首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Insulin‐independent actions of glucagon‐like peptide‐1 (GLP‐1) are not yet clear in ruminants. Four Suffolk mature wethers (60.0 ± 6.7 kg body weight (BW)) were intravenously infused with insulin (0.5 mU/kg BW/min; from 0 to 90 min) and GLP‐1 (0.5 μg/kg BW/min; from 60 to 150 min) with both hormones co‐administered from 60 to 90 min, in a repeated‐measure design under euglycemic clamp for 150 min, to investigate whether GLP‐1 has insulin‐independent actions. Jugular blood samples were taken at 15‐min intervals for plasma hormones and metabolites analysis. Compared to baseline concentrations (at 0 min), insulin infusion decreased (P < 0.05) plasma concentrations of glucagon, non‐esterified fatty acids (NEFA), lactate, nonessential amino acids (NEAA), branched‐chain amino acids (BCAA), total amino acids (TAA) and urea nitrogen (UN). Insulin plus GLP‐1 infusion induced a greater increase (P < 0.05) in plasma concentrations of insulin and triglyceride (TG), but decreased (P < 0.05) glucagon, total cholesterol (T‐Cho), NEAA and UN plasma concentrations. GLP‐1 infusion increased (P < 0.05) NEFA, β‐hydroxybutyrate and TG, but decreased (P < 0.05) glucagon, T‐Cho, NEAA, BCAA and UN plasma concentrations. In conclusion, GLP‐1 exerts extrapancreatic roles in ruminants not only insulin‐independent but probably, in contrast to non‐ruminants, antagonistic to insulin effects.  相似文献   

3.
Leptin and peroxisome proliferator‐activated receptor gamma (PPARγ) are adipogenic proteins that are actively involved in metabolic homeostasis of fat. Recently, it was reported that fat tissue in humans and rodents differs in metabolic activity relative to anatomical location of the fat tissue (i.e. depots) and animal age. Hence, we hypothesized that leptin and PPARγ production in various fat depots in female pigs differs in response to acute fasting, and that these responses vary with physiological maturity of the animal. Sixteen intact crossbred immature female pigs [prepubertal (PP); 132.2 ± 4.1 days] and 16 sexually mature female pigs (M; 224 ± 7.4 days) housed in an open‐air, concrete slab, sheltered barn were randomly assigned to either Control or Fasted treatments. Control pigs (PP, n = 8; M, n = 8) had ad libitum access to feed, while Fasted pigs (PP, n = 8; M, n = 8) were denied access to feed from the onset of the study (0 h) to euthanasia at 72 h. Immediately post‐mortem, fat samples were collected from the subcutaneous, pelvic, kidney, and heart (M pigs only) fat depots and analysed for leptin and PPARγ mRNA and protein content. Acute fasting decreased mean leptin mRNA tissue content in a depot specific manner in M pigs (p < 0.01), while mean leptin protein concentrations in fat tissues did not differ with fat depot or age of the pig. Furthermore, acute fasting did not affect mean PPARγ mRNA tissue content in a fat depot or age dependent manner. Mean concentrations of PPARγ protein in fat depots tended to be greater in M vs. PP pigs (p = 0.07). We suggest that these data provide evidence that acute fasting has a greater effect on leptin than PPARγ production in a fat depot dependent manner in M pigs, which may be indicative of changing physiological demands as an animal matures.  相似文献   

4.
ABSTRACT This experiment was conducted to investigate leptin mRNA expression, adipocyte size, and their relationship in several adipose tissues of fattening steers. Subcutaneous, perirenal, intermuscular and intramuscular adipose tissues were collected from three crossbred steers (Japanese Black cattle X Holstein) aged 21 months. The mRNA level and adipocyte diameter were determined in these adipose tissues. The intramuscular adipose tissue had a lower leptin mRNA level than the intermuscular and perirenal adipose tissues (P < 0.05). Leptin mRNA level was lower in the subcutaneous depot than in the intermuscular depot (P < 0.05). Adipocyte diameter was larger in the intermuscular adipose tissue than in the subcutaneous and intramuscular adipose tissues (P < 0.05). Leptin mRNA level was positively correlated with adipocyte diameter (r2 = 0.81, P < 0.05). These results suggest that the cattle have fat depot‐specific differences in leptin gene expression, which are a result of a difference in adipocyte size.  相似文献   

5.
Adipose tissue (AT) expresses adipokines, which are involved in the regulation of energy expenditure, lipid metabolism and insulin sensitivity. Visceral (v.c.) and subcutaneous (s.c.) depots largely differ concerning their metabolic characteristics as to the control of lipolysis and the sensitivity to insulin. The adipokines adiponectin, leptin and visfatin influence lipolysis and insulin sensitivity. Signalling by G‐protein coupled receptor 41 (GPR 41) stimulates leptin release via activation by short‐chain fatty acids. We hypothesized that the metabolic differences between v.c. and s.c. fat depots may also apply to the expression of adiponectin, its receptors, leptin, visfatin, insulin receptor (IR) and GPR 41. Therefore, we aimed to compare the mRNA expression of adiponectin, leptin and visfatin, of the adiponectin receptors 1 and 2 (AdipoR1/2) and IR as well of GPR 41 between several s.c. and v.c. fat depots in sheep. Samples from 10 rams were collected at slaughter (40 kg BW) from three s.c. depots, i.e. close to sternum (s.c.S), close to withers (s.c.W), and at the base of tail (s.c.T), and from two v.c. depots, i.e. from perirenal (v.c.P) and omental (v.c.O) fat. The mRNAs of both adiponectin receptors, as well as IR and putative GPR 41, were higher expressed in v.c. fat than in s.c. fat (p ≤ 0.05). Leptin mRNA abundance was greater in s.c. than in v.c. fat (mean ± SEM: s.c.: 2.55 ± 0.81; v.c.: 0.66 ± 0.21) and also differed among the five separately measured fat depots. Our results show differences in mRNA abundance for leptin, AdipoR1 and R2, as well as for IR and GPR 41 in s.c. compared with v.c. fat, thus confirming the need for individual consideration of distinct fat depots, when aiming to characterize adipose functions in ruminants.  相似文献   

6.
The aim of the present study was to compare the expression of adipose tissue mRNA related to glucose metabolism between Japanese Black steers (n = 5) and Holstein steers (n = 5). We examined the expression of the resistin, tumor necrosis factor‐α (TNF‐α), glucose transporter 1 (GLUT1) and growth hormone receptor (GHR) genes using real‐time polymerase chain reaction of cDNA in adipose tissue. The cDNA sequence identified by 5′/3′‐rapid amplification of cDNA and the deduced amino acid sequence were highly conserved in human, porcine and murine resistin. Expression of resistin mRNA was significantly greater in Holstein steers than in Japanese Black steers. In contrast, expression of TNF‐α mRNA was slightly greater in Japanese Black steers. Expression of GHR mRNA was significantly greater in Japanese Black steers compared with the Holstein steers, although there was no significant difference in the expression of GLUT1 mRNA. However, the plasma non‐esterified fatty acid (NEFA), glucose, insulin and growth hormone concentrations did not differ between Japanese Black and Holstein steers. The present results show that there is a difference in the expression level of mRNA related to glucose metabolism between Japanese Black steers and Holstein steers.  相似文献   

7.
1. The growth of three distinct adipose tissue depots around the abdomen, neck and thigh was measured in a commercial strain of broiler, and related to the changes in activity of lipoprotein lipase within each depot.

2. At 10 d of age there was no significant difference between the weights of the depots. Thereafter the abdominal fat pad exhibited a much greater rate of growth than the other two depots so that by 55 d of age the abdominal fat pad was 4 times the size of the leg depot and 3.4 times the size of the neck depot.

3. Changes in total lipoprotein lipase activity for all three depots showed a similar pattern to the changes in their weight.

4. When [14C]‐VLDL was injected intravenously into birds at 15 and 57 d of age the percentage taken up into the abdominal fat pad was greater than that into the other two depots at both ages. At 57 d of age the abdominal fat pad had a 2.3‐fold greater uptake than at 15 d whereas the other two depots showed no significant differences at the two ages.

5. These results provide further evidence for a key role of lipoprotein lipase in regulating adipose tissue growth in broilers. They also demonstrate that although the abdominal fat pad has been used in a number of studies of adipose tissue metabolism it is not necessarily representative of other depots.  相似文献   


8.
9.
The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P = 0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2nM: approximately 4-fold; 20nM: approximately 14-fold; P = 0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone, similar dose- and time-dependent effects were noted. However, no effects were seen when adipocytes from the gonadal WAT depot were treated with rosiglitazone. The induction of 11β-HSD-1 expression, by the pro-inflammatory cytokine tumor necrosis factor α and by lipopolysaccharide may have implications for the pathogenesis of obesity and its associated diseases in the dog.  相似文献   

10.
11.
IgE‐mediated late‐phase reactions can be induced in the skin of normal and atopic dogs by intradermal injections of anti‐IgE antibody. The histology of these reactions is very similar to that of naturally occurring atopic dermatitis. To characterize the cellular, cytokine and chemokine responses in the skin of placebo‐ and prednisolone‐treated dogs, normal beagles received either placebo or 0.5 mg/kg prednisolone twice daily for three days prior to intradermal injection of polyclonal rabbit anti‐canine IgE. Eight‐millimetre punch biopsy skin samples were taken before injection and at the injection sites after 6, 24 and 48 h. Histological and immunohistochemical examination revealed a rapid cellular influx. Eosinophil and neutrophil numbers increased from <1 to 61.4 ± 14.1, and from 7 to 62.2 ± 10.8 cells/mm2, respectively, within 6 h after injection, and remained moderately elevated 48 h later. The numbers of CD1c+, CD3+ and CD4+ mononuclear cells were also increased by 6 h. Taqman analysis demonstrated 2.5‐ to 72‐fold increases in mRNA expression for IL‐13, IL‐5, MCP (CCL2), RANTES (CCL5) and TARC (CCL17). Levels of mRNA for IL‐2, IL‐4, IL‐6, and IFNγ remained negligible. Prednisolone administration suppressed the influx of neutrophils and eosinophils, and the expression of IL‐13, CCL2, CCL5 and CCL17 (33, 97, 58, 86, 73 and 90%, respectively), as well as the influx of CD1c+ and CD3+ cells. These data document the cytokine and chemokine response to anti‐IgE injection and demonstrate the anti‐inflammatory effect of prednisolone. Funding: Schering‐Plough Animal Health.  相似文献   

12.
Synthetic porcine beta‐defensin‐2 (pBD‐2) was tested as an alternative to antimicrobial growth‐promoters in pig production. Thirty 21‐day weaned piglets were challenged with enterotoxigenic Escherichia coli, and orally dosed with either sterile water (CON), pBD‐2 (BD) or neomycin sulphate (NS) twice daily for 21 days. pBD‐2 and NS led to higher growth performance, jejunum villus height and increased expression of insulin‐like growth factor‐I compared with the CON group (P < 0.05). Hemolytic E. coli scores from rectal swabs, and copy numbers of E. coli, Bacteroides fragilis and Streptococcus in the cecal digesta of the BD‐ or NS‐treated piglets were lower than those in the CON group (P < 0.05). Messenger RNA levels of toll‐like receptor 4, tumor necrosis factor‐α, interleukin (IL)‐1β, and IL‐8 in the jejunum mucosa of the BD and NS groups were lower than those in the CON group (P < 0.05). Copy numbers of Lactobacilli and Bifidobacteria in the cecal digesta of the BD group were higher than those of the CON and NS groups (P < 0.05). Therefore, pBD‐2 has antimicrobial activity in piglets, and it can improve growth performance, reduce inflammatory cytokine expression and affect intestinal morphological indices in the same way as probiotics. © 2015 Japanese Society of Animal Science  相似文献   

13.
Although insulin resistance (IR) has been increasingly recognized in horses, a clear understanding of its pathophysiology is lacking. The purpose of the present study was to determine the early pathologic changes in IR horses by characterizing alterations in proteins that play key roles in innate immunological responses and inflammatory pathways, and by identifying potential links with glucose transport and insulin signaling. Visceral (VIS) and subcutaneous (SC) adipose tissue and skeletal muscle (SM) biopsies were collected from horses, which were classified as insulin-sensitive (IS) or IR based on the results of an insulin-modified frequently sampled intravenous glucose tolerance test. Protein expression of Toll-like receptor 4 (TLR-4), suppressor of cytokine signaling 3 (SOCS-3) and tumor necrosis factor alpha (TNF-α) were quantified by Western blotting in VIS and SC adipose depots and SM, as well as insulin receptor substrate 1 (IRS-1). To better characterize the potential relationship between inflammation, IR and impaired glucose transport, we correlated active cell surface glucose transporter 4 (GLUT-4) content (measured by a cell surface biotinylated assay) with individual- and tissue-specific data related to inflammation. IR was associated with a significantly increased expression of TLR-4 and SOCS-3 in SM and VIS tissue, without a significant change in SC site. We also observed a significant increase in TNF-α in VIS, but not in SC, tissue of IR vs. IS horses. There was no difference in total content or serine phosphorylation of IRS-1 for any sampling site in IR compared to IS horses. We further observed a significant positive correlation between TLR-4 content and SOCS-3, as well as a significant negative correlation between SOCS-3 content and GLUT-4 trafficking. Taken together, the data suggested a pro-inflammatory state in SM and VIS, but not SC, adipose depot during compensated IR. In addition, SOCS-3 appears to be a novel link between inflammation and dysregulated glucose metabolism and insulin sensitivity during the early pathogenesis of insulin resistance.  相似文献   

14.
Background: The chemokine monocyte chemoattractant protein‐1 (MCP‐1) is a primary regulator of monocyte mobilization from bone marrow, and increased concentrations of MCP‐1 have been associated with sepsis and other inflammatory disorders in critically ill people. The relationship between MCP‐1 and disease in dogs has not been evaluated previously. Objective: The purpose of this study was to assess serum concentrations of MCP‐1 in healthy dogs, dogs in the postoperative period, and critically ill dogs. We hypothesized that MCP‐1 concentrations would be significantly increased in critically ill dogs compared with postoperative or healthy dogs. Methods: Serum concentrations of MCP‐1 were measured in 26 healthy control dogs, 35 postoperative dogs, and 26 critically ill dogs. Critically ill dogs were further subgrouped into dogs with sepsis, parvovirus gastroenteritis, immune‐mediated hemolytic anemia, and severe trauma (n=26). MCP‐1 concentrations were determined using a commercial canine MCP‐1 ELISA. Associations between MCP‐1 concentrations and disease status were evaluated statistically. Results: MCP‐1 concentration was significantly higher in critically ill dogs (median 578 pg/mL, range 144.7–1723 pg/mL) compared with healthy dogs (median 144 pg/mL, range 4.2–266.8 pg/mL) and postoperative dogs (median 160 pg/mL, range 12.6–560.4 pg/mL) (P<.001). All subgroups of critically ill dogs had increased MCP‐1 concentrations with the highest concentrations occurring in dogs with sepsis. However, differences among the 4 subgroups were not statistically significant. Conclusion: Critically ill dogs had markedly increased serum concentrations of MCP‐1 compared with postoperative and healthy dogs. These results indicate that surgery alone is not sufficient to increase MCP‐1 concentrations; thus, measurement of MCP‐1 may be useful in assessing disease severity in critically ill dogs.  相似文献   

15.
Sheep adipose tissue explants were maintained in culture for 24 h in the presence of insulin, dexamethasone, or insulin and dexamethasone, and stearoyl-CoA desaturase (SCD) messenger RNA (mRNA) levels and fatty acid synthesis were measured. Insulin increased SCD mRNA levels (P = 0.008) and synthesis of both saturated (P = 0.07) and unsaturated (P < 0.001) fatty acids but had the greatest effect on unsaturated fatty acid synthesis, resulting in the overall production of a greater (P < 0.001) proportion of monounsaturated fat. Dexamethasone, alone, had the opposite effect but actually potentiated the effect of insulin in stimulating SCD expression and both saturated and monounsaturated fatty acid synthesis, without affecting the relative proportions of each. Across adipose tissue depots, the effect of hormones was similar, although the increase in SCD mRNA levels (P = 0.008) and monounsaturated fatty acid synthesis (P < 0.001) was greater in subcutaneous adipose tissue than in the internal (omental and perirenal) depots. These data clearly show that, in ovine adipose tissue, changes in SCD gene expression in response to insulin and dexamethasone are associated with changes in monounsaturated fatty acid synthesis and suggest that it may be possible to develop strategies to manipulate sheep tissues to produce a less-saturated fatty acid profile.  相似文献   

16.
Weaning is characterized by intestinal inflammation, which is a big challenge in pig industry. Control of intestinal inflammation is important for improvement of growth performance and health. Therefore, the study was focused on the anti‐inflammatory activity of low‐molecular‐weight chitosan oligosaccharide (LCOS) in a porcine small intestinal epithelial cell line (IPEC‐J2). The results showed that TNF‐α, as inflammation inducer, significantly upregulated the mRNA expression of IL‐8 and MCP‐1. Afterwards, LCOS significantly attenuated mRNA expression of IL‐8 and MCP‐1 induced by TNF‐α in the cells. Mannose (MAN), as ligand of mannose receptor, had no effect on the anti‐inflammatory activity of LCOS, which suggested that mannose receptor may not involve in the anti‐inflammatory activity of LCOS in IPEC‐J2 cells. Interestingly, N‐[2‐(p‐bromocinnamylamino)ethyl]‐5‐isoquinolinesulfonamide 2HCl hydrate (H89), as PKA (protein kinase A)‐specific inhibitor, reversed the mRNA expression of IL‐8 when co‐cultured with LCOS. Furthermore, LCOS concentration dependent downregulated the mRNA expression of claudin‐1 compared with TNF‐α treatment. However, the trans‐epithelial electric resistance (TEER) was not affected by LCOS when co‐cultured with TNF‐α in 3 hr. In conclusion, LCOS have a potent anti‐inflammatory activity, and as a feed additives, may be useful for the inhibition of inflammatory process in weaning period of pigs with intestinal inflammation occurring.  相似文献   

17.
Dairy cow mastitis is a detrimental factor in milk quality and food safety. Mastitis generally refers to inflammation caused by infection by pathogenic microorganisms. Our studies in recent years have revealed the role of miRNA regulation in Staphylococcus aureus‐induced mastitis. In the present study, we overexpressed and suppressed miR‐145 to investigate the function of miR‐145 in Mac‐T cells. Flow cytometry, ELISA and EdU staining were used to detect changes in the secretion of several Mac‐T cytokines and in cell proliferation. We found that overexpression of miR‐145 in Mac‐T cells significantly reduced the secretion of IL‐12 and TNF‐α, but increased the secretion of IFN‐γ; the proliferation of bovine mammary epithelial cells was also inhibited. Using quantitative real‐time PCR (qRT‐PCR), Western blotting and luciferase multiplex verification techniques, we found that miR‐145 targeted and regulated FSCN1. Knock‐down of FSCN1 significantly increased the secretion of IL‐12, while the secretion of TNF‐α was significantly downregulated in Mac‐T cells. Upon S. aureus infection of mammary gland tissue, the body initiated inflammatory responses; Bta‐miR‐145 expression was downregulated, which reduced the inhibitory effect on the FSCN1 gene; and upregulation of FSCN1 expression promoted mammary epithelial cell proliferation to allow the recovery of damaged tissue. The results of the present study will aid in understanding the immune mechanism opposing S. aureus infection in dairy cows and will provide a laboratory research basis for the prevention and treatment of mastitis.  相似文献   

18.
Obesity is a growing health problem in humans as well as companion animals. In the development and progression of obesity‐associated diseases, the members of the renin–angiotensin system (RAS) are proposed to be involved. Particularly, the prevalence of type 2 diabetes mellitus in cats has increased enormously which is often been linked to obesity as well as to RAS. So far, reports about the expression of a local RAS in cat adipocytes are missing. Therefore, we investigated the mRNA expression of various RAS genes as well as the adipocyte marker genes adiponectin, leptin and PPAR‐γ in feline adipocytes using quantitative PCR. To characterize the gene expression during adipogenesis, feline pre‐adipocytes were differentiated into adipocytes in a primary cell culture and the expression of RAS key genes measured. All major RAS components were expressed in feline cells, but obvious differences in the expression between pre‐adipocytes and the various differentiation stages were found. Interestingly, the two enzymes ACE and ACE2 showed an opposite expression course. In addition to the in vitro experiments, mature adipocytes were isolated from subcutaneous and visceral adipose tissue. Significant differences between both fat depots were found for ACE as well as AT1 receptor with greater expression in subcutaneous than in visceral adipocytes. Visceral adipocytes had significantly higher adiponectin and PPAR‐γ mRNA level compared to the subcutaneous fat cells. Concerning the nutritional status, a significant lower expression of ACE2 was measured in subcutaneous adipocytes of overweight cats. In summary, the results show the existence of a potentially functional local RAS in feline adipose tissue which is differentially regulated during adipogenesis and dependent on the fat tissue depot and nutritional status. These findings are relevant for understanding the development of obesity‐associated diseases in cats such as diabetes mellitus.  相似文献   

19.
High glycaemic feeds are associated with the development of insulin resistance in horses. However, studies that evaluated the effect of high glycaemic feeds used horses that either ranged in body condition from lean to obese or were fed to increase body condition over a period of months; thus, the ability of high glycaemic feeds to induce insulin resistance in lean horses has not been determined. This study evaluated the insulin sensitivity of 18 lean horses fed a 10% (LO; n = 6), 20% (MED; n = 6) or 60% (HI; n = 6) non‐structural carbohydrate complementary feed for 90 days. Although both the MED and HI diets increased insulinaemic responses to concentrate feeding in relation to the LO diet (p > 0.05), neither induced insulin resistance, as assessed by glucose tolerance test, following the 90‐day feeding trial. Interestingly, the post‐feeding suppression of plasma non‐esterified fatty acids was less pronounced in HI‐fed horses (p = 0.054) on days 30 and 90 of the study, potentially indicating that insulin‐induced suppression of adipose tissue lipolysis was reduced. As insulin‐resistant animals often have elevated plasma lipid concentrations, it is possible that altered lipid metabolism is an early event in the development of insulin resistance. The effects of high glycaemic feeds that are fed for a longer duration of time, on glucose and lipid metabolism, should be investigated further.  相似文献   

20.
Normal reproductive function is dependent upon availability of glucose and insulin‐induced hypoglycaemia is a metabolic stressor known to disrupt the ovine oestrous cycle. We have recently shown that IIH has the ability to delay the LH surge of intact ewes. In the present study, we examined brain tissue to determine: (i) which hypothalamic regions are activated with respect to IIH and (ii) the effect of IIH on kisspeptin cell activation and CRFR type 2 immunoreactivity, all of which may be involved in disruptive mechanisms. Follicular phases were synchronized with progesterone vaginal pessaries and at 28 h after progesterone withdrawal (PW), animals received saline (n = 6) or insulin (4 IU/kg; n = 5) and were subsequently killed at 31 h after PW (i.e., 3 h after insulin administration). Peripheral hormone concentrations were evaluated, and hypothalamic sections were immunostained for either kisspeptin and c‐Fos (a marker of neuronal activation) or CRFR type 2. Within 3 h of treatment, cortisol concentrations had increased whereas plasma oestradiol concentrations decreased in peripheral plasma (p < 0.05 for both). In the arcuate nucleus (ARC), insulin‐treated ewes had an increased expression of c‐Fos. Furthermore, the percentage of kisspeptin cells co‐expressing c‐Fos increased in the ARC (from 11 to 51%; p < 0.05), but there was no change in the medial pre‐optic area (mPOA; 14 vs 19%). CRFR type 2 expression in the lower part of the ARC and the median eminence was not altered by insulin treatment. Thus, disruption of the LH surge after IIH in the follicular phase is not associated with decreased kisspeptin cell activation or an increase in CRFR type 2 in the ARC but may involve other cell types located in the ARC nucleus which are activated in response to IIH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号