首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

2.
We analyzed the growth and photosynthetic behavior of Gallesia integrifolia (‘pau-d’alho’) and Schinus terebinthifolius (‘aroeirinha’) under shade, seeking to obtain ecophysiological information for introducing seedlings of those species in previously established cacao agroforestry systems. Considering that light intensity under the shade of cacao trees varied between 5 and 10% daylight, 5 months old seedlings were exposed to four irradiance levels (25, 17, 10 and 5% daylight) for 92 days. With shade increase both species displayed trends of decrease leaf mass per unit leaf area, leaf area per plant (LA), relative growth rate (RGR) and net assimilation rate (NAR), and increase leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (P nmax) in 25 and 5% daylight were 12.8 and 8.0 μmol CO2 m−2 s−1 for G. integrifolia and 17.9 and 7.4 μmol CO2 m−2 s−1, respectively, for S. terebinthifolius. Based on the measurements of photosynthetic photon flux density and estimated values of photosynthetic saturated irradiance (Is) we concluded that, in all shaded conditions, the leaves of both species were under sub optimal light conditions to reach P nmax. In spite of the lowest P nmax values, RGR and NAR were significantly higher for G. integrifolia in all irradiance levels. Differences in growth rates can be explained by the higher values of LA, LAR and leaf mass ratio (LMR), as well as by the lower values of Is, photosynthetic compensation irradiance and dark respiration rates observed for G. integrifolia. Even though seedlings of G. integrifolia presented higher capacity to adapt under conditions of dense shade, we concluded that both species were under stress conditions induced by shade in light environments below 25% daylight. On a practical point of view it is possible to conclude that seedlings of both species should be introduced in light gaps, formed after the fall of big trees, or in places in which cacao trees are cultivated using large plant spacing.  相似文献   

3.
Daily net canopy photosynthesis (P n) was predicted for cocksfoot (Dactylis glomerata L.) canopies grown under different light regimes by integration of a leaf photosynthesis model developed for the light-saturated photosynthetic rate (P max), photosynthetic efficiency (α) and the degree of curvature (θ) of the leaf light–response curve. When shade was the only limiting factor, the maximum P n (P nmax) was predicted to decrease approximately linearly from 33.4 g CO2 m−2 d−1 to zero as photosynthetic photon flux density (PPFD) fell from full sunlight (1800 μmol m−2 s−1 PPFD) to 10% of this in a fluctuating light regime. It was also predicted that at 50% transmissivity P nmax was higher for a continuous light regime (10.4 g CO2 m−2 d−1) than for a fluctuating light regime with the same intensity (8.4 g CO2 m−2 d−1). The canopy photosynthesis model was then used to predict dry matter (DM) production for cocksfoot field grown pastures under a diverse range of temperature, herbage nitrogen content and water status conditions in fluctuating light regimes. This prediction required inclusion of leaf area index and leaf canopy angle from field measurements. The model explained about 85% of the variation in observed cocksfoot DM production for a range from 6 to 118 kg DM ha−1 d−1. The proposed model improves understanding of pasture growth prediction through integration of relationships between shade limitations in fluctuating light regimes and other environmental factors that affect the canopy photosynthetic rate of cocksfoot pastures in silvopastoral systems.  相似文献   

4.
Net light-saturated photosynthetic rate (Amax) of field grown cocksfoot (Dactylis glomerata L.) leaves in a radiata pine (Pinus radiata D. Don) silvopastoral system (Canterbury, New Zealand) was measured at different times under severe shade (85–95 μmol m–2 s–1 photosynthetic photon flux density, PPFD) and in full sunlight (1900 μmol m–2 s–1 PPFD). The aim was to integrate individual functions for Amax against air temperature (2 to 37 oC), water status, expressed as pre-dawn leaf water potential (ψlp) (-0.01 to −1.6 MPa), herbage nitrogen (N) (1.5 to 5.9%), regrowth duration (20 to 60 days) and time under shade (1 to 180 min) into a multiplicative model. The highest Amax value obtained was 27.4 μmol CO2 m–2 s–1 in non-limiting conditions with full sunlight. This value was defined as standardised dimensionless Amaxs = 1 for comparison of factor effects. The canopy temperature of the cocksfoot sward was up to 7.4 oC cooler than air temperature for plants under shade. Therefore, canopy temperature was used to predict Amax. The only interaction was between time under severe shade (5% of the open PPFD) and water stress (ψlp = −0.4 to −1.3 MPa) and this was included in the model. Validation of this model indicated 78% of the variation in Amax could be accounted for using these five factors by the addition of the interaction function. This model could be used to assist the prediction of pasture growth in silvopastoral systems through incorporation into a canopy photosynthesis model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
本文研究了大叶桃花心木(Swietenia macrophylla King)一年生幼苗在经过夜温处理后的光响应曲线和在饱和光强下的CO2反应曲线.结果表明:在大气CO2浓度下,叶片的最佳光合作用温度在25-31℃之间,而在饱和CO2浓度下为31-35℃.在25℃以下光合速率开始降低,主要是由于羧化效率的降低,而当温度超过31℃时,光合速率下降,是因为羧化效率的降低和呼吸速率的增加.CO2浓度对光合的促进作用在低温下受到抑制,这意味着未来在CO2浓度增高的情况下,高浓度的CO2对热带常绿植物光合的促进在冬天低温情况下表现不十分明显.图4参23.  相似文献   

6.
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and 500 μmol·m−2·s−1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 μmol·m−2·s−1 PPFD were slower than those at 200 μmol·m−2·s−1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity. Biograph: ZHOU Yong-bin (1970-), female, associate professor of Shenyang Agricultural University, Shenyang 110161, P.R. China. Responsible editor: Song Funan  相似文献   

7.
Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m−2·s−1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m−2·s−1 to 569.00 μmol·m−2·s−1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m−2·s−1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m−2·s−1 (8–961 lx), or 10 μmol·m−2·s−1 for above 6 h. Foundation item: This study was supported by the Research Foundation of Northeast Forestry University. Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China. Responsible editor: Zhu Hong  相似文献   

8.
测定了3年生白桦的光合与呼吸作用对温度,湿度以及CO2浓度的响应;还测定了光补偿点,光饱和点和CO2补偿点。结果表明:在目前的空气CO2浓度下,光合和呼吸作用的最适温度分别是24℃和30℃;当相对湿度是80%时,白桦能维持较强的光合作用;呼吸作用与相对湿度无明显的相关性;光补偿点和光饱和点分别是25 molm-2s-1和1375 祄olm-2s-1;CO2补偿点是180 礚L-1;白桦在CO2浓度为2400 礚L-1时仍有吸收潜力。图4参19。  相似文献   

9.
A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.  相似文献   

10.
The photosynthetic response of 12-year oldPinus sylvestriformis to elevated CO2 and its influential factors were tested and analyzed in the forest region of Changbai Mountain in 1999. Trees grown at the natural condition were controlled at three levels of CO2 concentration (350 μL·L−1, 500 μL·L−1 and 700 μL·L−1) by CO2 rich settlement designed by us. Net photosynthetic rates (NPR), temperature, relative humidity, stomatal conductance, intercellular CO2 concentration and photosynthetic active radiation (PAR) were measured at 6:00, 8:00, 10:00, 14:00, 16:00 and 18:00 hours a day. Experimental results showed that the NPR ofPinus sylvestriformis increased by 32.6% and 123.0% at 500 μL·L−1 and 700 μL·L−1 CO2 concentration respectively, compared to ambient atmospheric CO2 concentration (350 μL·L−1). The relations between NPR and influential factors, including temperature, relative humidity, intercellular CO2 concentration and photosynthetic active radiation, were analyzed respectively by regression analysis at different CO2 concentrations. Foundation Item: This project was supported by Chinese Academy of Sciences. Biography: WANG Chen-rui (1970-), male, Assistant Research Fellow in Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

11.
Safe and economical disposal of paper mill sludge is a key consideration for forest products industry. A study was conducted to examine the effects of amendments of sludge and nutrients on soil surface CO2 flux (Rs) in northern hardwood forests and to quantify the relat among R5, soil temperature, and moisture in these stands. The experiment was a randomized complete block design that included sludge-amended, fertilized, and control treatments in sugar maple (Acer saccharum Marsh) dominated hardwood forests in the Upper Peninsula of Michigan, USA. Results showed that Rs was positively correlated to soil temperature (R2=0.80, p<0.001), but was poorly correlated to soil moisture. Soil moisture positively affected the Rs only in the sludge-amended treatment. The Rs was significantly greater in the sludge-amended treatment than in the fertilized (p=0.033) and the control (p=0.048) treatments. The maximum Rs in the sludge-amended treatment was 8.8 μmol CO2·m−2·s−1, 91% and 126% greater than those in the fertilized (4.6 μmol CO2·m−2·s−1) and control (3.9 μmol CO2·m−2·s−1) treatments, respectively. The Rs did not differ significantly between the fertilized and control treatments. The difference in Rs between sludge-amended and the other treatments decreased with time following treatment. Foundation item: The research was funded by a NCASI grant to S.T. Gower. Wang CK was supported by Innovated Talent Program of Northeast Forestry University (2004–07) Biography: WANG Chuan-kuan (1963-), male, Professor in the Ecology Program, College of Forestry, Northeast Forestry University, Harbin 150040, China. Responsible editor: Chai Ruihai  相似文献   

12.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

13.
The effects of the warm and dry weather in the southern upper Rhine plain in the southwest of Germany on the carbon balance of the Scots pine forest at the permanent forest meteorological experimental site Hartheim were analysed over a 14-month period. The investigation of the net ecosystem exchange of carbon dioxide (F NEE) of the Scots pine forest started in the extraordinary hot and dry August 2003. Carbon dioxide fluxes were measured continuously using an eddy covariance system and analysed by use of the EDDYSOFT software package. After determining the temperature dependence of the forest ecosystem respiration and the daytime light dependence of the CO2 exchange, monthly and annual carbon balances of the Scots pine forest were calculated. Mean peak daytime F NEE rates observed in August and September 2003 (−6.5±3.6 μmol m−2 s−1) were drastically lower than in August and September 2004 (−11.8±5.2 μmol m−2 s−1), which did not show pronounced deviations from the mean long-term (1978–2002) climatic conditions. In August 2003, the Hartheim Scots pine forest was a distinct CO2 source (35 g C m−2). The estimates of the annual carbon sink strength of the Scots pine forest ranged between −132 g C m−2 (August 2003–July 2004) and −211 g C m−2 (October 2003–September 2004). The main uncertainty in the determination of the carbon balance of the Hartheim Scots pine forest was introduced by the frequently low turbulence levels, i.e. the friction velocity corrected night-time F NEE fluxes.  相似文献   

14.
Forest soil is a huge reserve of carbon in the biosphere. Therefore to understand the carbon cycle in forest ecosystems, it is important to determine the dynamics of soil CO2 efflux. This study was conducted to describe temporal variations in soil CO2 efflux and identify the environmental factors that affect it. We measured soil CO2 efflux continuously in a beech secondary forest in the Appi Highlands in Iwate Prefecture for two years (except when there was snow cover) using four dynamic closed chambers that automatically open after taking measurements. Temporal changes in soil temperature and volumetric soil water content were also measured at a depth of 5 cm. The soil CO2 efflux ranged from 14 mg CO2 m−2 h−1 to 2,329 mg CO2 m−2 h−1, the peak occurring at the beginning of August. The relationship between soil temperature and soil CO2 efflux was well represented by an exponential function. Most of temporal variation in soil CO2 efflux was explained by soil temperature rather than volumetric soil water content. The Q 10 values were 3.7 ± 0.8 and estimated annual carbon emissions were 837 ± 210 g C m−2 year−1. These results provide a foundation for further development of models for prediction of soil CO2 efflux driven by environmental factors.  相似文献   

15.
The effect of shoot pruning on leaf phenology, stem wood anatomy and sap flow was investigated on Senna spectabilis (DC.) Irwin and Barneby in Machakos, Kenya. Unpruned trees (single stem) were compared to hedges (two to four stems), pruned 4 times a year during two rainy seasons (April–June, 1997 and November, 1997–January, 1998) separated by a dry season (July–October 1997). Trees attained peak leaf area of 55 m2 plant−1 during the rainy seasons, and shed all their leaves naturally during the dry season. Maximum hedge leaf area was 4 m2 plant−1 between pruning events and 5.2 m2 plant−1 during the dry season. Pruning induced multiple stems and narrow xylem vessels with low hydraulic conductivity. Average cross sectional area of conducting wood per plant was at least 1.8 times greater in trees than in hedges. Xylem lumen diameter at 5 mm depth below the cambium was significantly (P < 0.001) larger in trees (53.6 ± 6.21 μm) than that in hedges (36.2 ± 8.21 μm). Maximum sap flow occurred in the wet season for trees (4800 g d−1 plant−1) and in the dry season for hedges (1400 g d−1 plant−1). Wet season pruning suppressed crown expansion and modified the natural phenology of senna, reducing transpiration rate and therefore soil water depletion, causing crowns to grow. This enhanced the ecological combining ability of senna managed as hedges with annual crops.  相似文献   

16.
3年生白桦同时接受3种外源糖溶液(蔗糖、果糖、葡萄糖)和3种高浓度CO2(700、1400、2100μL·μL-1CO2)处理.处理1个月后,测定了叶片的总糖、蔗糖、果糖和蛋白质含量.结果表明:在700μL·L-1和1400μL·L-1 CO2下,外源糖溶液增加了叶片的可溶性糖和蛋白质含量,其中外源蔗糖的效果最好:外源糖溶液与2100μL·L-1CO2结合,会抑制叶片积累总糖和蛋白质:在700μL·L-1和1400μL·L-1CO2下,喷施葡萄糖、果糖的叶片在蛋白质含量上没有明显差别:同700、1400μL·L-1CO2相比,除喷施果糖植株外,2100μL·L-1 CO2明显增加了叶片的总糖、蔗糖、果糖和蛋白质含量:在喷施同种外源糖溶液的情况下,叶片的糖含量与CO2浓度呈正相关性.图6参7.  相似文献   

17.
A combined model of stomatal conductance and photosynthesis was developed for Festuca pallescens (St. Ives) Parodi, a forage species in Patagonia. Curves showing the relationship between photosynthesis and photosynthetic photon flux density (PPFD) were constructed for plants grown under differing levels of water availability, relative humidity (RH) and air temperature (T). Stomatal conductance (gs) was related to these variables and pre-dawn leaf water potential (ψpd) using an empirical multiplicative submodel. Parameters of the photosynthesis-PPFD curves were related to the average gs values for each curve to introduce stomatal limitation on photosynthesis. Considering the simplicity of the models, estimated stomatal conductance and photosynthesis agree satisfactorily with independent measured values in the field and in the glasshouse, particularly in the range of low and medium values of both variables (R2 = 0.84 and 0.87 for gs and photosynthesis models, respectively). Photosynthesis–PPFD curves were also determined under field conditions for plants growing under shade and in the open, in a silvopastoral trial in northwestern Patagonia. No significant differences in the photosynthetic light response curves were found between these locations, but slight increases in maximum assimilation rate and quantum yield (light use efficiency) were found for leaves grown under shade. This study of environmental influences on photosynthesis in F. pallescens may help to predict its capacity to grow under trees in silvopastoral systems. In addition, this simple model may be easily parameterised for other species to predict photosynthetic responses under different environmental conditions.  相似文献   

18.
Photosynthetic responses to a series of 1-min lightflecks (1,000μmol m−2 s−1) superimposed on a background with different duration (1, 5, and 10 min) and intensity (25 and 50μmol m−2 s−1) of low background photosynthetic photon flux density (PPFD) were measured in the leaves ofFagus crenata grown in a gap and understory of aFagus crenata forest in the Naeba Mountains. The two background PPFD intensities most frequently occurred in understory and gap sites respectively. The maximum net photosynthetic rate (P Nmax) and maximum stomatal conductance (g smax) were higher in the gap seedlings than in the understory seedlings. However, when the background PPFD was 25μmol m−2s−1, the net photosynthetic rate (P 25) and stomatal conductance (g s25) were almost the same between the gap and understory. When the background PPFD duration was 1-min, the net photosynthetic rate (P N ) at the end of each lightfleck increased progressively. When the background PPFD duration was 5- and 10-min, the increase inP N at the end of each lightfleck was less. This indicates that background PPFD duration is important to photosynthetic responses to lightflecks. The higher ratios ofP 25/P Nmax andg s25/g smax in the understory seedlings indicate that the understory seedlings can maintain relatively lower levels of biochemical and stomatal limitations than the gap seedlings under low light conditions. The ratios ofP N /P Nmax at the end of each lightfleck (IS) and light utilization efficiency of single lightflecks (LUE s) that showed the influence of lightflecks on carbon gain were higher in the understory seedlings than in the gap seedlings when the background PPFD was 25μmol m−2 s−1. This means that understory seedling are capable of utilizing fluctuating light more efficiently under low light conditions than the gap seedlings although the net carbon gain of single lightflecks (CG s) in the understory seedlings was not higher than that in the gap seedlings. There were no significant differences inIS andLUE s between understory seedlings at a background PPFD of 25μmol m−2 s−1 and gap seedlings at a background PPFD of 50μmol m−2 s−1. However,CG s in gap seedlings was higher than in understory seedlings. These results provide more evidence thatF. crenata acclimate to a natural light environment in respect to relative induction state at low background PPFD and can capture the fluctuating light at the same efficiency in both the gap and understory seedlings under natural light environments. This study was funded by the research project, Evaluation of Total CO2 Budget in Forest Ecosystems, coordinated by the Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

19.
Land management practices that simultaneously improve soil properties are crucial to high crop production and minimize detrimental impact on the environment. We examined the effects of crop residues on crop performance, the fluxes of soil N2O and CO2 under wheat-maize (WM) and/or faba bean-maize (FM) rotations in Amorpha fruticosa (A) and Vetiveria zizanioides (V) intercropping systems on a loamy clay soil, in subtropical China. Crop performance, soil N2O and CO2 as well as some potential factors such as soil water content, soil carbon, soil nitrogen, microbial biomass and N mineralization were recorded during 2006 maize crop cultivation. Soil N2O and CO2 fluxes are determined using a closed-based chamber. Maize yield was greater after faba bean than after wheat may be due to differences in supply of N from residues. The presence of hedgerow significantly improved maize grain yields. N2O emissions from soils with maize were considerably greater after faba bean (345 g N2O–N ha−1) than after wheat (289 g N2O–N ha−1). However, the cumulated N2O emissions did not differ significantly between WM and FM. The difference in N2O emissions between WM and FM was mostly due to the amounts of crop residues. Hedgerow alley cropping tended to emit more N2O than WM and FM, in particular A. fruticosa intercropping systems. Over the entire 118 days of measurement, the N2O fluxes represented 534 g N2O–N ha−1 (AWM) and 512 g N2O–N ha−1 (AFM) under A. fruticosa species, 403 g N2O–N ha−1 (VWM) and 423 g N2O–N ha−1 (VFM) under Vetiver grass. We observed significantly higher CO2 emission in AFM (5,335 kg CO2–C ha−1) from June to October, whereas no significant difference was observed among WM (3,480 kg CO2–C ha−1), FM (3,302 kg CO2–C ha−1), AWM (3,877 kg CO2–C ha−1), VWM (3,124 kg CO2–C ha−1) and VFM (3,309 kg CO2–C ha−1), indicating the importance of A. fruticosa along with faba bean residue on CO2 fluxes. As a result, crop residues and land conversion from agricultural to agroforestry can, in turn, influence microbial biomass, N mineralization, soil C and N content, which can further alter the magnitude of crop growth, soil N2O and CO2 emissions in the present environmental conditions.  相似文献   

20.
The potential for agricultural soils to act as a sink and sequester carbon (C) or a source and emit carbon dioxide (CO2) is largely dependent upon the agricultural management system. The establishment of permanent vegetation, such as trees and grass contour buffer strips, may cause accumulation of above- and below-ground C over time, thereby acting as a sink for tropospheric CO2. However, the effects of contour grass strips and grass-tree strips (agroforestry) on soil CO2 emissions have not been extensively studied in row-crop watersheds in the temperate regions. The objective of this study was to determine the effects of agroforestry and grass contour buffer strips and landscape position on soil surface efflux rate of CO2 in three adjacent agricultural watersheds with claypan soils in northeast Missouri. The three watersheds were in a corn-soybean rotation, and contained (1) cropped only (CR), (2) cropped with grass contour strips (GR), or (3) cropped with tree-grass contour strips (AF) management systems. Soil surface CO2 efflux was measured throughout the 2004 growing season at the upper (UBS), middle (MBS), and lower (LBS) backslope landscape positions within the three watersheds. The cumulative soil CO2 production was lowest in the CR (0.9 kg CO2-C m−2) compared to the AF (1.5 kg CO2-C m−2) and GR watersheds (1.5 kg CO2-C m−2). The lower backslope position (1.6 kg CO2-C m−2) across all three watersheds produced 32 and 40% greater cumulative soil CO2 than the upper and middle backslope positions, respectively. A 72-day incubation study determined the effects of 40, 60, 80, and 100% soil water-filled pore space (WFPS) and N rate (0 and 1.39 g KNO3 kg soil−1) on soil CO2 efflux from bulk soil collected under each management system. The cumulative CO2 production was highest in the grass soil (1,279 mg CO2-C kg soil−1) compared to the agroforestry (661 mg CO2-C kg soil−1) and cropped (483 mg CO2-C kg soil−1) soils regardless of WFPS and N rate. The highest cumulative CO2 production for the grass soil (1,279 mg CO2-C kg soil−1) occurred at 80% WFPS, and was approximately 2 to 2.6 times greater than the agroforestry and cropped soils at 80% WFPS. The results of this study indicate that conservation management practices, such as grass and grass-tree contour buffer strips, and landscape position affect soil surface CO2 production and accumulation of soil organic C that may influence soil C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号