首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
为了对微藻油脂含量不同测定方法进行比较,以球等鞭金藻8701 Isochrysis galbana Parke 8701和小新月菱形藻Nitzschia closterium f.minutissima两种微藻为研究对象,采用溶剂提取法和苏丹黑B染色法对其油脂含量进行测定,建立了两种微藻油脂含量与苏丹黑染色后吸光度A645 nm的线性回归方程,并应用于微藻油脂积累培养过程的快速测定,利用气相色谱法对两种微藻脂肪酸组成进行分析。结果表明:当提取溶剂为二氯甲烷和甲醇的混合溶剂(二者的体积比为1∶2)时,油脂提取效果较好,得到球等鞭金藻8701和小新月菱形藻的油脂含量分别为22.99%和16.89%;采用苏丹黑B染色法测定的油脂含量基本和生物量大体一致,是一种可行的估测油脂含量的方法;气相色谱检测结果显示,两种微藻具有明显不同的脂肪酸组成特征,球等鞭金藻8701的饱和脂肪酸含量(55.02%)较小新月菱形藻(51.39%)高。研究表明,从两种微藻的油脂含量和脂肪酸组成来看,球等鞭金藻8701较小新月菱形藻更适用于作为生物柴油的原料。  相似文献   

2.
富油脂微藻的分离筛选与鉴定   总被引:2,自引:0,他引:2  
为从中国江河、海水等水体中筛选油脂含量较高的微藻,采集了青岛海水、武汉南湖水的水样,分离了12株微藻。对微藻的油脂含量进行了测定,其中油脂含量最高的微藻为H2-1,油脂含量达到56.25%细胞干重,其次是BQ6,油脂含量为31.43%。BQ1、BQ2、BQ4、BQ6油脂含量也较高,达29%左右。PCR扩增获得微藻18S r DNA的部分片段,序列测定后,进行BLAST同源性分析。结果表明,QS1、QS2、QS3、BQ1、BQ2、BQ3、BQ4、BQ5、BQ6、H1-1、H2-2均属于小球藻属(Chlorella spp.),H2-1属于胶网藻属(Dictyosphaerium sp.)。该研究将为中国生物能源的生产和开发提供优良的藻种资源。  相似文献   

3.
[目的]研究培养条件对梅尼小环藻细胞生长和油脂积累的影响,以获得其产油的最佳培养工艺。[方法]采用干重法评价梅尼小环藻的生物量,采用溶剂浸提法测定微藻中油脂含量,并通过单因子试验考察培养温度、初始pH、光照强度、摇床转速、接种量对梅尼小环藻细胞生长和油脂积累的影响。[结果]梅尼小环藻产油最佳培养工艺为:培养温度25℃、初始pH 8.0、光照强度600 lx、摇床转速130 r/min、接种量20%。在上述优化条件下培养5 d,梅尼小环藻的生物量和油脂含量可达到5.4 g/L和56%,分别为对照组的1.38和1.30倍。[结论]研究结果为大规模化生产微藻油脂提供了理论依据。  相似文献   

4.
[目的]研究培养条件对梅尼小环藻细胞生长和油脂积累的影响,以获得其产油的最佳培养工艺.[方法]采用干重法评价梅尼小环藻的生物量,采用溶剂浸提法测定微藻中油脂含量,并通过单因子试验考察培养温度、初始pH、光照强度、摇床转速、接种量对梅尼小环藻细胞生长和油脂积累的影响.[结果]梅尼小环藻产油最佳培养工艺为:培养温度25℃、初始pH 8.0、光照强度600lx、摇床转速130 r/min、接种量20%.在上述优化条件下培养5d,梅尼小环藻的生物量和油脂含量可达到5.4g/L和56%,分别为对照组的1.38和1.30倍.[结论]研究结果为大规模化生产微藻油脂提供了理论依据.  相似文献   

5.
《安徽农业科学》2020,(3):58-60
[目的]评价绿藻Chlamydomonas sp.PD-4能否作为油藻的备选藻株。[方法]研究该藻基本的生化组成以及不同培养条件下该藻的生长、油脂含量以及脂肪酸组成,并且观察该藻的气浮现象。[结果]该藻在100μmol/(m~2·s)培养9 d可产25.81%蛋白、18.82%油脂以及23.50%糖。该藻在200μmol/(m~2·s)的光以及氮浓度限制条件下培养,其油脂含量和多不饱和脂肪酸含量都会进一步提高。在较高的光强下静置培养,该藻可以自身气浮。[结论]该藻具有产油微藻的潜力。  相似文献   

6.
为筛选在城市生活污水中生长快、产油高的微藻,从污水样品中分离出40株微藻,采用高通量方法(96孔板培养、尼罗红染色)从中筛选出一株优良藻株,经18S rRNA基因序列分析及形态学鉴定属于小球藻属(Chlorella)。污水培养7 d后,其油脂含量达31.21%,污水的TN、NH+4-N、TP和COD去除率分别为71.6%、98.2%、99.4%和78.8%。该藻株在污水处理与微藻生物能源生产耦合系统中具有潜在的应用前景。  相似文献   

7.
费小雯  蔡佳佳  邓晓东 《安徽农业科学》2012,40(34):16521-16524,16551
[目的]研究营养限制对Heynigia riparia CE14-2油脂积累的影响。[方法]以从海南热带水域分离得到一藻株为材料,通过18SrDNA同源聚类分析对其进行鉴定。通过将其培养在HSM、SE和BG11 3种系列(缺氮、磷、硫元素的培养基)12种培养基上,检测生长速率和油脂含量。[结果]试验鉴定该藻株为Heynigia riparia CE14-2;Heynigia riparia CE14-2在HSM培养基中生长优于其他培养基,N、P、S缺乏可促使Heynigia riparia CE14-2油脂积累,其中,硫和氮营养缺陷促进油脂积累作用明显,但营养限制使微藻生长减缓,使细胞组分的蛋白质、糖和叶绿素的含量降低;在SE-S培养基中添加葡萄糖或乙酸钠,Heynigia riparia CE14-2的生物量、油脂和叶绿素含量在一定范围内有所增加,但葡萄糖的促进作用不如乙酸钠明显。[结论]为微藻的油脂生产提供了理论依据。  相似文献   

8.
为研究磷酸果糖激酶(PFK2)对微藻油脂积累的影响、克隆了莱茵衣藻磷酸果糖激酶同源基因CrPFK2、 构建CrPFK2 RNAi 干涉载体并转化莱茵衣藻。通过测定转基因藻在HSM 培养下的生物量和油脂含量的结果发现、 CrPFK2 RNAi 转基因藻株在HSM 培养基中生长加快、油脂含量下降了17.03%耀21.48%、说明CrPFK2 基因表达的降 低与藻细胞油脂含量减少成正相关。CrPFK2 通过改变光合碳流的多少间接调控藻细胞油脂的合成。该结果为 CrPFK2 基因应用于微藻油脂的遗传改良将起到重要作用。  相似文献   

9.
晏妮  胡晓红  陈椽 《湖北农业科学》2014,(13):3019-3021
为筛选具有产油潜力的能源微藻,从贵州不同淡水环境中分离纯化了10种淡水微藻(4种绿藻,4种硅藻,2种蓝藻)并对其总脂含量及脂肪酸组成进行分析。结果表明,10种含油淡水微藻的总脂含量为2.92%~20.82%,有3种总脂含量超过10%;脂肪酸组成上,均以C16和C18脂肪酸含量丰富,其中蓝、绿藻门C18∶4脂肪酸含量最高,均超过50%,其次为C18∶1脂肪酸和C18∶2脂肪酸,硅藻门除舟形藻外,C16∶0和C16∶1脂肪酸含量较高,针杆藻属检测出少量C22∶0和C20∶4脂肪酸。10种淡水微藻的不饱和脂肪酸的含量占总脂肪酸的50%以上,蓝、绿藻不饱和脂肪酸高达88%以上。  相似文献   

10.
葛珍珍  王杰  余晓斌 《安徽农业科学》2012,40(24):11929-11931,11971
[目的]为了实现小球藻的高密度及高产油培养。[方法]通过分析分批培养过程中藻细胞的生长曲线、葡萄糖消耗曲线、pH及溶氧变化曲线,对小球藻进行分批补料,待藻细胞达到一定的高密度后再进行缺氮培养以富集细胞内的油脂。[结果]经过4次分批补料,小球藻的生物量达到了65.25 g/L,然后进行缺氮培养12 h,小球藻的油脂含量由42.75%提高到了63.82%,油脂产量达43.37 g/L。[结论]合理的分批补料明显地提高了小球藻的生物量。缺氮培养进一步提高了小球藻的油脂含量。  相似文献   

11.
陈梅  唐运来 《安徽农业科学》2012,40(24):12196-12198,12201
能源短缺和环境问题已经成为人类面临的全球性重大危机,生物质能作为一种环境友好的可再生能源受到国内外学者的关注。微藻作为生物质能原料有很多优势,但制约微藻生物质能源工业化生产的主要限制因素之一是微藻的油脂含量。选育高油脂含量的微藻株系是目前微藻领域的研究热点之一。在此综述了微藻作为生物质能原料的优势和基于生物质能原料生产的微藻选育的研究进展。  相似文献   

12.
杨勋  刘平怀  郝宗娣  时杰  张森 《安徽农业科学》2011,39(32):19988-19990,20124
[目的]研究富油微藻的分离与筛选,探讨其油脂提取的最佳工艺条件。[方法]采用尼罗红荧光染料对分离自海南淡水水体的微藻进行初筛,得到油脂含量较高的Monoraphidium sp.,采用Bligh-Dyer超声法提取该微藻的油脂.以提取溶剂比例、超声功率、提取温度、提取时间为因子,通过单因子试验研究其对出油率的影响,并通过正交试验优化微藻油脂提取的工艺条件。[结果]Monoraphidiumsp经尼罗红染色后荧光强度高,表明该微藻富含油脂,具有作为能源微藻的潜力。正交试验表明,从Monoraphidium sp.提取油脂的最佳工艺条件为:溶剂氯仿、甲醇和水的比例为10∶10∶9,超声功率600 W、提取温度50℃、提取时间30 min。优化后的工艺条件与未优化的相比,该微藻出油率提高了29.01%。[结论]该研究为快速筛选富油微藻及Monoraphidium sp.的应用提供科学依据。  相似文献   

13.
紫外诱变热带微藻选育高油脂藻株   总被引:1,自引:0,他引:1  
为选育高含油量微藻藻种,本试验以优势藻株La4-37为原材料,采用紫外线辐射法对其进行诱变处理,获得了296株藻株。利用尼罗红荧光检测法对获得的藻株进行荧光检测,筛选获得相对含油量最大的诱变藻株M077和M040。通过对诱变株生长及脂荧光强度动态跟踪发现,诱变株生长周期和油脂积累时期基本一样,当达到平稳期时,诱变株油脂积累能力均有较大提高,脂荧光强度分别是原始藻株的6.2倍和1.7倍。  相似文献   

14.
培养液铁离子浓度对单生卵囊藻和月牙藻细胞组成的影响   总被引:1,自引:0,他引:1  
研究了培养液中添加不同量柠檬酸铁(0、0.0039、0.039和0.39 mg/L)对单生卵囊藻(Oocystis solitaria)和月牙藻(Selenastrum sp.)细胞组成的影响。结果表明,单生卵囊藻和月牙藻分别在柠檬酸铁添加量为0.039 mg/L和0.39 mg/L时具有最大的蛋白、总糖、叶绿素a和类胡萝卜素含量。单生卵囊藻和月牙藻均在柠檬酸铁添加量为0.39 mg/L时具有最大的总脂肪含量,分别为13.76%和22.78%,比相应未添加铁组分别提高了318%和160%。单生卵囊藻富含18:3n3,月牙藻富含18:2n6。培养液中高的铁离子浓度诱导两种藻细胞合成更多的饱和脂肪酸。相比单生卵囊藻,月牙藻对培养液中高铁离子浓度的耐受力更强,更适合作为生物柴油的原料。  相似文献   

15.
生物柴油由于其燃烧性高、污染小、可再生等优点,是传统化石燃料的理想替代能源,并已在世界范围内得到广泛应用。基因工程技术在生物柴油中的应用,主要集中在提高生物柴油原料的脂类含量上,如对含油植物和含油微藻的研究。结合国内外主要研究进展,综述了运用基因工程技术提高生物柴油原料脂类含量的8种途径,如超量表达乙酰辅酶A羧化酶、脂肪酸合成酶、苹果酸酶等。最后指出:将微藻作为生产原料是我国生物柴油产业发展的必然趋势,通过转录因子途径调控脂类的积累,是未来生物柴油产业发展的重要研究方向。  相似文献   

16.
提出了"废水、废气-水华微藻(自养藻类)-高油工程微藻(异养藻类)-生物柴油"可持续型微藻生物质能源生产体系的构建设想。首先以市政废水、废气CO2为基质大量生产水华微藻,在收获大量价廉的水华微藻细胞的同时实现市政废水中N、P的有效去除和温室气体减排;然后将先进的发酵工程技术和微藻育种工程技术集成配套以实现高油工程微藻的高密度异养培养,即通过生物育种工程技术获得适应性强的异养高油工程微藻,使其能够以水华微藻细胞的降解产物为底物,在可控条件下实现快速繁殖、合成并富集油脂,最终成为生物柴油生产的丰富原料。该体系可实现CO2固定、市政废水净化和微藻高附加值生物柴油的生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号