首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Eleven cattle farms, 8 layer farms, 7 broiler farms and 30 broiler meat samples were investigated in south-eastern Italy throughout 2003 to evaluate the prevalence, the molecular type and antimicrobial resistance of thermophilic Campylobacters. A total of 398 samples were analysed. One Campylobacter isolate for each positive faecal swab and three isolates per positive broiler meat sample were selected for further analysis. Multiplex PCR was performed for species-level identification and PCR-RFLP of the flagellin A gene for genotyping. Resistance to 14 antimicrobials was studied in 188 Campylobacter isolates. Prevalence of campylobacters was high both on farms (100%) and in food samples (73%). On 4/11 cattle farms and on 10/15 poultry farms more than one species was isolated. The presence of more than one genotype was found on 8/11 cattle farms, on 10/15 poultry farms and in 8/22 Campylobacter-positive food samples. High rates of resistance to quinolone were observed: 9/31 (29%) C. jejuni bovine isolates, 4/22 (18%) C. jejuni poultry isolates, and 14/26 (54%) C. coli poultry isolates. Resistance to sulphamethoxazole-trimethoprim was also observed frequently: 18/26 (69%) of the avian C. coli strains, 25/31 (80%) of the C. jejuni strains isolated from poultry and 15/22 (68%) of those isolated from cattle were resistant. There was a significant difference between the rate of resistance to macrolides of C. coli and C. jejuni isolated in poultry, which amounted to 23% and 3%, respectively. This study provided data on the prevalence and antimicrobial resistance of thermophilic campylobacters in south-eastern Italy and confirmed that flaA-typing is an efficient tool to study the epidemiology of Campylobacter strains in short-term investigations.  相似文献   

2.
Campylobacter was isolated from 67 (47.2%) of 142 broiler flocks between September 2009 and February 2010. The prevalence of Campylobacter in broiler flocks was significantly lower during January and February than it was from September to December. Campylobacter colonization was more common in flocks that were not provided with a disinfected water supply, which was consistent with the findings of a previous study. The prevalence of antimicrobial drug‐resistant Campylobacter spp. was investigated, and the minimum inhibitory concentrations of eight antimicrobial agents were determined for 122 Campylobacter jejuni isolates and 46 Campylobacter coli isolates from broiler flocks between 2007 and 2010. In this study, 29.5% (36/122) of C. jejuni isolates and 41.3% (19/46) of C. coli isolates were resistant to enrofloxacin (ERFX), whereas all isolates were susceptible to erythromycin. Furthermore, the ERFX‐resistant isolates were tested for susceptibility to other classes of antimicrobial agents, and 55.6% (20/36) of ERFX‐resistant C. jejuni isolates and 47.4% (9/19) of ERFX‐resistant C. coli isolates were resistant to at least one of aminobenzyl penicillin, dihydrostreptomycin and oxytetracycline. To avoid an impact of antimicrobial drug‐resistant Campylobacter spp. on the efficacy of antimicrobial treatment for human campylobacteriosis, prudent use of antimicrobial agents is a requisite. The use of antimicrobial agents should be accompanied by various approaches such as prevention of Campylobacter colonization in broiler flocks with the aim of lowering the occurrence of Campylobacter infection in humans.  相似文献   

3.
The resistance patterns of Campylobacter spp. isolated from retail broiler chicken meat originating either from Estonia, Lithuania or Latvia collected in Estonia were determined. Additionally, in collaboration with the laboratories of several Estonian hospitals, antimicrobial susceptibility patterns were determined for Campylobacter isolates from patients with severe Campylobacter enteric infections. The isolates were identified at the species level by the PCR method. Respectively, 88.8% of the isolates were C. jejuni, and 11.2% were C. coli. In total, 126 Campylobacter isolates of broiler chicken meat and human origin were tested for minimal inhibitory concentrations (MICs) with the broth microdilution VetMICTH method (National Veterinary Institute; Uppsala, Sweden) for a total of six antimicrobials. Resistance to one or more antimicrobials was detected in 62 (63.3%) of Campylobacter broiler chicken meat isolates and in 20 (71.4%) of human‐origin isolates. Large proportions of the broiler chicken meat isolates were resistant to ciprofloxacin (60.2%). Multidrug resistance (i.e. to three or more unrelated antimicrobials) was detected in five (5.1%) C. jejuni isolates. Among the human isolates, 20 (71.4%) were resistant to fluoroquinolones, and two (7.1%) C. jejuni isolates exhibited multidrug resistance. The chicken meat isolates of Estonian origin were the most susceptible. However, a high proportion of fluoroquinolone‐resistant C. jejuni isolates were found in Latvian and Lithuanian products. The results of this study indicate that the problems caused by the inappropriate use of antimicrobials extend beyond the country in which a food originates; therefore, both domestic and international interventions and agreements are required to implement common policies on antimicrobial usage and to minimize the emergence of Campylobacter drug resistance.  相似文献   

4.
Reasons for performing study: The increasing prevalence of antimicrobial‐resistant bacteria such as methicillin‐resistant Staphylococcus aureus (MRSA) and antimicrobial‐resistant Escherichia coli represents a significant problem. However, the carriage of such bacteria by horses in the UK has not been well characterised. Objectives: To estimate the prevalence of nasal carriage of MRSA and faecal carriage of antimicrobial‐resistant E. coli amongst horses in the general equine community of the mainland UK. Methods: A cross‐sectional study of horses recruited by 65 randomly selected equine veterinary practices was conducted, with nasal swabs and faecal samples collected. Faecal samples were cultured for antimicrobial‐resistant E. coli. Nasal swabs were cultured for staphylococcal species; methicillin‐resistant isolates identified as S. aureus were characterised by SCCmec and spa gene typing. Multilevel logistic regression models were used to calculate prevalence estimates with adjustment for clustering at practice and premises levels. Spatial variation in risk of antimicrobial resistance was also examined. Results: In total, 650 faecal samples and 678 nasal swabs were collected from 692 horses located on 525 premises. The prevalence of faecal carriage of E. coli with resistance to any antimicrobial was 69.5% (95% CI 65.9–73.1%) and the prevalence of extended‐spectrum β‐lactamase (ESBL)‐producing E. coli was 6.3% (95% CI 4.1–9.6%). The prevalence of nasal carriage of MRSA was 0.6% (95% CI 0.2–1.5%). Spatial analysis indicated variation across the UK for risk of carriage of resistant and multidrug‐resistant (resistant to more than 3 antimicrobial classes) E. coli. Conclusions and potential relevance: Carriage of MRSA by horses in the community appears rare, but the prevalence of antimicrobial‐resistant E. coli (including ESBL‐producing E. coli) is higher. A high prevalence of antimicrobial‐resistant bacteria could have significant health implications for the horse population of the UK.  相似文献   

5.
Escherichia coli play an important ecological role within resistant bacteria populations, and can be used as a bio-indicator of antimicrobial resistance. The aim of the present study was to use this feature of E. coli to investigate the prevalence of antimicrobial resistance and the degree of cross-species transmission of bacteria in pigs and poultry in China. A total of 592 E. coli strains, isolated from pigs and poultry (healthy and diseased animals), were tested for resistance to 22 antimicrobials representing eight antimicrobial drug types.E. coli isolates had high rates of resistance to ampicillin (99.5%), doxycycline (95.6%), tetracycline (93.4%), trimethoprim–sulfamethoxazole (74.3%), amoxicillin (65.1%), streptomycin (54.7%), and chloramphenicol (50.2%). Resistance to cephalosporins, quinolones, and aminoglycosides was also quite prevalent. The majority (81%) of isolates demonstrated multi-antimicrobial resistance, most commonly to 5–6 different antimicrobial types. One isolate was resistant to all 22 antimicrobials. Twenty-two cultures exhibiting multi-antimicrobial resistance were analysed by pulsed-field gel electrophoresis (PFGE) to assess their distribution between farms. Three distinct PFGE types were identified, indicating inter-farm transmission of multi-antimicrobial resistant bacteria. The study confirmed the presence and transmission of multi-antimicrobial-resistant E. coli strains amongst pigs and poultry in China and highlights the urgent need for appropriate monitoring programmes.  相似文献   

6.
The prevalence of antimicrobial resistant Escherichia coli was tested in symbovine flies and sympatric house martins (Delichon urbica) at a dairy farm. Antimicrobial resistant E. coli was detected in 89% (= 147) of isolates from flies within a calf barn. Isolates with the same antimicrobial resistance phenotypes, genes, and pulsotypes were found between both fly and calf E. coli isolates, suggesting that the calves were the initial source of the antimicrobial resistant strains in fly isolates. Symbovine flies were considered as important reservoirs of antimicrobial resistant E. coli strains at a dairy farm, due to their intensive contact with cattle feces and manure. House martin fecal samples from the same farm contained 4.5% (= 393) of antimicrobial resistant E. coli. House martin isolates displayed different macrorestriction profiles than fly isolates and the significance of house martins as a reservoir and vector of antimicrobial resistant E. coli appears low.  相似文献   

7.
Reasons for performing study: The increasing prevalence of antimicrobial resistant bacteria such as antimicrobial‐resistant and extended spectrum β‐lactamase (ESBL)‐producing Escherichia coli represents a significant problem for human and veterinary medicine. Despite this, the risk factors for faecal carriage of such bacteria by horses in the UK, particularly those in the wider community, have not been well described. Objectives: To characterise the risk factors for faecal carriage of antimicrobial‐resistant E. coli amongst horses in the mainland UK. Methods: A cross‐sectional study of horses recruited by 65 randomly selected equine veterinary practices was conducted, with a faecal sample collected and self‐administered questionnaire completed by the horse owner. Faecal samples were cultured for antimicrobial‐resistant E. coli, with isolates confirmed as E. coli having their antimicrobial resistance profile determined. Multilevel, multivariable logistic regression models were used to investigate risk factors for the carriage of antimicrobial‐resistant E. coli in the sample population. Results: Faecal samples and completed questionnaires were obtained for 627 horses located on 475 premises. Recent hospitalisation, contact with specific types of nonequid animals, the type of premises, the surrounding land use, the reason for veterinary treatment received in the last 6 months and antimicrobial treatment in the previous 10 days were identified as risk factors for many of the antimicrobial‐resistance outcomes considered. Being stabled on the same yard as a recently hospitalised horse was identified as a risk factor for increased risk of carriage of ESBL‐producing E. coli. Conclusions and potential relevance: Increasing antimicrobial resistance may have significant health implications for the horse population of Great Britain. This form of epidemiological investigation highlights potential risk factors that may be controlled to limit the extent of the problem.  相似文献   

8.
To assess the prevalence of antimicrobial resistance and three classes of integrons in Escherichia coli (E. coli) strains (n = 57) isolated from bovine endometritis in Inner Mongolia of China, antimicrobial susceptibility and the presence of three types of integrons were characterized. Most isolates were susceptible to ceftiofur, furazolidone, ciprofloxacin and enrofloxacin, while 57 isolates were all resistant to sulfamethoxydiazine and trimethoprim. High resistant incidence rates were exhibited to sulfadiazine, tetracycline, oxytetracycline, cefazolin, chloramphenicol. Forty-six of 57 E. coli strains were resistant to above 10 antibiotics (80.70%). The integrase gene and gene cassettes of integrons were amplified by PCR. DNA sequencing and analysis were used to identify the genetic content of the integron-variable regions. Neither class II nor class III integron was detected, while 36.8% (n = 21) of the isolates were positive for the presence of intI1 gene. Analysis of gene cassettes revealed that six gene cassettes were found, which encoded resistance to trimethoprim (dhfr, dhfrI, dfrA17) and aminoglycosides (aadA1, aadA2, aadA5). Among them, the gene cassette array dfrA17–aadA5 was found most prevalent (66.7%). The resistance profile of positive-integron isolates was relatively broad and they were resistant to more than eight antimicrobials (n ? 8). The correlation analysis revealed the incidence of integrons among the isolates were related to the multiple antibiotic resistance profile, indicating integrons play an important role in the dissemination and spread of the antimicrobial resistant strains.  相似文献   

9.
The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug‐resistant E. coli (n = 36; MDR, resistance to ≥2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside‐ and/or trimethoprim‐resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β‐lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim‐sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the dissemination of antimicrobial resistance, particularly to human hosts during contact.  相似文献   

10.
To investigate public health implications of antibiotics to control post‐weaning scours, we surveyed 22 commercial pig herds in southeastern Australia. Fifty faecal samples per herd were collected from pre‐ and post‐weaned piglets. Presumptive Escherichia coli isolates were confirmed by MALDI‐TOF MS. Isolates (n = 325) were screened for susceptibility to 19 veterinary antibiotics using MIC broth microdilution. All 325 E. coli isolates underwent further testing against 27 antibiotics used in human medicine and were screened for ETEC adhesin and enterotoxin genes (F4 (K88), F5 (K99), F6 (987P), F18, F41, STa, STb, Stx2e and LT) by multiplex PCR. Isolates identified as phenotypically resistant to third‐generation cephalosporin (3GC) and aminoglycoside antibiotics were screened by multiplex PCR/reverse line blot to detect common β‐lactam and aminoglycosides resistance genes, confirmed by sequencing. Twenty (6.1%) of the E. coli isolates were resistant to 3GC antibiotics and 24 (7.4%) to the aminoglycoside antibiotic gentamicin. Genetic analysis revealed six different extended spectrum β‐lactamase (ESBL) genes (blaCTX‐M‐1, ‐14, ‐15, ‐27, blaSHV‐12 and blaCMY‐2‐like genes), four of which have not been previously reported in Australian pigs. Critically, the prevalence of 3GC resistance was higher in non‐pathogenic (non‐ETEC) isolates and those from clinically normal (non‐diarrhoeal) samples. This highlights the importance of non‐ETECE. coli as reservoirs of antimicrobial resistance genes in piglet pens. Antimicrobial resistance surveillance in pig production focused on diagnostic specimens from clinically‐affected animals might be potentially misleading. We recommend that surveillance for emerging antimicrobial resistance such as to 3GC antibiotics should include clinically healthy pigs.  相似文献   

11.
In the last few years, antimicrobial resistant (AMR) Escherichia coli have been detected in newborn chickens suggesting their vertical transmission from breeding birds to their offspring. However, little is known about the presence of AMR E. coli in the reproductive organs of broiler breeders. The aim of this study was to investigate the presence of E. coli in the ovaries of healthy broiler breeders and to study their antimicrobial resistance. Samples from broiler breeders (n = 80) collected from 80 different broiler breeder flocks were included in this study. Antibiotic susceptibility testing was performed using disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. Minimal inhibitory concentrations (MICs) of five antimicrobial agents were determined by Etest. PCR and sequencing were used to detect the blaESBL genes. E. coli were detected in the ovaries of thirty seven out of 80 (46.25%) sampled flocks. High levels of resistance to various first-line antimicrobial agents were recorded in E. coli isolates. This study showed that 89.18% of E. coli isolates were multidrug resistant (MDR). Furthermore, MDR extended-spectrum β-lactamases (ESBL)-producing E. coli were detected in the ovaries of four different broiler breeder flocks. Molecular characterization revealed that three isolates harboured blaCTX-M-1 gene and one isolate expressed blaSHV-12 gene. In addition, one blaCTX-M-1 -producing E. coli co-harboured the blaTEM-1 gene. These findings would contribute to a better epidemiological understanding of MDR E. coli for improve existing preventive strategies in order to reduce the dissemination of antimicrobial resistance in the broiler production system.  相似文献   

12.
Background: Antimicrobial resistance is increasing among Escherichia coli isolates associated with spontaneous infection in dogs and cats. Objectives: To describe E. coli resistance phenotypes and clonal relatedness and their regional prevalence. Animals: Isolates of E. coli (n = 376) collected from dogs and cats in the United States between May and September 2005. Methods: Isolates submitted from the South, West, Northeast, and Midwest regions of the United States were prospectively studied. Phenotype was based on E‐test susceptibility to 7 antimicrobials. Isolates were classified as no (NDR), single (SDR), or multidrug resistance (MDR). Clonal relatedness was determined by pulsed‐field gel electrophoresis (PFGE). Results: One hundred and ninety‐three (51%) isolates expressed resistance to at least 1 drug, yielding 42 phenotypes. SDR isolates (n = 84; 44%, 8 phenotypes), expressed resistance most commonly to amoxicillin (30%, n = 25) and least commonly to cefpodoxime (1%, n = 1). MDR isolates (n = 109; 56%, 31 phenotypes) were resistant to amoxicillin (96%, n = 105), amoxicillin‐clavulanate (85%, n = 93), and enrofloxacin (64%, n = 70); 18% (n = 20) were resistant to all drugs tested. The frequency of MDR did not differ regionally (P= .066). MDR minimum inhibitory concentrations (MICs) were 6‐fold higher than SDR MICs (P < .0001). Dendrograms of 91 isolates representing 25 phenotypes revealed 62 different PFGE profiles. Conclusions and Clinical Importance: E. coli strains spontaneously infecting dogs and cats are genetically and phenotypically diverse. Given the current prevalence of MDR among clinical isolates of E. coli in United States, implementation of a robust surveillance program is warranted.  相似文献   

13.
1. The aim of this work was to compare a group of virulence-associated characteristics of Escherichia coli isolates from broiler chickens that had died with signs of colibacillosis against E. coli isolates from ready-to-market chicken meat in the West Bank.

2. The isolates were investigated to determine the virulence factor (VF) profile, phylogenetic group and the presence of extended-spectrum beta-lactamase (ESBL). A total of 66 avian pathogenic E. coli (APEC) strains from different affected broiler farms and 21 E. coli isolates from ready-to-market chicken carcasses (hereinafter called meat strains) from 8 slaughter houses were analysed.

3. The overall content of VFs was significantly higher (P < 0.05) among APEC strains, with over 75% of APEC strains having ≥4 VFs, while over 75% of the meat strains had <4 VFs. The VFs iss, astA and iucD were frequently detected in APEC and meat strains, whereas cvi, papC, vat, tsh and irp2 occurred more significantly in APEC strains. Phylogenetic typing showed that 67% of the meat strains belonged to group B2. Phylogroup D was predominant (50%) in the APEC strains. Using double disc diffusion and polymerase chain reaction (PCR), 10.6% of the APEC and 9.5% of the meat strains were determined to be ESBL positive.

4. Our findings show that the VFs papC, vat, irp2 and to a lesser extent tsh and cvi are significantly more prevalent in APEC strains. The results demonstrate that chicken meat can be contaminated with APEC strains (≥4 VF). A significant percentage of the meat strains fall in the B2 group, which is a phylogroup largely associated with human pathogenic ExPEC strains. The results of ESBL screening indicated that broiler chicken products in Palestine represent a potential reservoir of ESBL genes and therefore could be considered a possible public health risk.  相似文献   


14.
Tetracycline- resistant bacteria have emerged due to the selective pressure of antimicrobial use. The aim of this study was to determine the prevalence of oxytetracycline resistance of Escherichia coli from pigeon faecal samples. All strains were examined for the presence and types of oxytetracycline resistance determinants using disc diffusion and polymerase chain reaction methods. Of 50 faecal E. coli isolates, 30 (60%) were resistant to oxytetracycline. Polymerase chain reaction analyses indicated that the most common genes found in these isolates were tetB (43.3%) and tetA (30%). Only 10% and 3.3% of the isolates contained otrA and otrB, respectively. In conclusion, our findings suggest that oxytetracycline-resistant strains of E. coli are disseminated in pigeons.  相似文献   

15.
The emergence and spread of antimicrobial‐resistant (AMR) bacteria in natural environments is a major concern with serious implications for human and animal health. The aim of this study was to determine the prevalence of AMR Escherichia coli (E. coli) in wild birds and mammalian species. Thirty faecal samples were collected from each of the following wildlife species: herring gulls (Larus argentatus), black‐headed gulls (Larus ridibundus), lesser black‐back gulls (Larus fuscus), hybrid deer species (Cervus elaphus x Cervus nippon) and twenty‐six from starlings (Sturnus vulgaris). A total of 115 E. coli isolates were isolated from 81 of 146 samples. Confirmed E. coli isolates were tested for their susceptibility to seven antimicrobial agents by disc diffusion. In total, 5.4% (8/146) of samples exhibited multidrug‐resistant phenotypes. The phylogenetic group and AMR‐encoding genes of all multidrug resistance isolates were determined by PCR. Tetracycline‐, ampicillin‐ and streptomycin‐resistant isolates were the most common resistant phenotypes. The following genes were identified in E. coli: blaTEM, strA, tet(A) and tet(B). Plasmids were identified in all samples that exhibited multidrug‐resistant phenotypes. This study indicates that wild birds and mammals may function as important host reservoirs and potential vectors for the spread of resistant bacteria and genetic determinants of AMR.  相似文献   

16.
Anti‐microbial resistance can threaten health by limiting treatment options and increasing the risk of hospitalization and severity of infection. Companion animals can shed anti‐microbial‐resistant bacteria that may result in the exposure of other dogs and humans to anti‐microbial‐resistant genes. The prevalence of anti‐microbial‐resistant generic Escherichia coli in the faeces of dogs that visited dog parks in south‐western Ontario was examined and risk factors for shedding anti‐microbial‐resistant generic E. coli identified. From May to August 2009, canine faecal samples were collected at ten dog parks in three cities in south‐western Ontario, Canada. Owners completed a questionnaire related to pet characteristics and management factors including recent treatment with antibiotics. Faecal samples were collected from 251 dogs, and 189 surveys were completed. Generic E. coli was isolated from 237 of the faecal samples, and up to three isolates per sample were tested for anti‐microbial susceptibility. Eighty‐nine percent of isolates were pan‐susceptible; 82.3% of dogs shed isolates that were pan‐susceptible. Multiclass resistance was detected in 7.2% of the isolates from 10.1% of the dogs. Based on multilevel multivariable logistic regression, a risk factor for the shedding of generic E. coli resistant to ampicillin was attending dog day care. Risk factors for the shedding of E. coli resistant to at least one anti‐microbial included attending dog day care and being a large mixed breed dog, whereas consumption of commercial dry and home cooked diets was protective factor. In a multilevel multivariable model for the shedding of multiclass‐resistant E. coli, exposure to compost and being a large mixed breed dog were risk factors, while consumption of a commercial dry diet was a sparing factor. Pet dogs are a potential reservoir of anti‐microbial‐resistant generic E. coli; some dog characteristics and management factors are associated with the prevalence of anti‐microbial‐resistant generic E. coli in dogs.  相似文献   

17.
ESBL/AmpC‐producing Escherichia coli is increasingly isolated from humans and animals worldwide. The occurrence of ESBL/AmpC‐producing E. coli was studied in food‐producing animals in Finland, a country with a low and controlled use of antimicrobials in meat production chain. A total of 648 cattle, 531 pig, 495 broiler and 35 turkey faecal samples were collected from four Finnish slaughterhouses to determine the presence of extended‐spectrum β‐lactamase (ESBL/AmpC)‐producing E. coli. In addition, 260 broiler and 15 turkey samples were screened for carbapenemase‐producing E. coli. Susceptibility to different class of cephalosporins and meropenem was determined with disc diffusion tests according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Determination of ESBL/AmpC production was performed with a combination disc diffusion test according to the recommendations of the European Food Safety Authority (EFSA). Plasmidic blaESBL/AmpC genes were characterized by polymerase chain reaction and sequencing. A collection of isolates producing AmpC enzyme but not carrying plasmidic blaAmpC was analysed by PCR and sequencing for possible chromosomal ampC promoter area mutations. Altogether ESBL/AmpC‐producing E. coli was recovered from five cattle (0.8%), eight pig (1.5%) and 40 broiler samples (8.1%). No ESBL/AmpC‐producing E. coli was found in turkey samples. Carbapenem resistance was not detected. Altogether ESBL/AmpC‐producing E. coli was found on 4 (2.0%), 3 (4.5%) and 14 (25%) cattle, pig and broiler farms, respectively. From cattle samples 3 (27%) blaCTX‐M‐1 and from broiler samples 13 (33%) blaCTX‐M‐1 and 22 (55%) blaCMY‐2 gene‐carrying isolates were detected. In pigs, no plasmidic blaESBL/AmpC gene‐carrying isolates were found. In all analysed isolates, the same mutations in the promoter region of chromosomal ampC were detected. The results showed low occurrence of ESBL/AmpC‐producing E. coli in Finnish food‐producing animals. In pigs, plasmidic blaESBL/AmpC‐carrying E. coli was not detected at all.  相似文献   

18.
We examined the antimicrobial susceptibility of 848 Escherichia coli isolates from 237 feces samples of wild sika deer (Cervus nippon) captured between 2016 and 2019 in 39 of the 47 prefectures of Japan. Five of the 237 wild sika deer (2.1%) carried E. coli with resistance to at least one antimicrobial, and all the resistant isolates showed resistance to tetracycline. The resistant isolates contained antimicrobial resistance genes that were similar to those in E. coli derived from humans and farm animals. Although wild sika deer are not currently likely to be a source for the transmission of antimicrobial resistance in Japan, they can potentially mediate antimicrobial resistance spread by coming into contact with humans, animals, and their surroundings.  相似文献   

19.
Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin‐resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin‐resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial‐resistant Escherichia coli (including multidrug‐resistant and extended spectrum β‐lactamase‐producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.  相似文献   

20.
Antibiotic resistance was investigated in Escherichia coli isolated from beef, veal, lamb and pork at retail level. A total of 100 samples from each meat species was examined. About 16% of the 400 samples were contaminated with resistant E.coli. Significantly more E.coli isolates from pork were drug-resistant than isolates from other meats(P<0.01). About 7% of the combined beef, veal, and lamb E.coli isolates were resistant to two or more antibiotics compared to about 40.0% of the pork isolates (P<0.01) Transfer of resistance was observed for 39.2% of multiple resistant isolates. The results presented form a base for future monitoring of the presence of antibiotic-resistant coliforms on meat suitable for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号