首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the factors which may affect colonization of roots by soil bacteria is that of rhizosphere oxygen partial pressure (pO2). The oxygen concentration in the root zone influences both microbes and roots. Roots exposed to low pO2, as might occur during flooding and waterlogging of the soil, become more leaky and loss of soluble carbon increases. To determine whether periods of low pO2 increased root colonization by a genetically altered pseudomonad we inoculated 3- to 4-week-old maize plants, grown in soil and transferred to a hydroponic system or grown in fritted clay, with Pseudomonas putida PH6(L1019)(lacZY+) following exposure of the roots to air or cylinder N2. Numbers of heterotrophs and the marked pseudomonad were determined by dilution plating. Low pO2 generally increased the numbers of bacteria associated with roots exposed to the treatments in solution or in undisturbed fritted clay rooting medium. Under low pO2 in a hydroponic system, roots of intact maize plants tended also to have higher soluble organic C and hexose (anthrone-detectable sugars) than roots exposed to air. The effect of low pO2 was most pronounced in the fritted clay where low pO2 favored colonization by the marked strain; numbers were 3- to 96-fold greater than those on roots flushed with air but accounted for only 0.06–0.61% of the total population. Roots exposed to low pO2 tended to accumulate more C. Results suggest that in the fritted clay, the pseudomonad was able to exploit the increased C supply and to achieve greater numbers on roots exposed to low pO2, whereas the dilution of carbon released from roots in the hydroponic apparatus did not allow for the same magnitude of increase on roots. Received: 2 December 1996  相似文献   

2.
Abstract

The influence of phosphate nutrition on the kinetics of phosphate absorption by sterile excised barley roots was examined. The roots of seedlings grown in dilute CaSO4 showed uptake kinetics similar to roots grown in phosphate deficient nutrient culture. The absence of microorganisms did not abolish the dual form of the absorption isotherm at pH 4.0

The most important effect of phosphate deficiency for uptake at low phosphate concentration was a marked decrease in the apparent dissociation constant of the ion‐carrier complex postulated to be involved in the uptake process. The results are discussed in relation to kinetic factors which may influence the efficiency of ion uptake by roots of different species of plants, including the apparent dissociation constant, the rate constant for uptake and the concentration of the ion‐carrier system.  相似文献   

3.
The interaction between the roots of Zea mays L. and its rhizosphere microflora was studied in nutrient solution with respect to two exemplary aspects - water soluble vitamins and the four most frequent carbohydrates. The exudation of vitamins and sugars into the medium is increased in a solid substrate (glass-ballotini simulating soil structure) in comparison with nutrient solution only. The amounts of vitamins released (1 to 421 ng per plant) are high enough for a pronounced influence on the rhizosphere microflora to be expected. However, the microbial population feeding on the exudates has very simple nutritional demands. In spite of appreciable amounts of vitamins found in the inoculated nutrient solution, the growth of vitamin requiring species is not stimulated compared to the soil population. The roots are mostly inhabited by shorter rods and occasionally by actinomycete-like filaments. The percentage of the root area covered by its microflora, assuming a monolayer, is 4% in the root region where root hairs are just emerging, 7% in the root hair zone and 20% in the oldest part of the roots, 10 mm below the grain. In the presence of rhizosphere microorganisms, root dry weight is lower than that of axenically grown plants because the diameter of the primary root is diminished. In addition, the vitamin and sugar content of the root is affected by rhizosphere microorganisms. The results can be interpreted as an indication that phytohormones may participate in interactions between roots and bacteria.  相似文献   

4.
One‐year‐old rooted cuttings of Vitis vinifera L. cv. “Pinot blanc”; grafted on “Kober 5BB”; hybrid rootstock were grown in pots containing a calcareous soil. Before potting, the roots were treated by a suspension of the siderophore producing bacteria Pseudomonas fluorescens, other Pseudomonas spp., and some unidentified microorganisms. The tested bacteria were endophytic microorganisms from maize and they were chosen according to their ability to produce fluorescent pigments. The shoot growth was checked every ten days, and leaf blades, sampled about 80 days after bud burst, were analyzed for chlorophyll and mineral element concentration. Chlorosis rating was checked by visual screening in order to control the effect of the treatments on the chlorosis. At the end of the growing cycle dry matter and iron (Fe) partitioning were analyzed. The most significant findings of the trial were: a) the tested microorganisms did not improve significantly lime‐tolerance of the tested plants; b) the microorganisms were able to modify phosphorus (P), potassium (K), and Fe mineral nutrition of the vines.  相似文献   

5.
The tropical pasture grass Brachiaria humidiola (Rendle) Schweick releases nitrification inhibitory compounds from its roots, a phenomenon termed 'biological nitrification inhibition' (BNI). We investigated the influence of root exudates of B. humidicola on nitrification, major soil microorganisms and plant growth promoting microorganisms using two contrasting soil types, Andosol and Cambisol. The addition of root exudates (containing BNI activity that is expressed in Allylthiourea unit (ATU) was standardized in a bioassay against a synthetic inhibitor of nitrification, allylthiourea, and their function in soil was compared to inhibition caused by the synthetic nitrification inhibitor dicyandiamide. At 30 and 40 ATU g−1soil, root exudates inhibited nitrification by 95% in fresh Cambisol after 60 days. Nitrification was also similarly inhibited in rhizosphere soils of Cambisol where B. humidicola was grown for 6 months. Root exudates did not inhibit other soil microorganisms, including gram-negative bacteria, total cultivable bacteria and fluorescent pseudomonads. Root exudates, when added to pure cultures of Nitrosomonas europaea , inhibited their growth, but did not inhibit the growth of several plant growth promoting microorganisms, Azospirillum lipoferum , Rhizobium leguminosarum and Azotobacter chroococcum. Our results indicate that the nitrification inhibitors released by B. humidicola roots inhibited nitrifying bacteria, but did not negatively affect other major soil microorganisms and the effectiveness of the inhibitory effect varied with soil type.  相似文献   

6.
The effect of a rhizosphere microflora on some morphological and physiological plant characteristics was studied with maize seedlings grown for five days in a mineral nutrient solution. In the presence of the microorganisms the root dry weight is lower than that of axenically grown plants due to a smaller diameter of the primary root. In addition, the root content of some vitamins and sugars is affected. Pure cultures of rhizosphere bacteria were isolated and their influence on morphological characteristics of the maize plant was classified. Whereas one culture retards the overall plant development, the remaining nine cultures exert a significant influence only on specific morphological parameters. These results are discussed as an indication of the participation of phytohormones in interactions between roots and bacteria.  相似文献   

7.
The uptake of phosphorus by barley plants growing in soil has been compared in the presence and absence of microorganisms. The soil chosen for study was basaltic loam which earlier investigations had shown required the addition of supplementary phosphate to obtain successful growth of plants.Despite a rapid turnover of the phosphorus in microorganisms as a result of death and lysis, less was absorbed by plants grown under non-sterile conditions causing a considerable reduction in the yield of dry matter. These microbial effects were obviated by the addition of a small quantity of KH2PO4 (0.15 m-equiv/500 g soil). In this soil therefore, competition appears to exist between microorganisms and plants similar to that demonstrated previously in water culture.  相似文献   

8.
The capacity of bacteria and protozoa to mineralize soil nitrogen was studied in microcosms with sterilized soil with or without wheat plants. The effect of small additions of glucose or ammonium nitrate or both, twice a week was also tested. Plant dry weight and N-content, number of microorganisms and biomass plus inorganic N were determined after 6 weeks.The introduction of plants profoundly influenced the N transformations. In the presence of root-derived carbon, much more N was mineralized from the organic matter and immobilized mainly in plant biomass. “Total observable change in biomass N plus inorganic N” was negative in the unvegetated soils without additions, while a mineralization of 1.7 mg N microcosm?1 was observed in microcosms with wheat plants grown with bacteria only. When protozoa were included, the N taken up by plants increased by 75%. Sugar additions resulted in an 18% increase of total N in the shoots when protozoa were present, but had no significant effect in the absence of grazers. Plants with the same root weight were more efficient in their uptake of inorganic N when protozoa were present. Plants grown with protozoa also had a lower R/S ratio, indicating a less stressed N availability situation. The lowest ratio was found with N additions in the presence of protozoa.The results indicate that, with energy supplied by plant roots or with external glucose additions, soil bacteria can mineralize N from the soil organic matter to support their own growth. Grazing of the bacteria is necessary to make bacterial biomass N available for plant uptake.  相似文献   

9.
Compounds released by plant roots during growth can make up a high proportion of below-ground plant (BGP) carbon and nitrogen, and therefore influence soil organic matter turnover and plant nutrient availability by stimulating the soil microorganisms. The present study was conducted to examine the amount and fate of C (CdfR) and N rhizodeposits (NdfR), in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released during reproductive growth. BGP biomass of peas (Pisum sativum L.) and oats (Avena sativa L.) was successfully labelled in situ with a 13C-glucose-15N-urea mixture under field conditions using a stem feeding method. Pea plants were labelled at the beginning of flowering and harvested 36 and 52 days after labelling at pod filling (PP) and maturity (PM), respectively. Oat plants were labelled at grain filling and harvested 42 days after labelling at maturity (OM). CdfR was 24.2% (PP), 29.6% (PM) and 30.8% (OM) of total recovered plant C. NdfR was 32.1% (PP), 36.4% (PM) and 30.0% (OM) of total plant N. Due to higher N assimilation, amounts of NdfR were four times higher in peas in comparison with oats. The results for NdfR in peas were higher than results from other studies. The C-to-N ratio of rhizodeposits was lower under peas (17.3) than under oats (41.9) at maturity. At maturity, microbial CdfR at 0-30 cm soil depth was 37% of the microbial biomass C in peas and 59% in oats. Microbial NdfR was 15% of microbial N in peas and 5% in oats. Furthermore, inorganic NdfR was 34% in peas and 9% in oats at 0-30 cm at maturity. These results show that rhizodeposits of peas provide a more easily available substrate to soil microorganisms, which are incorporated to a greater extent and turned over faster in comparison with oats. Beside the higher amounts of N released from pea roots, this process contributes to the higher N-availability for subsequent crops.  相似文献   

10.
Genotypes of spring barley (Hordeum vulgare L. cvs. Alexis and Regatta) and winter barley (Hordeum vulgare L. cvs. Marina and Sonate) grown under sterile and non-sterile conditions were compared with regard to the activity of root- and rhizoplane-microorganism-associated and -released phosphatases. A method is described of growing plants individually under sterile and non-sterile conditions and assaying of the enzyme activities of intact roots and rhizoplane microorganisms. The results of the experiments presented in this paper indicate that all the genotypes showed significantly (P<>;0.01) higher actitivity of extracellular phosphomonoesterase than that of phosphodiesterase both associated with and released by their roots. There were no significant differences (P<>;0.05) between the sterile and non-sterile root and its surrounding solutions in the activity of extracellular phosphomonoesterase. The contribution of rhizoplane microorganisms to the root total activity of extracellular phosphomonoesterase was estimated to be 3%. Generally, the activity of the enzymes associated with the roots was 20–80 times higher than the activity of those released by the roots to the surrounding nutrient solution. However, a close correlation was found between the activity of extracellular phosphomonoesterase associated with and that released by the roots. Received: 3 April 1996  相似文献   

11.
We studied microbe-plant interactions of white lupin, a cluster root-forming plant, under low P and N conditions to examine increased nutrient acquisition by plants either by a shift to a more specialized microbial community or changes in microbial enzyme production. White lupin plants were grown in rhizoboxes filled with either P- or N-deficient soil; fertilized soil was used as control. After cultivation of plants in a glasshouse for 41 d, plant growth (shoot and roots) and P and N accumulation in shoots were measured. Microbial functions were analyzed by P- and N-cycling enzymes. The microbial community structure was estimated by fingerprinting (denaturing gradient gel electrophoresis) and sequencing techniques. P deficiency induced the released citrate and acid phosphomonoesterases from cluster roots and stimulated the production of microbe-derived alkaline phosphomonoesterase in the rhizosphere. P deficiency decreased microbial diversity in the cluster root rhizosphere. Increased relative abundance of Burkholderiales in the rhizosphere of P deficient plants might be responsible for the degradation of different organic P fractions such as phytates. N deficiency induced an increase of the number of nodules and P concentration in shoot as well as roots of white lupin. We clarified that high release of citrate from cluster roots might be the preferred mechanisms to meet the P demand of nodulated plants under N deficiency. In addition, the high abundance of Rhizobiales and Rhodospirillales in the rhizosphere of cluster roots showed that the importance of N-fixing microorganisms under N deficiency. The contribution of rhizosphere microorganisms due to similar activities of N-cycling enzymes under the two different N treatments is less important for N nutrition of plants. Further understanding of the regulation of cluster roots under N-deficiency will provide new information on the interactions between P and N nutrition.  相似文献   

12.
Abstract

We characterized and quantified the chemical form of cadmium (Cd) in intercellular solutions of the apparent free space (AFS) of roots and leaves of bush bean plants. Plants were grown in sand and treated daily for five days with Hoagland nutrient solution containing, respectively, 0.5 and 1 mM Cd(NO3)2. The intercellular solution was collected by infiltration‐extraction procedure using successively distilled water, 5 mM CaCl2, and 5 mM EDTA in order to collect separately the water soluble, exchangeable, and complexed Cd. The ability of extradant solutions to remove Cd from the AFS of roots and leaves was: H2O < CaCl2 ? EDTA, confirming that most of Cd was bound at the cell wall. Voltarimetric technique showed that water‐soluble Cd in intercellular solutions of the root and leaf tissues was as the Cd2+ ion, suggesting that Cd might be taken up by the roots and transported to leaves as the free ion.  相似文献   

13.
Spring wheat was grown in aerated and unaerated, complete and potassium deficient nutrient solution to study the influence of these factors on denitrification. Denitrification was determined by the acetylene inhibition method. When plants were pregrown in aerated nutrient solution and subsequently placed in a fresh unaerated nutrient solution, the oxygen content of the fresh solution disappeared later than at pregrowth in unaerated nutrient solution. N2O production set in earlier with plants pregrown in unaerated medium. The more rapid decline of oxygen and the faster denitrification were due to higher numbers of bacteria, including denitrifiers, on roots pregrown in unaerated medium. Interruption of aeration caused an increase in bacterial number within 24 hours to the level of the continuously unaerated treatment. Apart from the root quantity per pot the denitrification potential of the roots played an important role in total denitrification. By our definition, denitrification potential represented the N2O production of 1 g excised roots over 4 hours under anaerobic conditions at unlimited nitrate supply. The denitrification potential of roots grown in unaerated nutrient solution exceeded that of roots cultivated in aerated medium. Also at potassium deficiency the number of total bacteria and denitrifiers as well as root respiration increased resulting in a higher denitrification potential.  相似文献   

14.
The importance of microorganisms in the aggregation of sand in an embryo dune system was examined. Of three main types of aggregates formed, microbial aggregates were found to be more important at stabilizing sand than either root-microbial or debris-microbial aggregates on the beach and at the edge of the dune but roots and their associated microorganisms were more important on the hummock of the dune. The amount of microbial and root-microbial aggregated sand was higher during the winter when the vegetation was dying down and decaying. In the absence of roots, microorganisms, in particular bacteria, play a major role in aggregating sand. The bacteria are well adapted to the unfavourable habitat of the beach as they are motile and tolerant to sea water, being able to grow in a salinity of 3.5%. Bacteria may play a major role in aggregating and stabilizing sand prior to colonization by higher plants.  相似文献   

15.
Summary The effects of plant roots on net N mineralization were examined by comparing soil microcosms with and without plants. Additionally, inorganic N amendments were used to test for competition for N between plants and microorganisms. Daily watering and the application of suction to microcosms eliminated the effects of transpiration on soil moisture content. Monthly litter collections reduced the influence of the aboveground portions of plants. Plants decreased net N mineralization by 23% during days 0–114 and then increased net mineralization by the same amount during days 144–124. Root-free soil collected from with-plant microcosms on day 244 evolved 24% more CO2 in laboratory incubations than soil from without-plant microcosms. This indicates that plants had increased substrate availability to soil microorganisms. Inorganic N amendments had no significant effects on the microcosms or on laboratory soil incubations. Evidence is most consistent with the hypothesis that plant roots increased microbial activity due to the increased substrate availability. Different net N mineralization rates probably resulted from changes in the substrate C : N ratio.  相似文献   

16.
The paper summarizes the results of a series of experiments on enumeration of N2-fixing bacteria (diazotrophs) and hormonal effects of Azospirillum on root development. Numbers of N2-fixing and N-heterotrophic bacteria were determined on the root (rhizoplane plus “inner” root surface) and in the rhizosphere soil (0–3 mm from the root surface) of Arrhenatherum elatius, other forage grasses and some herbaceous plant species. Pot experiments involved freshly collected soil from an unfertilized grassland area containing its natural population of N2-fixing bacteria. The MPN (most probable number) of diazotrophs in relation to the MPN of the total bacterial population was always lower on the root than in the rhizosphere soil, suggesting that diazotrophs were not selectively advantaged at the root surface. Supply of mineral nitrogen (NH4NO3) decreased the proportion of N2-fixing bacteria at the rhizoplane as well as in the rhizosphere soil. Similar results were obtained when N was supplied via the leaves. The data suggest that N2-fixing bacteria in the rhizosphere are poor competitors once they loose their competitive advantage of binding dinitrogen. Correspondingly, the increase in the MPN of the diazotrophs found during plant development was interpreted as a result of decreased available combined N in the rhizosphere. The proportion of N2-fixing bacteria relative to the total number of bacteria was generally below 1%. Considering the potential amount of substrate released from the roots and the substrate requirement of the bacterial population, N2-fixation was considered insignificant for plant growth under the given conditions. For the investigations on possible beneficial effects on plant development by bacterial hormones, Azospirillum brasilense was chosen because evidence suggests that amongst the soil bacteria releasing hormones, especially IAA, certain strains of this species are more important than other bacteria. Application of A. brasilense Cd (ATCC 29710) onto the roots of young wheat plants grown in soil increased the number of lateral roots, the total root length and the number of root hairs. Similar results were obtained after application of IAA. This suggests that IAA is an important factor responsible for the effects observed after inoculation with A. brasilense. The increase in root surface may improve acquisition of nutrients and enhance growth of plants. Another hormonal effect of A. brasilense was an increase in nodulation of Medicago sativa grown on agar. Again pure IAA resulted in a similar increase in nodule number. Increases in nodule number were only in part associated with a change in root morphology. Therefore an effect of IAA on the plant immanent regulation system for nodulation is likely.  相似文献   

17.
In three experiments perennial ryegrass (Lolium perenne) was grown in pots of soil, with the addition of soluble mineral nutrients to provide contrasting nitrogen and phosphorus supplies. After 7–10 weeks the plants were harvested and the bacteria on the root surface or in the outer cortex were investigated. In two experiments the bacteria of root-free soil were investigated, for comparison.Bacteria which were pleomorphic when cultured were more abundant than rods in the rhizoplane, especially when the plants had received a complete nutrient solution. Only about 1% of the bacteria which were cultured were pseudomonads. Only 6–10% of the rhizoplane bacteria could degrade pectin and no cellulose-degraders were isolated, suggesting that few rhizoplane bacteria can degrade mucigel.In general addition of N or P to the soil had little effect on the total numbers of bacteria in the rhizoplane or the composition of the population. The proportion of bacteria able to degrade chitin was reduced by nutrient addition, but starch and pectin-degraders were not affected, and the proportion able to grow with NH4NO3 as their N source changed only a little. These results appear to conflict with previous observations that growth of single bacterial species on L. perenne in sand culture is increased when P is deficient. In the present experiments rhizoplane fungi increased markedly when N or (especially) P was deficient. It is suggested that P deficiency results in increased supply of carbon substrate from the roots, but when mineral nutrients are in short supply fungi are more effective competitors than bacteria for this substrate.  相似文献   

18.
Root exudation of carbon (C) plays a major role in processes occurring in the plant rhizosphere. Environmental factors affecting root exudation have been identified but their effects are rarely quantified. The purpose of this work was to evaluate the impact of both the microflora and the chemical composition of the growth medium on root exudation, taking into account soluble exudates and mucilage fraction. Maize plants (Zea mays L.) were grown for 12 days in hydroponic conditions and then transferred in three root bathing solutions (demineralized water, KCl or nutrient solution) during 24 hours. In each case, presence of microflora was tested with a comparison between plants inoculated with maize rhizospheric strain and axenic plants. Exudation was measured in terms of C and biomass production. A strong interaction was noticed between microflora and chemical composition of the root bathing solution. In fact, the presence of rhizospheric microflora induces a stimulation of soluble exudates only in KCl and Nutrient solutions. In demineralized water, a different response was observed with a higher C release for axenic plants, probably due to the osmotic shock induced to the roots. Concerning mucilage fractions, small quantities were recovered on all treatments. This work demonstrates that the chemical composition of the root bathing solution and presence of microorganisms significantly modify the amount of soluble exudates. Attention must therefore be paid to the cultural conditions when exudation is studied because of the sensitivity of this process to root environment.  相似文献   

19.
Rhizosphere bacteria may enhance plant uptake of Fe by producing siderophores that chelate sparingly soluble Fe3+ in calcareous soils. To evaluate the extent to which plants benefit from colonization of the roots by prolific siderophore-producing bacteria, we inoculated two oat cultivars with six strains of bacteria that produced high concentrations of siderophores under Felimiting conditions in vitro. Oat cv Coker 227, an Fe-efficient cultivar, which produces the phytosiderophore avenic acid, and cv TAM 0-312, and Fe-inefficient cultivar, which does not produce the phytosiderophore, were grown in a calcareous soil (Weswood silt loam) on a light bench in the laboratory. Half of the plants were fertilized with a nutrient solution containing 5 mM Fe and half with a nutrient solution containing no Fe. After 6 weeks of growth, we compared colonization of the roots by the inoculant bacteria and the dry weight and Fe content of roots and shoots. Three species of Pseudomonas colonized the roots of both oat cultivars in high numbers (106 cells g-1 root dry weight), whereas the remaining bacteria colonized the roots in substantially lower numbers (104 cells g-1 root dry weight). Plants fertilized with 5 mM Fe were larger and supported greater numbers or rhizosphere bacteria per gram of root than plants not supplied with Fe. Comparisons of the Fe content and dry weight of roots and shoots revealed few significant differences between inoculated and uninoculated plants, or among the plants inoculated with the different strains of siderophore-producing bacteria. The differences that were observed revealed no consistent response to inoculation. We conclude that inoculation of the roots of the two oat cultivars with bacteria that produce high concentrations of siderophores in response to an Fe deficiency had little or no effect on Fe acquisition by the plants.  相似文献   

20.
Photosynthesis of higher plants drives carbon (C) allocation below-ground and controls the supply of assimilates to roots and to rhizosphere microorganisms. To investigate the effect of limited photosynthesis on C allocation, redistribution and reutilization in plant and soil microorganisms, perennial grass Lolium perenne and legume Medicago sativa were clipped or shaded. Plants were labelled with three 14C pulses to trace allocation and reutilization of C assimilated before clipping or shading. Five days after the last 14C pulse, plants were clipped or shaded and the total CO2 and 14CO2 efflux from the soil was measured. 14C in above- and below-ground plant biomass and bulk soil, rhizosphere soil and microorganisms was determined 10 days after clipping or shading.After clipping, 2% of the total assimilated 14C originating mainly from root reserves were detected in the newly grown shoots. This corresponded to a translocation of 5 and 8% of total 14C from reserve organs to new shoots of L. perenne and M. sativa, respectively. The total CO2 efflux from soil decreased after shading of both plant species, whereas after clipping, this was only true for L. perenne. The 14CO2 efflux from soil did not change after clipping of both species. An increased 14CO2 efflux from soil under shading for both plants indicated that lower assimilation was compensated by higher utilization of the reserve C for root and rhizomicrobial respiration.We conclude that C stored in roots is an important factor for plant recovery after limiting photosynthesis. This stored C is important for shoot regrowth after clipping, whereas after shading, it is utilized mainly for maintenance of root respiration. Based on these results as well as on a review of several studies on C reutilization for regrowth after clipping, we conclude that because of the high energy demand for nitrogen fixation, legumes use a higher portion (9–10%) of stored C for regrowth compared to grasses (5–7%). The effects of limited photosynthesis were of minor importance for the exudation of the reserve C and thus, have no effect on the uptake of this C by microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号