首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
应用UG软件完成转轮斗叶模型建立,采用CFD技术对多喷嘴冲击式水轮机内部流动进行数值模拟,并结合ANSYS软件对斗叶应力的分析结果,完成转轮斗叶及根部型线的优化,成功地解决了喷嘴数增加后,射流之间、转轮内部流动之间的流动干涉问题,保证了冲击式水轮机转轮的强度和水力性能,使设计的机组运行更加稳定,效率提高。  相似文献   

2.
水斗式水轮机喷嘴及水斗应力和振形研究   总被引:1,自引:0,他引:1  
为分析水斗式水轮机转轮断裂失效原因,应用UG软件对转轮和喷嘴建立三维造型,并利用ANSYS软件对运行的单个斗叶进行应力分析,确定了斗叶的应力分布,得到最高应力值点在刃口处,通过模态分析得到了水斗式水轮机转轮和喷嘴的自振频率和振形图,为多喷嘴水斗式水轮机转轮水斗的强度设计和喷嘴的振动研究提供了依据.  相似文献   

3.
一、微型水轮机的类型 水轮机的规格品种很多,按结构、原理不同可分为反击式与冲击式两大类。反击式是利用水流流经转轮时对转轮叶片产生的反作用力推动水轮机旋转;冲击式是靠高压喷射水流的冲击力使转轮转动。冲击式水轮机又有水斗式、斜击式与双击式三种结构,适用水头从数米到一二十米,流量从每小时几立方米到每小时几百立方米的水电站,特别适用于山区小溪流高水头水电站。反击式水轮机可分轴流式、混流式及贯流式三种型式,主要适合于水头较低,流量较大的水电站。  相似文献   

4.
与其它形式的水轮机不同,由于冲击式水轮机工作过程中转轮始终受到变化幅值大、交变频率高的复杂动荷载作用,水轮机转轮裂纹问题一直都在困扰高水头水电站机组的安全运行。针对转轮结构的应力集中和材料疲劳问题,通过介绍上标水电厂冲击式机组转轮裂纹的处理过程,对水斗转轮裂纹成因进行了技术分析和探讨,并据此,从参数设计、加工制造、材料采用和机组运行等多方面提出解决问题的相应对策,在解决冲击式水轮机转轮裂纹问题上取得了较好的成效。  相似文献   

5.
随着我国水力发电事业的快速发展,对水斗式水轮机的使用性能也提出更高的要求。然而从现行水斗式水轮机应用现状看,其在疲劳裂纹、空蚀等作用下很容易对系统产生破坏,这就要求做好其水斗振形、水斗应力的分析,以使水轮机的应用效果得到提高。本文主要将UG软件、ANSYS软件引入其中,通过三维模型的构建,完成应力、转轮振形以及喷嘴振形的计算。  相似文献   

6.
近年来运行冲击式水轮机中因焊接转轮的水斗强度问题,相继在水斗根部出现断裂裂纹,严重者发生水斗断裂现象.由于这些事故是在机组高速旋转状态下瞬间发生,因而严重影响机组安全运行,一旦断裂的水斗飞出,造成机毁厂坏的严重事故.笔者经过多年实践对铸焊型式转轮采用有效加固加箍措施,使其应力得以减少且分布有利,避免事故发生,解决断斗问题.  相似文献   

7.
为满足超高水头、超大容量水电站建设需求,提出了一种额定水头1 000 m,单机容量接近800 MW的三转轮立轴串联水斗式水轮机方案。阐明了这种通过增多转轮来增大容量的设计理念和结构组成,给出了方案的理论设计参数,并应用CFD模拟预测了其水力特性、分析和优化转轮及转轮室流态。研究表明:三转轮水斗式水轮机的额定工况效率可达87%,工作特性曲线变化平稳。转轮室溅水干扰是影响效率的主要因素。通过优化各层转轮相对位置和喷嘴方位,可一定程度提高效率,减小力矩振荡,保证出力稳定。此初步尝试证明了概念的可行性,也发现溅水优化的重要性,能为后续优化研究提供参考。  相似文献   

8.
冲击式水轮机广泛应用于高水头地区,应用水头一般高于500 m,因此喷嘴出口流速将大于100 m/s.高速的自由射流中,水中携带的细小沙粒不仅会对冲击式水轮机的水斗表面结构造成磨损,而且会破坏喷射机构.喷射机构的主要作用在于形成高质量圆柱射流,提高转轮中的能量转换效率.沙粒磨损喷射机构将影响射流质量,造成效率损失.对喷射机构以及自由射流的水固气三相流动进行了三维非定常的数值模拟.水中携带的细小沙粒简化为圆形固体颗粒,并采用离散颗粒模型模拟其运动特性以及喷射机构的磨损特性.研究发现不同颗粒直径的沙粒其运动轨迹区别很大,造成的喷射机构磨损特性也不相同.喷针表面磨损预测结果显示,直径小的颗粒随流性较强,会对喷针头部造成磨损;直径大的颗粒惯性大,容易撞击喷针颈部上游区域,造成磨损.  相似文献   

9.
水泵水轮机转轮三维反问题设计与特性研究   总被引:1,自引:0,他引:1  
采用全三维反问题设计方法,按照水泵工况确定设计参数,从水轮机方向进行流场计算,完成某一中高水头水泵水轮机转轮的水力设计。针对设计开发的转轮,通过模型实验测试其在不同运行工况下的性能。结果表明,设计的水泵水轮机转轮在水泵工况下的最高机组效率达到91.34%,且机组运行平稳;水轮机工况的最高机组效率为88.5%。基于全流道粘性数值计算的转轮内部流动分析表明,水泵工况下,水流光顺地通过流道,转轮内部流动损失较小;水轮机工况下,转轮进口附近存在较严重冲击损失且叶片背面低压区面积较大,影响转轮的作功能力。  相似文献   

10.
为了研究水泵水轮机发电模式下甩负荷过渡过程压力脉动特性及其对流动诱导噪声的影响,以国内某抽水蓄能电站机组为研究对象,基于网格壁面滑移技术与分离涡湍流模型,通过ANSYS软件对瞬态流场进行数值模拟计算,并将所得流场信号作为声场源在LMS软件中进一步开展流动诱导噪声的仿真.结果表明因2个无叶区流态分别受动静干涉(固定导叶与活动导叶间)与动动干涉(活动导叶与转轮间)影响,导叶两侧压力变化趋势完全不同.转轮流道内压力脉动主频位置在叶频St为0.676 3处,水泵水轮机内声场噪声分布呈现明显的偶极子特性,小流量(0.2QBEP以下)时内场声压变化相对剧烈,最大声压值高达130.00 dB,最小声压为9.67 dB.不同时刻外声场声压级表现出极为相似的波动性,整体趋势表现为声源强度随流量减小而增加,但是流量变化对噪声指向性分布型式并无影响,说明对水泵水轮机内部压力脉动情况改善有助于降低流动诱导噪声水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号