首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine how rapidly trimethoprim-sulfamethoxazole affects serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in euthyroid dogs and how quickly hormone concentrations return to reference values following discontinuation of administration. DESIGN: Prospective study. ANIMALS: 7 healthy euthyroid dogs. PROCEDURE: Dogs were given trimethoprim-sulfamethoxazole (26.5 to 31.3 mg/kg [12 to 14.2 mg/lb], PO, q 12 h) for a maximum of 6 weeks. A CBC and Schirmer tear test were performed and serum total T4 and TSH concentrations were measured weekly. Administration of trimethoprim-sulfamethoxazole was discontinued if total T4 concentration was less than the lower reference limit and TSH concentration was greater than the upper reference limit or if persistent neutropenia developed. RESULTS: Six dogs had total T4 concentrations less than the lower reference limit within 3 weeks; T4 concentration was decreased after 1 week in 3 of these 6 dogs. In these 6 dogs, TSH concentration was greater than the upper reference limit within 4 weeks. In 1 dog, T4 and TSH concentrations were not affected, despite administration of trimethoprim-sulfamethoxazole for 6 weeks. Neutropenia developed in 4 dogs. In 1 dog, the neutropenia resolved while trimethoprim-sulfamethoxazole was still being administered. In the other 3, neutrophil counts returned to reference values 1 week after drug administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of trimethoprim-sulfamethoxazole at a dosage of 26.5 to 31.3 mg/kg, PO, every 12 hours can substantially alter serum total T4 and TSH concentrations and neutrophil counts in dogs within as short a time as a few weeks.  相似文献   

2.
OBJECTIVE: To assess thyroid hormone levels in hyperadrenocorticoid dogs before and after therapy with trilostane, a reversible inhibitor of steroidogenesis. METHODS: Serum total thyroxine, free thyroxine and endogenous canine thyroid-stimulating hormone concentrations were measured in 20 dogs with spontaneously occurring hyperadrenocorticism before and six months after successful treatment with trilostane. RESULTS: Fourteen dogs demonstrated an increase in thyroxine following trilostane treatment; however, this was not significant (P=0.108). Fourteen dogs demonstrated an increase in canine thyroid-stimulating hormone concentrations with trilostane therapy (P=0.006). Of the 14 dogs that demonstrated an increase in thyroxine concentrations following therapy, 10 also showed an increase in canine thyroid-stimulating hormone concentrations. Before treatment, free thyroxine values were within, above and below the reference range in 10, six and two dogs, respectively. Sixteen of 18 dogs had free thyroxine values within the reference range after treatment, with 11 dogs showing a decrease in free thyroxine levels following therapy (P=0.029). CLINICAL SIGNIFICANCE: While treatment with trilostane did not induce a significant change of thyroxine concentrations, there was a significant increase in canine thyroid-stimulating hormone concentrations following treatment, a finding that supports thyroid-stimulating hormone suppression as one of the factors that contributes to the effects of glucocorticoids on the hypothalamic-pituitary-thyroid axis. The significant elevation in free thyroxine values following treatment with trilostane was unexpected and did not support the findings of previous studies in this area.  相似文献   

3.
OBJECTIVE: To evaluate thyroid function in healthy Greyhounds, compared with healthy non-Greyhound pet dogs, and to establish appropriate reference range values for Greyhounds. ANIMALS: 98 clinically normal Greyhounds and 19 clinically normal non-Greyhounds. PROCEDURES: Greyhounds were in 2 groups as follows: those receiving testosterone for estrus suppression (T-group Greyhounds) and those not receiving estrus suppressive medication (NT-group Greyhounds). Serum thyroxine (T4) and free thyroxine (fT4) concentrations were determined before and after administration of thyroid-stimulating hormone (TSH) and thyroid-releasing hormone (TRH). Basal serum canine thyroid stimulating hormone (cTSH) concentrations were determined on available stored sera. RESULTS: Basal serum T4 and fT4 concentrations were significantly lower in Greyhounds than in non-Greyhounds. Serum T4 concentrations after TSH and TRH administration were significantly lower in Greyhounds than in non-Greyhounds. Serum fT4 concentrations after TSH and TRH administration were significantly lower in NT-group than T-group Greyhounds and non-Greyhounds. Mean cTSH concentrations were not different between Greyhounds and non-Greyhounds. CONCLUSIONS AND CLINICAL RELEVANCE: Previously established canine reference range values for basal serum T4 and fT4 may not be appropriate for use in Greyhounds. Greyhound-specific reference range values for basal serum T4 and fT4 concentrations should be applied when evaluating thyroid function in Greyhounds. Basal cTSH concentrations in Greyhounds are similar to non-Greyhound pet dogs.  相似文献   

4.
OBJECTIVE: To determine effects of athletic conditioning on thyroid hormone concentrations in a population of healthy sled dogs. ANIMALS: 19 healthy adult sled dogs. PROCEDURE: Serum concentrations of thyroxine (T4), triiodothyronine (T3), thyroid-stimulating hormone (TSH), free T4 (fT4), free T3 (fT3), and autoantibodies directed against T3, T4, and thyroglobulin were measured in sled dogs that were not in training (ie, nonracing season) and again after dogs had been training at maximum athletic potential for 4 months. RESULTS: Analysis revealed significant decreases in T4 and fT4 concentrations and a significant increase in TSH concentration for dogs in the peak training state, compared with concentrations for dogs in the untrained state. Serum concentrations of T4 and fT4 were less than established reference ranges during the peak training state for 11 of 19 and 8 of 19 dogs, respectively; fT4 concentration was greater than the established reference range in 9 of 19 dogs in the untrained state. CONCLUSIONS AND CLINICAL RELEVANCE: Decreased total T4 and fT4 concentrations and increased serum concentrations of TSH were consistently measured during the peak training state in healthy sled dogs, compared with concentrations determined during the untrained state. Although thyroid hormone concentrations remained within the established reference ranges in many of the dogs, values that were outside the reference range in some dogs could potentially lead to an incorrect assessment of thyroid status. Endurance training has a profound impact on the thyroid hormone concentrations of competitive sled dogs.  相似文献   

5.
OBJECTIVES: To compare serum concentrations of total thyroxine (TT4), free thyroxine (fT4), and thyroid-stimulating hormone (TSH), as well as measures of thyroid follicular colloid and epithelium, between groups of healthy dogs and severely sick dogs. DESIGN: Cross-sectional study. ANIMALS: 61 healthy dogs and 66 severely sick dogs. PROCEDURE: Serum samples were obtained before euthanasia, and both thyroid lobes were removed immediately after euthanasia. Morphometric analyses were performed on each lobe, and serum TT4, fT4, and TSH concentrations were measured. RESULTS: In the sick group, serum TT4 and fT4 concentrations were less than reference range values in 39 (59%) and 21 (32%) dogs, respectively; only 5 (8%) dogs had high TSH concentrations. Mean serum TT4 and fT4 concentrations were significantly lower in the sick group, compared with the healthy group. In the healthy group, a significant negative correlation was found between volume percentage of colloid and TT4 or fT4 concentrations, and a significant positive correlation was found between volume percentage of follicular epithelium and TT4 or fT4 concentrations. A significant negative correlation was observed between volume percentages of colloid and follicular epithelium in both groups. CONCLUSIONS AND CLINICAL RELEVANCE: TT4 and fT4 concentrations are frequently less than reference range values in severely sick dogs. Therefore, thyroid status should not be evaluated during severe illness. The absence of any significant differences in mean volume percentages of follicular epithelium between healthy and severely sick dogs suggests that these 2 groups had similar potential for synthesizing and secreting thyroid hormones.  相似文献   

6.
At approximately 4-5 mo of age, three Polish Lowland sheepdog puppies from a single litter of eight puppies presented to their respective primary veterinarians with bilateral subcutaneous masses in their ventral cervical regions. Evaluation, including thyroid function testing, surgical exploration with resection, computed tomography, and angiography, identified the masses as enlarged thyroid glands with severely dilated and abnormal vasculature in the regions of the glands. The dogs were also found to have serum concentrations of thyroid hormones that were below the reference ranges. None of the three dogs showed clinical signs of hypothyroidism, except for the presence of goiter. One dog also had a patent ductus arteriosus that was surgically repaired. All dogs were clinically normal at 2 yr of age. This is the first report of major vascular anomalies associated with goiter in any species. The mechanism is unknown.  相似文献   

7.
OBJECTIVE: To evaluate effects of trimethoprim-sulfamethoxazole (T/SMX) on thyroid function in dogs. ANIMALS: 6 healthy euthyroid dogs. PROCEDURE: Dogs were administered T/SMX (14.1 to 16 mg/kg, PO, q 12 h) for 3 weeks. Blood was collected weekly for 6 weeks for determination of total thyroxine (TT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) concentrations. Schirmer tear tests were performed weekly. Blood was collected for CBC prior to antimicrobial treatment and at 3 and 6 weeks. RESULTS: 5 dogs had serum TT4 concentrations equal to or less than the lower reference limit, and 4 dogs had serum fT4 less than the lower reference limit after 3 weeks of T/SMX administration; cTSH concentrations were greater than the upper reference limit in 4 dogs. All dogs had TT4 and fT4 concentrations greater than the lower reference limit after T/SMX administration was discontinued for 1 week, and cTSH concentrations were less than reference range after T/SMX administration was discontinued for 2 weeks. Two dogs developed decreased tear production, which returned to normal after discontinuing administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of T/SMX at a dosage of 14.1 to 16 mg/kg, PO, every 12 hours for 3 weeks caused decreased TT4 and fT4 concentrations and increased cTSH concentration, conditions that would be compatible with a diagnosis of hypothyroidism. Therefore, dogs should not have thyroid function evaluated while receiving this dosage of T/SMX for >2 weeks. These results are in contrast to those of a previous study of trimethoprim-sulfadiazine.  相似文献   

8.
OBJECTIVE: To determine whether nonthyroidal disease of various causes and severity is associated with abnormalities in baseline serum concentrations of total thyroxine (T4), triiodothyronine (T3), free T4, or thyrotropin (thyroid-stimulating hormone [TSH]) in dogs believed to be euthyroid. DESIGN: Case-control study. ANIMALS: 223 dogs with confirmed nonthyroidal diseases and presumptive normal thyroid function, and 150 clinically normal dogs. PROCEDURE: Serum total T4, total T3, free T4, and TSH concentrations were measured in dogs with confirmed nonthyroidal disease. Reference ranges for hormone concentrations were established on the basis of results from 150 clinically normal dogs. RESULTS: In dogs with nonthyroidal disease, median serum concentrations of total T4, total T3, and free T4 were significantly lower than those in clinically normal dogs. Median serum TSH concentration in sick dogs was significantly greater than that of clinically normal dogs. When stratified by severity of disease (ie, mild, moderate, and severe), dogs with severe disease had low serum concentrations of total T4, total T3, or free T4 more commonly than did dogs with mild disease. In contrast, serum TSH concentrations were more likely to remain within the reference range regardless of severity of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that serum total T4, free T4, and total T3 concentrations may be low (ie, in the hypothyroid range) in dogs with moderate to severe nonthyroidal disease. Serum TSH concentrations are more likely to remain within the reference range in sick dogs.  相似文献   

9.
Diagnosis of hyperthyroidism in cats with mild chronic kidney disease   总被引:1,自引:0,他引:1  
OBJECTIVES: In cats with concurrent hyperthyroidism and non-thyroidal illnesses such as chronic kidney disease, total thyroxine concentrations are often within the laboratory reference range (19 to 55 nmol/l). The objective of the study was to determine total thyroxine, free thyroxine and/or thyroid-stimulating hormone concentrations in cats with mild chronic kidney disease. METHODS: Total thyroxine, free thyroxine and thyroid-stimulating hormone were measured in three groups. The hyperthyroidism-chronic kidney disease group (n=16) had chronic kidney disease and clinical signs compatible with hyperthyroidism but a plasma total thyroxine concentration within the reference range. These cats were subsequently confirmed to be hyperthyroid at a later date. The chronic kidney disease-only group (n=20) had chronic kidney disease but no signs of hyperthyroidism. The normal group (n=20) comprised clinically healthy senior (>8 years) cats. RESULTS: In 4 of 20 euthyroid chronic kidney disease cats, free thyroxine concentrations were borderline or high (> or =40 pmol/l). In the hyperthyroidism-chronic kidney disease group, free thyroxine was high in 15 of 16 cats, while thyroid-stimulating hormone was low in 16 of 16 cats. Most hyperthyroidism-chronic kidney disease cats (14 of 16) had total thyroxine greater than 30 nmol/l, whereas all the chronic kidney disease-only cats had total thyroxine less than 30 nmol/l. CLINICAL SIGNIFICANCE: The combined measurement of free thyroxine with total thyroxine or thyroid-stimulating hormone may be of merit in the diagnosis of hyperthyroidism in cats with chronic kidney disease.  相似文献   

10.
OBJECTIVE: To determine whether administration of phenobarbital, potassium bromide, or both drugs concurrently was associated with abnormalities in baseline serum total thyroxine (T4), triiodothyronine (T3), free T4, or thyrotropin (thyroid-stimulating hormone; TSH) concentrations in epileptic dogs. DESIGN: Prospective case series. ANIMALS: 78 dogs with seizure disorders that did not have any evidence of a thyroid disorder (55 treated with phenobarbital alone, 15 treated with phenobarbital and bromide, and 8 treated with bromide alone) and 150 clinically normal dogs that were not receiving any medication. PROCEDURE: Serum total T4, total T3, free T4, and TSH concentrations, as well as serum concentrations of anticonvulsant drugs, were measured in the 78 dogs with seizure disorders. Reference ranges for hormone concentrations were established on the basis of results from the 150 clinically normal dogs. RESULTS: Total and free T4 concentrations were significantly lower in dogs receiving phenobarbital (alone or with bromide), compared with concentrations in clinically normal dogs. Administration of bromide alone was not associated with low total or free T4 concentration. Total T3 and TSH concentrations did not differ among groups of dogs. CLINICAL IMPLICATIONS: Results indicate that serum total and free T4 concentrations may be low (i.e., in the range typical for dogs with hypothyroidism) in dogs treated with phenobarbital. Serum total T3 and TSH concentrations were not changed significantly in association with phenobarbital administration. Bromide treatment was not associated with any significant change in these serum thyroid hormone concentrations.  相似文献   

11.
OBJECTIVE: To evaluate the use of recombinant human (rh) thyroid-stimulating hormone (TSH) in dogs with suspected hypothyroidism. ANIMALS: 64 dogs with clinical signs of hypothyroidism. PROCEDURES: Dogs received rhTSH (75 microg/dog, IV) at a dose independent of their body weight. Blood samples were taken before and 6 hours after rhTSH administration for determination of total serum thyroxine (T(4)) concentration. Dogs were placed into 1 of 3 groups as follows: those with normal (ie, poststimulation values indicative of euthyroidism), unchanged (ie, poststimulation values indicative of hypothyroidism; no thyroid gland stimulation), or intermediate (ie, poststimulation values between unchanged and normal values) post-TSH T(4) concentrations. Serum canine TSH (cTSH) concentration was determined in prestimulation serum (ie, before TSH administration). RESULTS: 14, 35, and 15 dogs had unchanged, normal, and intermediate post-TSH T(4) concentrations, respectively. Basal T(4) and post-TSH T(4) concentrations were significantly different among groups. On the basis of basal serum T(4) and cTSH concentrations alone, 1 euthyroid (normal post-TSH T(4), low basal T(4), and high cTSH concentrations) and 1 hypothyroid dog (unchanged post-TSH T(4) concentration and low to with-in reference range T(4) and cTSH concentrations) would have been misinterpreted as hypothyroid and euthyroid, respectively. Nine of the 15 dogs with intermediate post-TSHT(4) concentrations had received medication known to affect thyroid function prior to the test, and 2 of them had severe nonthyroidal disease. CONCLUSIONS AND CLINICAL RELEVANCE: The TSH-stimulation test with rhTSH is a valuable diagnostic tool to assess thyroid function in selected dogs in which a diagnosis of hypothyroidism cannot be based on basal T(4) and cTSH concentrations alone.  相似文献   

12.
OBJECTIVE: To determine whether phenobarbital treatment of epileptic dogs alters serum thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations. DESIGN: Cross-sectional study. ANIMALS: 78 epileptic dogs receiving phenobarbital (group 1) and 48 untreated epileptic dogs (group 2). PROCEDURE: Serum biochemical analyses, including T4 and TSH concentrations, were performed for all dogs. Additional in vitro analyses were performed on serum from healthy dogs to determine whether phenobarbital in serum interferes with T4 assays or alters free T4 (fT4) concentrations. RESULTS: Mean serum T4 concentration was significantly lower, and mean serum TSH concentration significantly higher, in dogs in group 1, compared with those in group 2. Thirty-one (40%) dogs in group 1 had serum T4 concentrations less than the reference range, compared with 4 (8%) dogs in group 2. All dogs in group 2 with low serum T4 concentrations had recently had seizure activity. Five (7%) dogs in group 1, but none of the dogs in group 2, had serum TSH concentrations greater than the reference range. Associations were not detected between serum T4 concentration and TSH concentration, age, phenobarbital dosage, duration of treatment, serum phenobarbital concentration, or degree of seizure control. Signs of overt hypothyroidism were not evident in dogs with low T4 concentrations. Addition of phenobarbital in vitro to serum did not affect determination of T4 concentration and only minimally affected fT4 concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Clinicians should be aware of the potential for phenobarbital treatment to decrease serum T4 and increase TSH concentrations and should use caution when interpreting results of thyroid tests in dogs receiving phenobarbital.  相似文献   

13.
Congenital hypothyroidism with goiter was observed to segregate as a simple autosomal recessive trait in Toy Fox Terriers (TFTs). Neonatal affected pups exhibited inactivity, abnormal hair coat, stenotic ear canals, and delayed eye opening. Palpable ventrolateral cervical swellings were evident by 1 week of age. Serum thyroid hormone and thyroid-stimulating hormone concentrations were low and high, respectively. Histologic examination of the cervical masses disclosed cuboidal to columnar follicular epithelial cell hyperplasia with widely varying follicular size, shape, and amount of colloid. Oral thyroid hormone replacement therapy restored near-normal growth and development. At 8 weeks of age, radioiodine uptake and perchlorate discharge testing indicated an iodine organification defect. Biochemical analysis of thyroid tissue from affected dogs demonstrated enzymatic iodine oxidation deficiency and lack of sodium dodecyl sulfate-resistant thyroglobulin dimers, suggesting thyroid peroxidase deficiency. A nonsense mutation in the thyroid peroxidase gene of affected dogs was discovered and demonstrated to segregate with the disease. A DNA-based carrier test was developed and currently is used by TFT breeders to prevent this disorder.  相似文献   

14.
OBJECTIVE: To determine the effects of levothyroxine sodium (L-T4) on serum concentrations of thyroid gland hormones and responses to injections of thyrotropin-releasing hormone (TRH) in euthyroid horses. ANIMALS: 12 healthy adult mares. PROCEDURE: 8 horses received an incrementally increasing dosage of L-T4 (24, 48, 72, or 96 mg of L-T4/d) for weeks 1 to 8. Each dose was provided for 2 weeks. Four additional horses remained untreated. Serum concentrations of total triiodothyronine (tT3), total thyroxine (tT4), free T3 (fT3), free T4 (fT4), and thyroid-stimulating hormone (TSH) were measured in samples obtained at weeks 0, 2, 4, 6, and 8; 1.2 mg of TRH was then administered i.v., and serum concentrations of thyroid gland hormones were measured 2 and 4 hours after injection. Serum reverseT3 (rT3) concentration was also measured in the samples collected at weeks 0 and 8. RESULTS: Treated horses lost a significant amount of weight (median, 19 kg). Significant treatment-by-time effects were detected for serum tT3, tT4, fT3, fT4, and TSH concentrations, and serum tT4 concentrations were positively correlated (r, 0.95) with time (and therefore dosage) in treated horses. Mean +/- SD serum rT3 concentration significantly increased in treated horses (3.06 +/- 0.51 nmol/L for week 8 vs 0.74 +/- 0.22 nmol/L for week 0). Serum tT3, tT4, fT3, and TSH concentrations in response to TRH injections differed significantly between treated and untreated horses. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of levothyroxine sodium increased serum tT4 concentrations and blunted responses toTRH injection in healthy euthyroid horses.  相似文献   

15.
OBJECTIVE: To determine the effects of racing and nontraining on plasma thyroxine (T4), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and thyroglobulin autoantibody (TgAA) concentrations in sled dogs and compare results with reference ranges established for dogs of other breeds. DESIGN: Cross-sectional study. ANIMALS: 122 sled dogs. PROCEDURE: Plasma thyroid hormone concentrations were measured before dogs began and after they finished or were removed from the Iditarod Trail Sled Dog Race in Alaska and approximately 3 months after the race. RESULTS: Concentrations of T4 and fT4 before the race were less than the reference range for nonsled dogs in 26% and 18% of sled dogs, respectively. Immediately after racing, 92% of sled dogs had plasma T4 concentrations less than the reference range. Three months after the race, 25% of sled dogs had plasma T4 concentrations less than the reference range. For T4, fT4, TSH, and TgAA, significant differences were not detected in samples collected before the race versus 3 months later. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma T4, fT4, and TSH concentrations decreased in dogs that complete a long distance sled dog race. Many clinically normal sled dogs have plasma T4 and fT4 values that are lower than the reference range for nonsled dogs. We suggest that the reference ranges for sled dogs are 5.3 to 40.3 nmol/L and 3.0 to 24.0 pmol/L for plasmaT4 and fT4 concentrations, respectively, and 8.0 to 370 mU/L for TSH.  相似文献   

16.
A definitive diagnosis of hypothyroidism can be difficult because of the many clinical abnormalities associated with thyroid hormone deficiency, and the lack of readily available diagnostic tests with high sensitivity and specificity. Thyroid function tests should be performed only in dogs with clinical findings consistent with hypothyroidism. Measurement of serum total thyroxine (T4) concentration is a useful initial screening test since most hypothyroid dogs have values below the reference range. Serum free T4 concentration measured by equilibrium dialysis is a more sensitive and specific test of thyroid function than total T4 and is particularly useful in dogs with non-thyroidal illness or atypical clinical signs. Measurement of serum endogenous thyroid-stimulating hormone concentration is also helpful, but many hypothyroid dogs have normal results. The gold standard for diagnosis of hypothyroidism remains the thyroid-stimulating hormone response test. It should be used to confirm hypothyroidism when other tests do not agree with the clinical impression or if atypical signs or non-thyroidal illness exist or there has been administration of drugs known to alter thyroid function tests. Ultimately, a positive response to treatment is expected in hypothyroid dogs treated appropriately with levothyroxine.  相似文献   

17.
OBJECTIVE: To determine whether thyroid function was associated with pregnancy status in broodmares. DESIGN: Prospective study. ANIMALS: 79 Thoroughbred and Standardbred broodmares between 2 and 22 years old. PROCEDURE: Serum triiodothyronine (T3) concentration was measured before and 2 hours after i.v. administration of thyrotropin releasing hormone (TRH), and serum thyroxine (T4) concentration was measured before and 4 hours after TRH administration. Pregnancy status was monitored by means of transrectal ultrasonography beginning 16 days after ovulation. RESULTS: Baseline T3 and T4 concentrations varied widely. In all mares, serumT3 concentration increased in response to TRH administration. Serum T4 concentration increased in response toTRH administration in all but 2 mares. Pregnancy rate was 76%. Baseline and stimulated serum T3 and T4 concentrations were not significantly different between mares that became pregnant and those that did not. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that decreased thyroid function is uncommon in mares and poor thyroid function is not a common cause of infertility. Thus, the practice of indiscriminately treating broodmares with thyroid hormone to enhance fertility appears questionable at this time.  相似文献   

18.
Objectives: Evaluation of dogs with elevated plasma thyroxine concentration fed raw food before and after changing the diet. Method: Between 2006 and 2011 all dogs presented with an elevated plasma thyroxine concentration and a dietary history of feeding raw food were included. Thyroxine (reference interval: 19·3 to 51·5 nmol/L) and in many cases also thyroid-stimulating hormone concentrations (reference interval: <0·30 ng/mL) were measured initially and after changing the diet. Results: Twelve dogs were presented with a median age of five years. The median plasma thyroxine concentration was 156·1 (range of 79·7 to 391·9) nmol/L; in six dogs, thyroid-stimulating hormone concentration was measured and was <0·03 ng/mL in five dogs and 0·05 ng/mL in one dog. Six dogs showed clinical signs such as weight loss, aggressiveness, tachycardia, panting and restlessness while six dogs had no clinical signs. After changing the diet eight dogs were examined: thyroxine concentration normalised in all dogs and clinical signs resolved. Clinical Significance: Dietary hyperthyroidism can be seen in dogs on a raw meat diet or fed fresh or dried gullets. Increased plasma thyroxine concentration in a dog, either with or without signs of hyperthyroidism, should prompt the veterinarian to obtain a thorough dietary history.  相似文献   

19.
OBJECTIVE: To determine the effects of endotoxin administration on thyroid function test results and serum tumor necrosis factor-alpha (TNF-alpha) activity in healthy dogs. ANIMALS: 6 healthy adult male dogs. PROCEDURES: Serum concentrations of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3'5'-triiodothyronine (rT3), free T4 (fT4), and endogenous canine thyroid stimulating hormone (TSH), and TNF-alpha activity were measured before (day-1; baseline), during (days 0 to 3), and after (days 4 to 24) IV administration of endotoxin every 12 hours for 84 hours. RESULTS: Compared with baseline values, serum T3 concentration decreased significantly, whereas rT3 concentration increased significantly 8 hours after initial endotoxin administration. Serum T4 concentration decreased significantly at 8 and 12 hours after initiating endotoxin administration. Serum T4 concentration returned to reference range limits, then decreased significantly on days 6 to 12 and 16 to 20. Serum fT4 concentration increased significantly at 12, 24, and 48 hours after cessation of endotoxin treatment, compared with baseline values. Serum rT3 concentration returned to reference range, then decreased significantly days 5 and 7 after stopping endotoxin treatment. Serum TNF-alpha activity was significantly increased only 4 hours after initial endotoxin treatment, compared with baseline activity. CONCLUSIONS AND CLINICAL RELEVANCE: Endotoxin administration modeled alterations in thyroid function test results found in dogs with spontaneous nonthyroidal illness syndrome. A decrease in serum T4 andT3 concentrations and increase in serum rT3 concentration indicate impaired secretion and metabolism of thyroid hormones. The persistent decrease in serum T4 concentration indicates that caution should be used in interpreting serum T4 concentrations after resolution of an illness in dogs.  相似文献   

20.
OBJECTIVE: To assess changes in serum concentrations of thyroid hormones associated with selenium deficiency myopathy in lambs. ANIMALS: 35 lambs with selenium deficiency myopathy and 30 healthy lambs. PROCEDURES: Blood samples were collected via jugular venipuncture from lambs with selenium deficiency myopathy and healthy lambs. Activities of markers of selenium deficiency myopathy (erythrocyte glutathione peroxidase [GSH-Px] and plasma creatine kinase [CK]) and serum thyroid-stimulating hormone (TSH) and total thyroxine (tT(4)) and total triiodothyronine (tT(3)) concentrations were assessed; values in affected lambs were compared with those in healthy lambs. Correlations of erythrocyte GSH-Px and plasma CK activities with serum concentrations of TSH, tT(4), and tT(3) were investigated, and the tT(3):tT(4) concentration ratio was evaluated. RESULTS: Compared with findings in healthy lambs, erythrocyte GSH-Px activity, serum tT(3) concentration, and tT(3):tT(4) concentration ratio were significantly decreased and serum concentrations of tT(4) and TSH and the activity of plasma CK were significantly increased in affected lambs. Analysis revealed a significant negative correlation in the affected group between erythrocyte GSH-Px activity and each of the following: plasma CK activity (r = -0.443), serum TSH concentration (r = -0.599), serum tT(4) concentration (r = -0.577), and serum tT(3) concentration (r = -0.621). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that notable changes in circulating amounts of thyroid hormones develop in association with selenium deficiency in lambs. Such alterations in thyroid hormone metabolism may be involved in the high incidence of disorders, such as stillbirths and neonatal deaths, in selenium-deficient flocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号