flour were color b*, free polar lipids content, falling number, and farinograph tolerance. Values that were higher for HRS wheat flour were geometric mean diameter, quantity of insoluble polymeric proteins and gliadins, mixograph mix time, alveograph configuration ratio, dough weight, crumb grain score, and SDS sedimentation volume. This research showed that the grain and flour quality of HRS wheat generally exceeds that of HRW wheat whether or not samples are grouped to include a similar protein content range.  相似文献   

3.
This research aims to investigate the relationship between the solvent retention capacity (SRC) test and quality assessment of hard red spring (HRS) wheat flour samples obtained from 10 HRS cultivars grown at six locations in North Dakota. The SRC values were significantly (P < 0.05) correlated with flour chemical components (protein, gluten, starch, and damaged starch contents, except arabinoxylan); with farinograph parameters (stability [FST], water absorption, peak time [FPT], and quality number); and with breadmaking parameters (baking water absorption [BWA], bread loaf volume [BLV], and symmetry). Differences in locations and cultivars contributed significantly to variation in quality parameters and SRC values. Suitability of SRC parameters for discriminatory analysis of HRS wheat flour is greatly influenced by molecular weight distribution (MWD) of SDS‐unextractable proteins. SRC parameters, except for sucrose SRC, showed significant (P < 0.01) and positive correlations with high‐molecular‐weight (HMW) polymeric proteins in SDS‐unextractable fractions, whereas only lactic acid SRC exhibited significant (P < 0.01) correlations with low‐molecular‐weight polymeric proteins. HMW polymeric proteins also exhibited positive associations with FPT, FST, BWA, and BLV. The discrepant variation in association of SRC parameters with respect to MWD of SDS‐unextractable proteins could improve segregation of HRS wheat flour samples for quality.  相似文献   

4.
The accuracy of using near‐infrared spectroscopy (NIRS) for predicting 186 grain, milling, flour, dough, and breadmaking quality parameters of 100 hard red winter (HRW) and 98 hard red spring (HRS) wheat and flour samples was evaluated. NIRS shows the potential for predicting protein content, moisture content, and flour color b* values with accuracies suitable for process control (R2 > 0.97). Many other parameters were predicted with accuracies suitable for rough screening including test weight, average single kernel diameter and moisture content, SDS sedimentation volume, color a* values, total gluten content, mixograph, farinograph, and alveograph parameters, loaf volume, specific loaf volume, baking water absorption and mix time, gliadin and glutenin content, flour particle size, and the percentage of dark hard and vitreous kernels. Similar results were seen when analyzing data from either HRW or HRS wheat, and when predicting quality using spectra from either grain or flour. However, many attributes were correlated to protein content and this relationship influenced classification accuracies. When the influence of protein content was removed from the analyses, the only factors that could be predicted by NIRS with R2 > 0.70 were moisture content, test weight, flour color, free lipids, flour particle size, and the percentage of dark hard and vitreous kernels. Thus, NIRS can be used to predict many grain quality and functionality traits, but mainly because of the high correlations of these traits to protein content.  相似文献   

5.
Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end‐use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, and small kernels, as well as unsorted kernels. The four fractions were milled in three roller mills: Brabender Quadrumat Jr., Quadrumat Sr., and Bühler MLU‐202 laboratory mills. Large kernels had consistently higher flour yield than small kernels across mills, with the Quadrumat Jr. mill showing the lowest flour yield. Mill type and kernel size significantly affected variation in flour protein molecular weight distribution. When compared with larger kernels, flour milled from the small‐kernel fraction contained a higher gliadin fraction and SDS‐unextractable high‐molecular‐weight polymeric proteins, which had positive correlations with bread loaf volume (r = 0.61, P < 0.05) and mixograph peak time (r = 0.84, P < 0.001). Overall, small kernels could contribute to enhancing flour breadmaking quality while having a detrimental effect on milling yield.  相似文献   

6.
End‐use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four U.S. regional nurseries. Selected parameters included test weight, kernel hardness, kernel size, kernel diameter, wheat protein, polyphenol oxidase activity, flour yield, break flour yield, flour ash content, milling score, flour protein content, flour SDS sedimentation volume, flour swelling volume, Rapid Visco Analyzer peak paste viscosity, solvent retention capacity (SRC) parameters, total and water‐extractable arabinoxylan (TAX and WEAX, respectively), and cookie diameter. The objectives were to model cookie diameter and lactic acid SRC as well as to compare exceptionally performing varieties for each quality parameter. Cookie diameter and lactic acid SRC were modeled by using multiple regression analyses and all of the aforementioned quality parameters. Cookie diameter was positively associated with peak paste viscosity and was negatively associated with or modeled by kernel hardness, flour protein content, sodium carbonate SRC, lactic acid SRC, and water SRC. Lactic acid SRC was positively modeled by break flour yield, milling score, flour SDS sedimentation volume, and sucrose SRC and was negatively modeled by flour protein content. Exceptionally high‐ and low‐performing varieties were selected on the basis of their responses to the aforementioned characteristics in each nursery. High‐ and low‐performing varieties exhibited notably wide variation in kernel hardness, break flour yield, milling score, sodium carbonate SRC, sucrose SRC, water SRC, TAX content, and cookie diameter. This high level of variation in variety performance can facilitate selection for improved quality based on exceptional performance in one or more of these traits. The models described allow a more focused approach toward predicting soft wheat quality.  相似文献   

7.
Molecular weight distribution (MWD) of proteins extracted from hard red spring wheat was analyzed by size‐exclusion HPLC to investigate associations with wheat and breadmaking quality characteristics. Certain protein fractions were related to associations between wheat and breadmaking parameters, specifically when effect of quantitative variation of protein on those parameters was statistically eliminated by partial correlation analysis. SDS‐unextractable high molecular weight polymeric proteins had positive partial correlations with percent vitreous kernel content and breadmaking parameters, including mix time and bread loaf volume. SDS‐extractable protein fractions that were eluted before the primary gliadin peak had positive partial correlations with kernel hardness and water absorption parameters. The proportion of main gliadin fractions in total protein had a negative partial correlation with bread loaf volume and positive correlations with kernel hardness and water absorption parameters. Intrasample uniformity in protein MWD and kernel characteristics was estimated from three kernel subsamples that were separated according to single kernel protein content within individual wheat samples by a single‐kernel near‐infrared sorter. Wheat subsamples were significantly different in protein MWD. Intrasample uniformity in protein MWD did not differ greatly among wheat samples.  相似文献   

8.
《Cereal Chemistry》2017,94(2):215-222
Durum wheat (Triticum turgidum subsp. durum ) production worldwide is substantially less than that of common wheat (T. aestivum ). Durum kernels are extremely hard; thus, most durum wheat is milled into semolina, which has limited utilization. Soft kernel durum wheat was created by introgression of the puroindoline genes via homoeologous recombination. The objective of this study was to determine the effects of the puroindoline genes and soft kernel texture on flour, water absorption, rheology, and baking quality of durum wheat. Soft Svevo and Soft Alzada, back‐cross derivatives of the durum varieties Svevo and Alzada, were compared with Svevo, a hard durum wheat, Xerpha, a soft white winter wheat, and Expresso, a hard red spring wheat. Soft Svevo and Soft Alzada exhibited soft kernel texture; low water, sodium carbonate, and sucrose solvent retention capacities (SRCs); and reduced dough water absorptions similar to soft wheat. These results indicate a pronounced effect of the puroindolines. Conversely, SDS flour sedimentation volume and lactic acid SRC of the soft durum samples were more similar to the Svevo hard durum and Expresso samples, indicating much less effect of kernel softness on protein strength measurements. Alveograph results were influenced by the inherent differences in water absorption properties of the different flours and their genetic background (e.g., W and P were markedly reduced in the Soft Svevo samples compared with Svevo, whereas the puroindolines appeared to have little effect on L ). However, Soft Svevo and Soft Alzada differed markedly for W and L . Soft durum samples produced bread loaf volumes between the soft and hard common wheat samples but larger sugar‐snap cookie diameters than all comparison samples. The soft durum varieties exhibited new and unique flour and baking attributes as well as retaining the color and protein characteristics of their durum parents.  相似文献   

9.
This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.  相似文献   

10.
The highly variable environmental conditions across the Pacific Northwest (PNW) influence the milling and baking quality of wheat grain produced in this region. This study was conducted to compare the flour composition, dough rheology, and baking quality of soft and hard spring wheat grain produced in diverse environments. Thirteen soft and five hard spring wheat cultivars were grown at Lind, WA (semiarid) and Fairfield, WA (high precipitation) for three years. Grain was evaluated for flour composition, rheology, and experimental baked product quality. Flour composition, rheological properties, and baking qualities were primarily influenced by the environment. Protein contents, microSDS values, and water absorption levels were significantly (P < 0.0001) higher for all cultivars grown at Lind compared with those from Fairfield. Cookie diameters were larger (P < 0.0001) for soft flours from Fairfield, whereas loaf volumes were higher (P < 0.0001) for hard wheat flours from Lind. Results indicate that producing soft or hard wheat outside of its optimal climatic zone reduces experimental baked product quality.  相似文献   

11.
In accordance with the Grain Quality Acts of 1986 and 1990, scientists at Kansas State University are studying the feasibility of implementing a quality-based marketing system for hard red winter (HRW) wheat in the Southern Plains. This research addresses the development of a segregation system that uses the single kernel characterization system and the whole grain near-infrared analyzer to evaluate the milling and baking quality of wheat as a single value called “dough factor”. This single value represents the amount of flour-water dough that can be produced from a given unit of wheat. Samples of HRW wheat (≈100 per location) were collected at five Kansas country elevators during the 1995 and 1996 harvests. After the dough factor was measured for individual samples, the samples were composited into seven dough factor groups to establish binning and segregation strategies and to explore the relationship between wheat quality measurements and dough factor groups. Results showed that dough factor groups were significantly different from each other and that dough factor groups were related (P < 0.05) to increases in test weight, single kernel weight, single kernel size, flour yield, and mixing time. Although locations showed year-to-year variability for test weight, kernel weight, and kernel size, the differences among dough factor groups for these characteristics across locations were consistent, indicating that the mean values within dough factor groups are similar regardless of location. The lack of significant differences in protein content among dough factor groups was attributable to high variability within dough factor groups between years. High protein values were present in low and high dough factor groups, indicating that protein content alone is not a good indicator of wheat quality. Patterns of differences in wheat quality characteristics among dough factor groups suggest that the seven groups studied can be reduced to three groups: <107, 107–112.9, ≥113. This study demonstrates that dough factor as a segregation and marketing tool is related to single kernel characteristics, differentiates wheats of varying quality, and reflects the end-use value of wheat.  相似文献   

12.
Polyphenol oxidase (PPO) has been related to an undesirable brown discoloration of wheat-based end products. Consumer acceptance and product quality are generally decreased by the darkening phenomena. Two sets of wheat samples (Triticum aestivum L.) were investigated for variation in grain and flour PPO levels. Samples included 40 advanced experimental hard white winter wheat lines grown at two Kansas locations and 10 hard red winter wheat genotypes grown at three Nebraska locations. The variability in grain and flour PPO activities was influenced by growing location and population for the hard white wheat samples. There also was a significant influence of population by growing location interactions on PPO activity in both grain and flour. Genotype and growing location both contributed to variability in flour PPO activity among the hard red wheat samples. The variation in flour PPO activities among growing locations appeared larger than variation produced by genotypes tested for the hard red wheat samples. Quality parameters, such as wheat physical properties, flour protein and ash contents, grain color, and milling yield significantly correlated with grain and flour PPO activities. Among red wheat samples, flour PPO activity was related to 100 kernel weight, first reduction flour yield, and flour ash content. Grain PPO activity was related to variation in grain color observed among hard white samples. The relationship of quality characteristics with grain and flour PPO activities varied among white and red wheat samples.  相似文献   

13.
Small kernels of soft wheat are sometimes considered to be harder than larger kernels and to have inferior milling and baking characteristics. This study distinguished between kernel size and kernel shriveling. Nine cultivars were separated into large, medium, and small kernels that had no shriveling. Eleven cultivars were separated into sound, moderate, and severely shriveled kernels. Shriveling greatly decreased the amount of flour produced during milling. It adversely affected all other milling quality characteristics (ash content, endosperm separation index, and friability). Shriveled kernels produced flour that had inferior soft wheat baking qualities (smaller cookie diameter and higher alkaline water retention capacity). In contrast, test weight and milling qualities were independent of kernel size. Small, nonshriveled kernels had slightly better baking quality (larger cookie diameter) than larger nonshriveled kernels. Small kernels were softer than large kernels (measured by break flour yield, particle size index, and flour particle size). Small nonshriveled kernels did not have diminished total flour yield potential or other reduced flour milling characteristics. Those observations suggest a possibility of separating small sound kernels from small shriveled kernels to improve flour yield and the need to improve dockage testing estimation techniques to distinguish between small shriveled and small nonshriveled kernels.  相似文献   

14.
Improvement of milling quality is an important aspect in wheat breeding programs. However, the milling quality of Chinese wheats remains largely unexplored. Fifty‐seven Chinese winter wheat cultivars from four regions were used to investigate the variation of milling quality parameters and to determine the associations between milling quality traits and color of noodle sheet. Substantial variation was presented for all measured parameters in this germplasm pool. Complete soft, hard, and medium‐hard types were observed. Soft wheat and hard wheat show significant differences in flour ash content, flour bran area, and flour color grade. No simple trait can be used to select for flour milling quality. High flour ash content and bran speck area contributed negatively to brightness of dry flour. Correlation coefficients (r) between L* value of dry flour and flour ash content and bran speck area were ‐0.47 and ‐0.65 for hard cultivars, and ‐0.51 and ‐0.72 for soft cultivars, respectively. Flour color grade (FCG) was significantly and positively associated with bran speck area; r = 0.56 and 0.73 for hard and soft wheats, respectively. There was a high correlation between FCG and L* value of flour water slurry (r = ‐0.95). Strong associations were also established between milling quality index (MQI) and FCG, L* value of dry flour, flour‐water slurry, and white salted noodle sheet for both hard and soft wheats. In conclusion, substantial progress could be achieved in improvement of milling quality in Chinese winter wheats through genetic selection, and FCG and MQI could be two important parameters for evaluation of milling quality in breeding programs.  相似文献   

15.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

16.
Ten glutenin fractions were separated by sequential extraction of wheat gluten protein with dilute hydrochloric acid from defatted glutenin‐rich wheat gluten of the Canadian hard red spring wheat (HRSW) cultivar Glenlea. The molecular weight distribution (MWD) of 10 different soluble glutenin fractions was examined by multistacking SDS‐PAGE under nonreduced conditions. Also, the subunit composition of the different glutenin fractions was determined by SDS‐PAGE under reduced conditions. The MWD of the fractions (especially HMW glutenins) varied from fraction to fraction. From early to later fractions, the MWD shifted from low to high. The early extracted fractions contained more LMW glutenin subunits (LMW‐GS) and less HMW glutenin subunits (HMW‐GS). The later extracted fractions and the residue fraction contained much more HMW‐GS (2*, 5, and 7 subunits) than the early extracted fractions. The trend in the amounts of 2*, 5, and 7 subunits in each fraction from low to high matched the extraction solvent sequence containing from lower to higher levels of HCl. The influence of glutenin protein fractions from the extra‐strong mixing cultivar, Glenlea, on the breadmaking quality of the weak HRSW, McVey, was assessed by enriching (by 1%) the McVey base flour with isolated glutenin protein fractions from Glenlea. The mixograph peak development times and loaf volumes of enriched flour were measured in an optimized baking test. The results indicated that the higher content in Glenlea glutenin of HMW‐GS with higher molecular weight, such as 2*, 5, and 7, seem to be the critical factor responsible for the strong mixing properties of Glenlea. Our results confirmed that subunit 7 occurred in the highest quantity of all the HMW‐GS. Therefore, it seems that the greater the content of larger molecular weight glutenin subunits, the larger the glutenin polymers and the stronger the flour.  相似文献   

17.
Introduction of high molecular weight glutenin subunits (HMW‐GS) from the Glu‐D1d locus of wheat into triticale restores the genetic constitution of high molecular weight glutenin loci to that of wheat and subsequently improves the breadmaking quality of triticale. One means of achieving such restoration of the genetic constitution is through the use of translocation lines. The aim of this study was to evaluate and compare the performance of translocations 1A.1D and 1R.1D with HMW‐GS 5+10 and 2+12 in terms of physical dough tests and baking quality using four different sets of triticale lines, GDS7, Trim, Rhino, and Rigel. In general, significantly lower milling quality (flour yield), very low mixing times with lower loaf volume were typical of all the triticales studied except 1A.1D 5+10 lines, when compared to hard wheat flour (Pegaso). Among the lines studied, significantly higher loaf volume, mixograph dough development time (MDDT), and maximum resistance to extension (Rmax) were observed with 1A.1D 5+10 lines indicating that translocation of the Glu‐D1d allele with HMW‐GS 5+10 was beneficial in terms of improving the quality attributes. Although pure triticale flour from these lines did not possess the functional characteristics for good quality bread, the translocation 1A.1D that contains HMW glutenin subunits 5+10 showed significant improvement in quality characteristics, and could reasonably be expected to yield commercially satisfactory bread loaves when combined with bread wheat flour. Significantly higher UPP, Rmax, and MDDT values along with a lower gliadin‐to‐glutenin ratio in 1A.1D 5+10 of GDS7 and Rigel sets indicate that the molecular weight distribution was shifted to higher molecular weights, resulting in greater dough strength associated with 5+10 subunits.  相似文献   

18.
Short growing seasons and lack of water limit the number of crops that can be productively grown in the Northern Great Plains, but wheat is uniquely adapted to the region. Growers interested in diversification of their operations are growing more than one class of wheat to target different markets. This has led to the challenge of maintaining class purity, in that contamination with alternate classes results in lower prices to the farmer. The primary rationale is that mixtures may have poor end‐use quality. In these experiments, we tested hard red spring wheat and hard white spring wheat contaminated with different levels of soft white spring wheat, durum wheat, hull‐less barley, and the hard wheat of the alternate kernel color for milling and baking quality. Our results showed that contamination of hard red and hard white spring wheat with soft white wheat and hull‐less barley often influenced end‐use quality in that flour yield was negatively affected at relatively low levels. Loaf volume was normally only affected at higher levels. Durum wheat contamination caused fewer quality problems at generally higher levels of contamination. Contamination of hard red or hard white wheat by hard wheat of the alternate color class rarely affected quality, and effects were both positive and negative, depending on quality attributes of the pure samples. Growers wishing to diversify by growing both hard red and hard white wheat would benefit if buyers and end users were willing to accept higher levels of contamination for alternate classes that are unlikely to cause problems in eventual end use.  相似文献   

19.
Wheat protein quantity and composition are important parameters for wheat baking quality. The objective of this study was to use fractionation techniques to separate the proteins of flour mill streams into various protein fractions, to examine the distribution of these protein fractions, and to establish a relationship between protein composition and breadmaking quality. Nine break streams, nine reduction streams, and three patent flours obtained from three samples of Nekota (a hard red winter wheat) were used in this study. A solution of 0.3M NaI + 7.5% 1-propanol was used to separate flour protein into monomeric and polymeric proteins. The protein fractions, including gliadin, albumin+globulin, HMW-GS, and LMW-GS, were precipitated with 0.1M NH4Ac-MeOH or acetone. The fractions were statistically analyzed for their distribution in the mill streams. The quantities of total flour protein and protein fractions in flour were significantly different among mill streams. The ratio of polymeric to monomeric proteins in break streams was significantly greater than in the reduction streams. The relationship between protein composition and breadmaking quality showed that the quantities of total flour protein, albumin+ globulin, HMW-GS, and LMW-GS in flour were significantly and positively correlated with loaf volume. The ratio of HMW-GS to LMW-GS had little association with loaf volume. The gliadin content in total flour protein was negatively and significantly correlated with loaf volume. These results indicated that the quantity and composition of protein among the mill streams was different, and this resulted in differences in breadmaking quality.  相似文献   

20.
Twenty-four einkorns were evaluated for agronomic traits in Italy and in Germany in replicated plot trials. After dehulling and milling, the harvested kernels, flour protein content, sedimentation volume, falling number, carotenoid, and dry gluten content were determined. Farinograph profiles were obtained with a farinograph and baking and cookie quality were evaluated with standard microtests. Significant differences in yield potential were observed between the two locations, with a three-fold increase in Germany as compared with Italy. One of the einkorn lines (ID529) had farinograph stability and degree of softening indices better than those of the control bread wheat. All the samples analyzed for breadmaking aptitude showed some degree of stickiness, but it was possible to handle the dough during the different steps of breadmaking. On average, cookies produced with einkorn flour were larger in diameter and thinner than those produced with soft wheat flour. The composition in α-, β- and γ-gliadins and in high molecular weight glutenin subunits was similar in all the lines. In contrast, the pattern exhibited in low molecular weight glutenin subunits correlated strictly with baking quality. In particular, the lines with bands arbitrarily designated a and b showed a high breadmaking potential, while the lines lacking these bands had an ample range of variability but, on average, a much lower baking potential. Our data point to a simple genetic control of the breadmaking aptitude and indicate einkorn not only as a promising source of specialty foods but also as an ideal species for genetic investigations on wheat quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号