首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
基岩出露的石漠化区露石岩面在承接降水(含穿透雨)后易形成岩面流,并携带岩面有机或无机物质输送至岩周土壤中,对岩-土界面土壤养分变化具有重要影响。为探明岩面流对岩-土界面土壤氮磷的淋溶与输入影响,选取基岩明显出露的休耕地(1年岩面流作用)、退耕灌草地(5年岩面流作用)和坡耕地(无/少岩面流作用)3种样地,并分别选择外凸、平直和内凹3种特殊的岩面形状,研究了距岩面不同水平距离及土层的岩-土界面及非岩-土界面土壤的全氮和全磷变化特征。结果表明:岩面流对0~10 cm表层岩-土界面土壤氮磷产生输入或淋溶作用,对10~20 cm层岩-土界面土壤氮磷作用不明显。不同岩面形状形成的岩面流对岩-土界面土壤氮磷的淋溶与输入作用强度依次为:内凹型>平直型>外凸型。其中,在1年岩面流作用的休耕地中,内凹型岩面形成的岩面流对岩-土界面土壤氮素的影响主要表现为淋溶,而平直型和外凸型岩面表现为输入作用;不同形状岩面流对岩-土界面土壤磷素的影响均表现为淋溶。然而,在植被生长较好的退耕灌草地中,5年岩面流作用下不同形状岩面流对岩-土界面土壤氮磷的影响主要表现为输入。研究结果可为深入认识出露岩石对喀斯特生态系统土壤特性的影响提供科学依据。  相似文献   

2.
全球气候变化下土壤水分暴涨骤减愈加频繁和强烈,这对生态系统脆弱的喀斯特区石漠化适应性治理产生了严峻挑战。因此,探究干湿变化下土壤孔隙变异及入渗响应对石漠化区土壤水分补给及降雨径流调节具有重要意义。该研究采用原位圆盘入渗法研究了干湿条件下不同露石岩面形状岩-土界面和非岩-土界面土壤孔隙结构变异及水分入渗的响应。结果表明: 1)干旱条件下土壤孔隙大小及数量均大于湿润条件;干湿条件下岩-土界面土壤小(<0.2 mm)、中孔隙(0.2~1.0 mm)数及体积比均大于非岩-土界面,大孔隙(>1.0 mm)数及体积比则小于非岩-土界面;干湿变化下土壤孔隙数及体积比的平均变化幅度从高到低为小孔隙、中孔隙、大孔隙,土壤孔隙各参数平均变化幅度从高到低为非毛管孔隙度、毛管孔隙度、通气度、总孔隙度。2)干旱条件下土壤稳定入渗率和饱和导水率均大于湿润条件;随着水头压力的增加,岩-土界面和非岩-土界面土壤导水率逐渐增加,土壤稳定入渗率则呈现先减小后增大的趋势。3)干湿条件下各级土壤孔隙对入渗水流的贡献率均随孔隙减小而降低;非毛管孔隙度和大孔隙数对土壤入渗能力的影响最大。4)岩-土界面土壤孔隙及水分入渗等参数在干湿变化下的平均变化幅度均大于非岩-土界面。研究结果可为干湿变化下土壤孔隙变异引起的土壤水分补给及降雨径流调节能力变化的认识及石漠化的适应性治理提供科学依据。  相似文献   

3.
不同石漠化程度土地坡面产流特征分析   总被引:1,自引:0,他引:1  
采用人工模拟降雨试验,研究了不同石漠化程度土地坡面产流特征。结果表明:中度和重度石漠化土地地表径流特征相似,但其与潜在、轻度和极重度石漠化土地差异明显。当雨强小于40 mm/h时,潜在石漠化土地难产生地表径流,当雨强达到55 mm/h,连续降雨34 min其开始产流;当雨强在51~60 mm/h之间时,其径流强度围绕3 mm/h小幅波动,当达到61 mm/h以上时,其径流强度随着降雨时间的延长而增大。轻度石漠化土地产流时间随着雨强的增大而变短,但其径流强度差异不大,介于2~5 mm/h之间。中度和重度石漠化土地地表径流呈现峰谷相间的特点。极重度石漠化土地裂隙、节理极为发育,洼地内多漏斗、落水洞,集流面积小,雨强增大后产生的径流变化幅度不明显。  相似文献   

4.
为了探究影响喀斯特坡地雨水转化及土壤侵蚀的影响因素,该研究采用人工模拟降雨方法,降雨强度选取50、75和100 mm/h,降雨次数为相同降雨强度下的连续3次降雨,坡度为5°、15°和25°,坡地包括地下基岩具有裂隙的地下裂隙坡地和地下基岩无裂隙的无地下裂隙坡地,研究了不同降雨强度、降雨次数和坡度下喀斯特坡地地表-地下的径流和土壤侵蚀变化。结果表明:1)两种坡地的地表径流率随降雨强度、降雨次数和坡度的增加而增加;壤中流率随降雨强度和坡度的变化也呈相同的趋势,但随降雨次数增加,两种坡地的壤中流率减少;岩土界面流率和地下裂隙流率随坡度和降雨次数增加而减少,随降雨强度增加先增大后减小。2)在降雨强度(50和75 mm/h)、降雨次数(第1场)和坡度(5°和15°)较小时,坡地径流以岩土界面流和地下裂隙流为主,分别占总雨水的24%~39%和28%~51%;随着影响因素增强,两坡地径流转变为以地表径流为主,分别占总雨水的30%~50%和25%~43%。3)降雨强度和坡度是驱动两个坡地地表土壤侵蚀的主要驱动力(P<0.01),但降雨强度、降雨次数和坡度对两坡地地下土壤侵蚀的影响较小(R2<0.3,P>0.05);总体上,无地下裂隙坡地和地下裂隙坡地土壤侵蚀以地表土壤侵蚀为主,分别占总侵蚀量的54%~97%和39%~96%;以岩土界面侵蚀或地下裂隙侵蚀为辅,分别占总侵蚀量的1%~45%和2%~60%。研究结果可为理解识别喀斯特坡地雨水转化和土壤侵蚀驱动因素以及喀斯特石漠化防治提供参考。  相似文献   

5.
岩面流在基岩出露的喀斯特石漠化区普遍存在,其容易受岩面形状影响以汇聚或分散的方式对岩—土界面处土壤进行冲刷侵蚀,这是喀斯特石漠化区土壤侵蚀/漏失发生的重要物理过程。为分析不同岩面形状下岩面流对岩—土界面土壤颗粒分布的影响,揭示岩面流对岩—土界面土壤的冲蚀效应,选择具有典型石漠化特征的休耕地(1年岩面流冲刷作用),在其中选取3种典型岩面形状(平直型、外凸型和内凹型岩面)为研究对象,采用激光粒度仪分析法,分析距岩—土界面不同水平距离(0~2,2~4,4~6,6~8,8~10,20 cm)及不同土层(0—10,10—20 cm)处土壤的颗粒分布特征。结果表明:(1)不同岩面形状下岩面流对岩—土界面处土壤的冲蚀影响依次为内凹型>平直型>外凸型;内凹型岩—土界面处土壤中黏粒含量最低,外凸型岩—土界面处土壤中黏粒含量最高;(2)岩面流对岩—土界面土壤冲蚀作用主要集中在距岩—土界面水平距离0~2 cm范围内,在其范围内内凹型岩—土界面土壤的砂粒含量均显著高于外凸型和平直型,而在距岩—土界面其他水平距离处土壤颗粒分布情况无显著性差异;(3)在岩面流影响下岩—土界面土壤颗粒分形维数均值排序依...  相似文献   

6.
喀斯特典型坡耕地模拟降雨条件下的土壤侵蚀响应   总被引:5,自引:2,他引:3  
为了定量研究不同降雨强度、坡度和孔(裂)隙度条件下坡耕地土壤侵蚀响应和空间分布特征,采用人工模拟降雨试验,通过模拟喀斯特典型坡耕地耕作层和微地貌特征以及孔裂隙构造特征,研究土壤侵蚀响应和空间分布特征。结果表明:(1)15,30mm/h降雨强度时地表不产流,水土流失形式为地下漏失;50mm/h降雨强度时地表产流产沙,水土流失也以地下漏失为主,地下径流出现最大值。50mm/h以上降雨强度时,土壤侵蚀逐渐向地表侵蚀转变,地表、地下径流泥沙分配呈负相关;(2)在一定条件下,坡度增大,地表径流泥沙量增加,地下径流量减小,当坡度在10°~15°时地表径流泥沙量急剧增加,25°时坡面产流产沙量达到最大值,其中20°坡面径流泥沙与25°接近;地下泥沙与坡度、孔(裂)隙度间变化规律不明显。(3)径流空间分配特征以地下径流为主,其中90 mm/h降雨强度以地表侵蚀为主。(4)降雨强度、坡度和孔(裂)隙度等因子对地表径流及地下径流的影响程度依次为降雨强度坡度孔(裂)隙度。总之,喀斯特坡耕地以地下漏失为主,地表产流之前随雨强增大而增大,地表径流产生后则反之,极端暴雨(90mm/h)下以地表侵蚀为主;降雨强度对水土流失影响程度最大,其次坡度,再次孔(裂)隙度。  相似文献   

7.
雨强和坡度对红壤坡耕地地表径流及壤中流的影响   总被引:6,自引:3,他引:6  
地表径流和壤中流是坡面重要水文过程,雨强和坡度是影响坡面地表径流和壤中流产流主要因素。为研究降雨强度和地表坡度对坡耕地地表径流和壤中流的影响,该文采用人工模拟降雨试验法,在长3.0 m、宽1.5 m、深0.5 m土槽,设计4个不同坡度(5°、10°、15°、20°)和3个不同雨强(30、60、90 mm/h)对红壤坡耕地地表径流及壤中流产流过程进行模拟试验。结果表明:1)壤中流开始产流时间滞后于地表径流,降雨强度从30到90 mm/h,地表径流、壤中流产流开始时间均随雨强增大而减小,壤中流比地表产流开始滞后时间随着雨强增大先增大后趋于稳定;2)地表径流强度随雨强增大而增大,壤中流初始径流强度随雨强增大而增大,不同雨强下壤中流径流峰值相近;3)地表径流和壤中流产流过程曲线有明显差异,地表径流产流过程线先增大后趋于稳定,壤中流产流过程线呈抛物线型即先增大后减小;4)从5°到20°,地表产流开始时间随坡度增大而减小,壤中流产流开始时间随坡度增大先减小后增大;5)从5°到20°,地表径流强度先增大后减小,10°为转折坡度,壤中流产流峰值随坡度增大而减小,并且随着坡度增大达到壤中流峰值时间不断减小。  相似文献   

8.
为研究岩溶地区雨强变化对水土地表流失和地下漏失的影响,对中国西南典型岩溶石漠化地区30年来的降雨特征进行了分析,并采用室内模拟试验,通过控制不同降雨时间和强度,研究其对土壤地表流失/地下漏失的影响。结果表明:(1)降雨强度与土壤地表流失量/地下漏失量均呈正比关系,但降雨强度的大小交替顺序对土壤地表流失/地下漏失量的影响存在差异,雨强大的降雨发生在降雨过程的后期更易发生土壤地下漏失。(2)短时多次降雨之间的时间间隔对土壤地表流失量和地下漏失量影响显著,集中性大雨比间断性大雨更易引发岩溶坡面土壤地表流失及地下漏失。短时多次降雨之间无雨的时间越长越不易发生水土流失和漏失。(3)降雨前期,降雨强度与土壤地表流失速率之间呈正相关关系,降雨中后期,土壤地表流失速率不受降雨强度的变化影响。降雨过程中,土壤地下漏失速率随着降雨强度的增大而升高。研究成果可为岩溶石漠化地区水土流失精准防治提供技术支撑。  相似文献   

9.
为探究喀斯特地区林木根系分布方式对坡面土壤侵蚀的影响,采用人工模拟降雨方法,研究林木根系3类分布方式:根系横坡方向局部裸露(横向)、根系顺坡方向局部裸露(顺向)、根系垂直坡面(垂直)的土壤侵蚀特征。降雨强度为75 mm/h,降雨历时为90 min,坡度为25°。结果表明:(1)降雨过程中,横向和垂直生长根系影响土壤入渗,壤中流和地下径流产流时间表现为顺向>横向>垂直;顺向坡面地表径流初始产流时间比横向和垂直坡面略有提前,但差异不显著(p>0.05);(2)横向、顺向及垂直坡面地表径流总量大小表现为顺向>垂直>横向,壤中流与地下径流产流速率在降雨过程中缓慢增加,降雨停止后急剧减小;(3)林木根系3类分布方式坡面间的地表减沙效益表现为横向>垂直>顺向。综上所述,顺向坡面的汇流作用促使地表产流产沙增加,垂直坡面增加土壤降雨入渗并减少侵蚀,横向坡面对坡面径流泥沙的拦蓄作用最为明显。研究结果对认识喀斯特石漠化坡地土壤侵蚀机理和水土流失防治措施提供了参考。  相似文献   

10.
模拟降雨条件下岩溶坡耕地产流产沙特征   总被引:1,自引:0,他引:1  
采用室内人工模拟降雨的方法,开展了翻耕措施下不同雨强(63mm/h和100mm/h)对岩溶坡耕地产流产沙过程影响的试验研究,结果表明:同一雨强下,坡度越大,产沙量越大;同一坡度下,雨强越大,地表以及地下孔隙流产流越快发生,而壤中流在坡度小于5°时的63mm/h雨强产流较快,坡度大于5°时则100mm/h雨强产流较快;同一坡度时,不同的雨强下产流均以壤中流为主,雨强越大,径流量越大,其中壤中流最大,地表径流最小。以上研究能够为揭示西南喀斯特地区坡耕地土壤水蚀原理和石漠化防治提供理论支撑。  相似文献   

11.
喀斯特山地石漠化过程中地表地下侵蚀产沙特征   总被引:12,自引:2,他引:12  
彭旭东  戴全厚  杨智  赵龙山 《土壤学报》2016,53(5):1237-1248
喀斯特地区特殊的地表、地下侵蚀产沙是引发石漠化发生发展的重要物理过程。以喀斯特山地石漠化过程中不同石漠化状况的裸坡面为研究对象,通过模拟其地表微地貌及地下孔(裂)隙构造特征,采用人工模拟降雨试验研究其地表及地下侵蚀产沙特征。结果表明:无石漠化、潜在石漠化和轻度石漠化的裸坡在相同条件下的地表产沙量总体上高于地下产沙量,且10 min降雨时段内地下产沙量在0~100 g之间。不同石漠化强度的裸坡地表、地下侵蚀产沙量均随雨强的增大而增加;小雨强(30~80 mm h~(-1))下,随着石漠化强度加剧其地表越不易发生侵蚀,而石漠化强度达到一定程度时(基岩裸露率40%)土壤流失以地下流失为主;大雨强(150 mm h~(-1))下,地表产沙量及其分配比例随基岩裸露率变化不明显,而地下产沙量则呈先增加后减小的变化且在基岩裸露率为30%时达到最大。不同石漠化强度的裸坡地表产沙量及其分配比例随地下孔(裂)隙度变化不明显,地下产沙量及其分配比例总体上随地下孔(裂)隙度增加而增加;在不同地下孔(裂)隙度下(1%~5%),地表、地下产沙量及其分配比例随基岩裸露率变化(10%~50%)差异较大。研究结果对认识喀斯特地区石漠化发生发展机制、揭示土壤侵蚀特征、防治地表地下水土流失具有重要的理论和现实意义。  相似文献   

12.
模拟雨强和地下裂隙对喀斯特地区坡耕地养分流失的影响   总被引:9,自引:6,他引:9  
喀斯特坡面水土地下漏失直接观测难度大,其土壤养分地下漏失的研究仍处于空白,而雨强和地下孔(裂)隙度(以下简称地下裂隙)对其土壤养分流失影响作用尚不清楚。该文以喀斯特坡耕地为研究对象,通过模拟其地表微地貌及地下裂隙构造特征,采用人工模拟降雨试验研究雨强和地下裂隙对喀斯特坡面氮磷钾养分流失的影响。结果表明:雨强对地表产流产沙影响显著(P0.05),其产流产沙量均随雨强增大而增加,且地表产流产沙临界雨强在30~50 mm/h之间;雨强对地表径流各养分输出负荷、地下径流全氮(TN)输出负荷及径流TN总负荷影响亦显著(P0.05)。地下裂隙度对地下径流TN输出负荷影响显著(P0.05),而总体上对其产流产沙、地表径流泥沙各养分输出负荷及总负荷影响不明显。喀斯特坡面TN、全磷(TP)输出负荷总体以径流为主,而全钾(TK)输出负荷则以泥沙为主。雨强是喀斯特坡面土壤养分流失的重要影响因子,地下裂隙度对其养分流失影响不大,但地下径流是喀斯特坡面主要的养分流失方式。研究结果可为喀斯特坡耕地养分流失的机理揭示及源头控制提供基本参数和科学依据。  相似文献   

13.
As an extreme manifestation of environmental degradation, karst rock desertification is caused by soil loss and rock exposure. In some areas with serious rocky desertification, there is no soil to be eroded or leaked. The soil loss in these areas superimposes soil erosion and unique subsurface loss by soil leakage through fissures, pipelines, sinkholes, etc., which directly reduce soil resources and accelerate rocky desertification. However, the factors driving soil erosion and subsurface loss by soil leakage are still unclear. Rainfall experiments were conducted on simulated slopes with surface-exposed bedrock and subsurface fissures based on field investigations in a karst rocky desertification area of Guizhou Province, China. Four factors, including rainfall intensity, slope gradient, bedrock exposure rate and subsurface fissure degree, were considered in the experiment. We found that the amount of soil surface erosion and subsurface leakage loss is driven not only by the runoff volume but also by other influential factors. Rainfall intensity is the driving factor determining the amount of surface erosion and subsurface leakage loss of soil and water and the relationship between them. The slope gradient plays a leading role only in subsurface fissure flow leakage loss. The bedrock exposure rate drives the surface soil erosion rate, shows a critical value (30%), and dominates the fissure flow leakage loss rate. Subsurface fissure density plays an important role in the surface loss of soil and water; however, an increase in the subsurface fissure density does not obviously accelerate the subsurface leakage loss of soil and water. Although this result, obtained from laboratory simulations, may differ at the field scale or larger, it could provide a foundation for systematic studies on soil erosion/leakage and insights into the relations between rocky desertification and soil erosion/leakage and their driving factors in karst rocky desertification.  相似文献   

14.
为研究不同岩土格局对喀斯特坡地水土流失/漏失的影响,利用人工模拟降雨试验,以裸坡为对照组,研究镶嵌格局、横坡格局、顺坡格局3种岩土覆被格局下的坡面产流产沙特征。结果表明:(1)顺坡格局的地表产流量最多,分别较镶嵌格局、横坡格局与裸坡的地表产流量增加88.6%,67.1%,576.1%,同时顺坡格局的地下产流量最少,分别较镶嵌格局、横坡格局与裸坡减少37.5%,36.1%,39.2%。(2)地表产沙量顺坡格局>镶嵌格局>横坡格局>裸坡,地下产沙量镶嵌格局>横坡格局>顺坡格局>裸坡。3种岩土格局的地表产沙量较裸坡均有明显增加,但地下产沙量相对增加较少。(3)岩土格局可改变地表径流泥沙关系,地表累积径流量与地表累积产沙量呈幂函数关系,镶嵌格局明显改变地表径流泥沙关系,使坡面地表侵蚀量显著提升。研究结果可进一步深化对喀斯特坡地降雨侵蚀规律的认识,为喀斯特地区的石漠化治理提供参考依据。  相似文献   

15.
岩层倾向对喀斯特槽谷区地表/地下产流过程的影响   总被引:4,自引:2,他引:2  
喀斯特槽谷区在降雨过程中极易发生水土流失,这使得该区生态环境被破坏。以喀斯特槽谷区为研究对象,通过室内模拟其典型顺/逆层坡面特征及地下孔裂隙发育程度,利用人工降雨试验研究不同雨强条件下地表地下产流特征,从而揭示喀斯特槽谷区地表地下产流机制。结果表明:(1)喀斯特槽谷区地表地下产流受雨强影响,小雨强(30 mm/h)条件下地下产流量大于地表产流量,中雨强(60 mm/h)条件下地表产流量增大且裸坡条件下地表产流量大于地下产流量,大雨强(90 mm/h)条件下裸坡与顺层坡的地表产流量均大于地下产流量。(2)地下孔裂隙发育程度对地表地下产流量的分配比例产生影响,地下孔裂隙度越大则地下产流量越多,且2%~3%的地下孔裂隙度时地表地下产流量分配比例发生转变。(3)不同岩层倾向条件下,地表产流量及其分配比例最高为裸坡,最低为逆层坡,地下产流量及其分配比例最高为逆层坡,最低为裸坡。(4)不同岩层倾角条件下,顺层坡地表产流量最高为30°,最低为90°,地下产流量则相反;逆层坡地表产流量最高为90°,最低为60°,地下产流量最高为60°,最低为90°。研究结果可为喀斯特槽谷区地表及地下产流机制的进一步认识提供科学依据。  相似文献   

16.
喀斯特坡地幼龄橘园人为扰动剧烈,容易发生土壤侵蚀。秸秆覆盖是坡地常用的水土保持措施,但其在喀斯特坡地橘园的水土保持效益还不清楚。通过人工土槽模拟降雨试验,研究了水稻秸秆覆盖对喀斯特坡地幼龄橘园产流产沙的影响,试验设置了2个雨强(60 mm/h和120 mm/h)和4种水稻秸秆覆盖度(0,20%,50%和80%)。结果表明:(1)秸秆覆盖减小地表径流的效果受降雨强度控制。在中雨强(60 mm/h)条件下,秸秆覆盖可以有效降低地表径流系数。在大雨强(120 mm/h)下,只有20%覆盖度可以减少地表径流系数;(2)在中雨强(60 mm/h)条件下,20%和50%的秸秆覆盖显著增加壤中流和地下径流量; 在大雨强(120 mm/h)条件下,20%的秸秆覆盖显著增加了壤中流量,50%和80%秸秆覆盖度对壤中流量影响不显著;(3)秸秆覆盖可以有效减少地表土壤侵蚀总量,地表土壤侵蚀总量与秸秆覆盖度呈负相关。(4)秸秆覆盖减弱了地表径流的携沙能力,在50%和80%秸秆覆盖度时地表径流的携沙能力得到显著减弱。结果可为喀斯特坡地幼龄橘园合理布设秸秆覆盖措施提供科学依据。  相似文献   

17.
不同雨强及坡度对华南红壤侵蚀过程的影响   总被引:7,自引:3,他引:4  
[目的]研究不同雨强及坡度对华南红壤侵蚀过程的影响,为认识红壤侵蚀过程和水土流失防治提供科学依据。[方法]通过人工模拟降雨试验,研究了不同降雨强度、不同坡度对华南红壤坡面降雨产流过程和侵蚀产沙过程的影响。[结果](1)相同坡度条件下,坡面径流量、侵蚀产沙量均随着雨强的增大而线性增大;相同雨强下,径流量随坡度的增加而减小,而产沙量随着坡度的变化比较复杂;(2)雨强和坡度共同影响着坡面产沙过程,当雨强小于等于180mm/h时,产沙量随坡度的增加而增大,在240mm/h出时呈现先增加后减小的趋势,在15°附近出现临界坡度。在降雨初期,径流率表现为波动增加过程,15min后趋于平稳,一直持续到降雨结束,其中雨强为240,180mm/h时波动较为剧烈,而产沙率呈现急剧而短暂的上升后迅速下降,在大雨强、陡斜坡条件下此现象尤为明显;(3)坡面径流平均流速与单宽流量、坡度比存在显著的幂函数关系,流速与径流量、侵蚀产沙量有着类似的变化规律。[结论]红壤侵蚀过程中雨强为主要影响因素,坡面流速可作为表征红壤坡面侵蚀特征的重要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号