首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: Noninvasive assessment of left-ventricular (LV) function is clinically relevant, but is incompletely studied in horses.
Objectives: To document the feasibility, describe the techniques, and determine the reliability of 2D speckle tracking (2DST) for characterization of LV radial and circumferential wall motion in horses.
Animals: Three Standardbreds, 3 Thoroughbreds; age 8–14 years; body weight 517–606 kg.
Methods: Observational study. Repeated 2-dimensional echocardiographic examinations were performed in unsedated horses by 2 observers and subsequently analyzed by 2DST. Test reliability was determined for segmental and for averaged 2DST indices (including strain, strain rate, displacement, and rotation) by estimating measurement variability, within-day interobserver variability, between-day interobserver variability, and between-day intraobserver variability. Variability was expressed as coefficient of variation (percent) and the absolute value below which the difference between 2 measurements will lie with 95% probability.
Results: 2DST analyses were feasible in 16 of 18 echocardiographic studies. The automated tracking was accurate during systole but inaccurate during diastole. Reliability was higher for radial compared to circumferential measurements. For radial strain, radial systolic strain rate, and radial systolic displacement, the test-retest variabilities ranged between 2.4 and 33.1% for segmental and between 4.1 and 16.1% for averaged measurements.
Conclusions and Clinical Importance: Systolic radial motion of the LV at the chordal level could be reliably characterized in horses by 2DST. Circumferential measurements were less reliable. Diastolic measurements were invalid because of inaccurate tracking. The clinical value of LV wall motion analysis by 2DST in horses requires further investigation.  相似文献   

2.
Cardiac effects of the β2-adrenergic agent clenbuterol have been the focus of many studies, but effects on myocardial velocities and myocardial deformation parameters have not yet been evaluated in horses affected with recurrent airway obstruction (RAO) using tissue Doppler imaging (TDI) and two-dimensional speckle tracking (2DST). In our study, 7 horses affected by RAO were treated over 14 days with clenbuterol, 0.8 μg/kg every 12 hours. Standard echocardiographic, TDI (pulsed wave and color TDI), and 2DST examinations were performed before and after the treatment period. Myocardial function was recorded in the right parasternal short-axis view. Percent of fractional shortening and two-dimensional echocardiography (2DE) measurements did not show any significant changes after 2 weeks of treatment. Early diastolic velocity, E, increased significantly after clenbuterol in the left ventricular free wall (LVFW; P = .001). The E/late diastolic velocity (A) quotient (P = .003) and the isovolumetric contractility (P = .035) also increased significantly after treatment. Time parameters, particularly the time interval between the Q-wave in the echocardiograph and atrial release, the time of diastole and Tei index (parameter of global ventricular function), decreased significantly after clenbuterol administration in the LVFW (P = .014/P = .028/P = .015, respectively). The 2DE speckle tracking revealed a significant increase of the early diastolic systolic strain rate (P = .01) in the LVFW after therapy. In conclusion, 2 weeks of treatment with clenbuterol at a dosage of 0.8 μg/kg every 12 hours led to improved cardiac function in severely RAO-affected horses. This could be a sign of myocardial restoration (re-remodeling) after therapy.  相似文献   

3.
ObjectiveTo evaluate the effects of intravenous (IV) or intramuscular (IM) hyoscine premedication on physiologic variables following IV administration of medetomidine in horses.Study designRandomized, crossover experimental study.AnimalsEight healthy crossbred horses weighing 330 ± 39 kg and aged 7 ± 4 years.MethodsBaseline measurements of heart rate (HR), cardiac index (CI), respiratory rate, systemic vascular resistance (SVR), percentage of patients with second degree atrioventricular (2oAV) block, mean arterial pressure (MAP), pH, and arterial partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) were obtained 5 minutes before administration of IV hyoscine (0.14 mg kg?1; group HIV), IM hyoscine (0.3 mg kg?1; group HIM), or an equal volume of physiologic saline IV (group C). Five minutes later, medetomidine (7.5 μg kg?1) was administered IV and measurements were recorded at various time points for 130 minutes.ResultsMedetomidine induced bradycardia, 2oAV blocks and increased SVR immediately after administration, without significant changes in CI or MAP in C. Hyoscine administration induced tachycardia and hypertension, and decreased the percentage of 2oAV blocks induced by medetomidine. Peak HR and MAP were higher in HIV than HIM at 88 ± 18 beats minute?1 and 241 ± 37 mmHg versus 65 ± 16 beats minute?1 and 192 ± 38 mmHg, respectively. CI was increased significantly in HIV (p ≤ 0.05). Respiratory rate decreased significantly in all groups during the recording period. pH, PaCO2 and PaO2 were not significantly changed by administration of medetomidine with or without hyoscine.Conclusion and clinical relevanceHyoscine administered IV or IM before medetomidine in horses resulted in tachycardia and hypertension under the conditions of this study. The significance of these changes, and responses to other dose rates, requires further investigation.  相似文献   

4.
Reasons for performing study: The use of two‐dimensional speckle tracking (2DST) for quantification of left ventricular (LV) function has recently been described in horses using long‐axis images and short‐axis images at chordal but not at papillary muscle level. Objectives: To compare the feasibility and reliability of 2DST for quantification of circumferential and radial LV function in short‐axis images at papillary muscle and chordal level. Methods: Repeated echocardiographic examinations were performed on 10 healthy trotter horses by 2 observers from a right parasternal short‐axis view at papillary muscle and chordal level. Segmental and averaged peak values and timing of circumferential and radial strain and strain rate, radial displacement and rotation were measured in 6 LV wall segments in each imaging plane. Global peak values were calculated for circumferential strain and strain rate. The inter‐ and intraobserver within‐ and between‐day variability was assessed by calculating coefficients of variation for repeated measurements. Results: 2DST analysis was feasible in each cardiac cycle, although tracking was often inadequate during early diastole. Measurements of averaged systolic circumferential and radial strain and strain rate and radial displacement as well as global circumferential strain and strain rate could be determined with low variability. Early and late diastolic strain rate and systolic rotation showed a moderate variability. Radial segmental measurements were more reliable than circumferential measurements. The interventricular septum showed a higher circumferential and lower radial strain compared with the LV free wall. Peak timing was earlier at papillary muscle compared with chordal level. Conclusions: 2DST measurements of global and regional circumferential and radial LV wall motion are feasible both at papillary muscle and chordal level. Potential relevance: Several measurements had good reliability and should be used for evaluation of the technique in a clinical setting.  相似文献   

5.
BACKGROUND: Atrial contractile dysfunction occurs in some species after conversion of atrial fibrillation (AF) to normal sinus rhythm (NSR) but has not been reported in horses with naturally occurring AF. HYPOTHESIS: Transthoracic echocardiography allows detection of left atrial (LA) mechanical dysfunction in horses after conversion of AF to NSR. ANIMALS: Five Standardbreds with AF and 6 healthy Standardbreds of similar age, weight, and athletic condition were included in this study. METHODS: Four horses were treated pharmacologically (quinidine), and 1 horse was treated by means of transvenous electrical cardioversion. Echocardiographic examinations were performed in normal horses (once) and in AF horses (24 hours and 72 hours after conversion to NSR) by means of 2-dimensional echocardiography (2DE), transmitral flow Doppler, and tissue Doppler imaging (TDI) techniques. Echocardiographic indices of LA mechanical function were compared between normal horses and AF horses. RESULTS: Two-dimensional echocardiography and TDI indices of LA mechanical function revealed significant decreases in LA contractile function and LA reservoir function 24 hours after cardioversion. This decrease was no longer statistically significant 72 hours after cardioversion, but changes in echocardiographic variables between 24 and 72 hours varied among horses. CONCLUSIONS AND CLINICAL IMPORTANCE: LA contractile dysfunction can be evaluated in horses by use of 2DE, transmitral Doppler flow velocity profiles, and analyses of LA wall motion by TDI. The results of this study are consistent with AF-induced atrial remodeling, although residual treatment effects or influence of underlying primary myopathy cannot be excluded.  相似文献   

6.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

7.
Reasons for performing study: Acute monensin intoxication in equids is well described; however, the long‐term effects of sublethal intoxication and ability to return to previous use are less well understood. Long‐term observations may allow improved estimation of prognosis in cases of sublethal intoxication. Objectives: To assess horses and ponies exposed to sublethal amounts of monensin for evidence of chronic sequelae and ability to return to prior/intended use. Methods: Twenty‐nine horses and 8 ponies were assessed utilising serum biochemistry, treadmill exercise stress testing, electrocardiography, and pre‐ and post exercise echocardiography ≥6 weeks after ingestion of monensin‐contaminated feed. Animals with evidence of monensin‐induced cardiomyopathy were re‐examined after a period of rest of ≥11 months. Follow‐up information was obtained by owner telephone interview ≥52 months after exposure. Results: During resting echocardiography, 11 animals had reduced/low‐normal left ventricular fractional shortening (FS); an increase in FS in 8 of these animals was measured ≥11 months later. Six animals had reduced or low‐normal FS during post exercise echocardiography. Two horses had ventricular premature depolarisations during exercise. Follow‐up information was available for 35 animals: 21 returned to athletic/reproductive use, 13 were retired immediately and one died. Mean FS increased significantly (P<0.001) between initial and second examination in 15 animals that underwent resting echocardiography on 2 occasions. Conclusions: Some equids exposed to sublethal doses of monensin may not develop permanent myocardial disease and a return to athletic/reproductive use is possible. Potential relevance: Exercise stress testing, echocardiography and electrocardiography may be useful for detection and monitoring of cardiac dysfunction in equids exposed to monensin and determining whether a return to athletic/reproductive use is possible.  相似文献   

8.
Background: The quantification of equine left ventricular (LV) function is generally limited to short‐axis M‐mode measurements. However, LV deformation is 3‐dimensional (3D) and consists of longitudinal shortening, circumferential shortening, and radial thickening. In human medicine, longitudinal motion is the best marker of subtle myocardial dysfunction. Objectives: To evaluate the feasibility and reliability of 2‐dimensional speckle tracking (2DST) for quantifying equine LV longitudinal function. Animals: Ten healthy untrained trotter horses; 9.6 ± 4.4 years; 509 ± 58 kg. Methods: Prospective study. Repeated echocardiographic examinations were performed by 2 observers from a modified 4‐chamber view. Global, segmental, and averaged peak values and timing of longitudinal strain (SL), strain rate (SrL), velocity (VL), and displacement (DL) were measured in 4 LV wall segments. The inter‐ and intraobserver within‐ and between‐day variability was assessed by calculating the coefficients of variation for repeated measurements. Results: 2DST analysis was feasible in each exam. The variability of peak systolic values and peak timing was low to moderate, whereas peak diastolic values showed a higher variability. Significant segmental differences were demonstrated. DL and VL presented a prominent base‐to‐midwall gradient. SL and SrL values were similar in all segments except the basal septal segment, which showed a significantly lower peak SL occurring about 60 ms later compared with the other segments. Conclusions and Clinical Importance: 2DST is a reliable technique for measuring systolic LV longitudinal motion in healthy horses. This study provides preliminary reference values, which can be used when evaluating the technique in a clinical setting.  相似文献   

9.
Treatment of bradycardia in horses has been historically ignored because of the motility depressant effects of nonselective antimuscarinics. This study evaluated the cardiopulmonary effects of a cardioselective (M2) muscarinic antagonist, methoctramine (MET), in anesthetized horses. In a previous in vitro study, we determined that supraphysiological doses of MET were necessary to inhibit acetylcholine‐induced longitudinal jejunal smooth muscle contractions in this species. Six adult horses were allocated to two treatments in a randomized complete block design. Anesthesia was induced with xylazine/ketamine, and maintained with halothane (1% end‐tidal) and a constant infusion of xylazine (1 mg kg?1 hour?1) under mechanical ventilation. Invasive hemodynamic variables were monitored at baseline (approximately 45 minutes after induction) and for 120 minutes after MET or saline (control) had been injected. MET was titrated at 10‐minute intervals (10 µg kg?1 IV) until the heart rate (HR) increased at least 30% above the baseline, or a maximum cumulative dose of 30 µg kg?1 had been injected. A person blinded to the treatment evaluated recovery scores and monitored intestinal auscultation until 24 hours after the end of anesthesia using previously published methods. Cardiovascular parameters were analyzed by anova followed by a Dunnet's test, and nonparametrical data were analyzed by a Mann–Whitney U‐test (p < 0.05). Values were mean ± SEM unless otherwise stated. MET significantly increased HR from baseline to 120 minutes post‐injection (from 29 ± 1 to 36 ± 2 beats minute?1 at 20 minutes). Thermodilution cardiac output (CO) and mean arterial pressure (MAP) were increased from baseline to 75 minutes post‐MET injection (from 13.9 ± 0.8 to 19.4 ± 2.0 L minute?1 for CO at 20 minutes, and from 82 ± 3 to 103 ± 5 mm Hg for MAP at 20 minutes). Recovery characteristics and bowel auscultation scores did not differ among the groups. The return to at least 75% of the maximum auscultation score occurred at 10 (8–18) hours [median (range)] for controls and at 9 (8–12) hours for MET. It was concluded that MET increased HR and improved hemodynamic function during halothane/xylazine anesthesia with no apparent effect on return to full‐bowel motility, as assessed by auscultation. Accordingly, M2 muscarinic antagonists might be represented as a safer alternative to treat intraoperative bradycardia in horse.  相似文献   

10.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

11.
ObjectiveTo investigate the cardiovascular effects of epidural romifidine in isoflurane-anaesthetized dogs.Study designProspective, randomized, blinded experiment.AnimalsA total of six healthy adult female Beagles aged 1.25 ± 0.08 years and weighing 12.46 ± 1.48 (10.25–14.50) kg.MethodsAnaesthesia was induced with propofol (6–9 mg kg?1) and maintained with 1.8–1.9% end-tidal isoflurane in oxygen. End-tidal CO2 was kept between 35 and 45 mmHg (4.7–6.0 kPa) using intermittent positive pressure ventilation. Heart rate (HR), arterial blood pressure and cardiac output (CO) were monitored. Cardiac output was determined using a LiDCO monitor and the derived parameters were calculated. After baseline measurements, either 10 μg kg?1 romifidine or saline (total volume 1 mL 4.5 kg?1) was injected into the lumbosacral epidural space. Data were recorded for 1 hour after epidural injection. A minimum of 1 week elapsed between treatments.ResultsAfter epidural injection, the overall means (± standard deviation, SD) of HR (95 ± 20 bpm), mean arterial blood pressure (MAP) (81 ± 19 mmHg), CO (1.63 ± 0.66 L minute?1), cardiac index (CI) (2.97 ± 1.1 L minute?1 m?2) and stroke volume index (SI) (1.38 ± 0.21 mL beat?1 kg?1) were significantly lower in the romifidine treatment compared with the overall means in the saline treatment [HR (129 ± 24 bpm), MAP (89 ± 17 mmHg), CO (3.35 ± 0.86 L minute?1), CI (6.17 ± 1.4 L minute?1 m?2) and SI (2.21 ± 0.21 mL beat?1 kg?1)]. The overall mean of systemic vascular resistance index (SVRI) (7202 ± 2656 dynes seconds cm?5 m?2) after epidural romifidine injection was significantly higher than the overall mean of SVRI (3315 ± 1167 dynes seconds cm?5 m?2) after epidural saline injection.ConclusionEpidural romifidine in isoflurane-anaesthetized dogs caused significant cardiovascular effects similar to those reportedly produced by systemic romifidine administration.Clinical relevanceSimilar cardiovascular monitoring is required after epidural and systemically administered romifidine. Further studies are required to evaluate the analgesic effects of epidural romifidine.  相似文献   

12.
Most methods for determining cardiac output (CO) have limited application in clinical practice due to the invasive techniques required. This study compared the thermodilution technique (TDCO) with three noninvasive methods for determining CO in anesthetized dogs: transthoracic bioimpedance (BICO), partial CO2 rebreathing (NICO), and transesophageal echocardiography (TEECO). TDCO was compared to BICO, NICO, and TEECO in six adult sevoflurane anesthetized beagle dogs (9.1–13.0 kg). All dogs were administered midazolam [0.3 mg kg?1, intravenously (IV)] and butorphanol (0.1 mg kg?1 IV), followed by ketamine (5.0 mg kg–1 IV) and sevoflurane in nitrous oxide (1 L minute–1) and oxygen (1 L minute–1) and mechanically ventilated. Dogs were maintained at 2.2% end‐tidal sevoflurane (ETsev) concentration for instrumentation and baseline measurements. Low (5.0% ETsev), intermediate (3.3% ETsev), and high cardiac output values were achieved by varying the end‐tidal sevoflurane concentration and the administration of dobutamine (3–10 g kg–1 minute–1 and 2.2% ETsev). A minimum of thirty data sets was obtained for each comparison. The correlation coefficients when compared to TDCO were 0.684 for BICO (p < 0.0001), 0.883 for NICO (p < 0.0001), and 0.991 for TEECO (p < 0.0001). Cardiac output values ranged 50–444 mL kg–1 minute–1 for TDCO, 100–253 mL kg–1 minute–1 for BICO, 64–214 mL kg–1 minute–1 for NICO, and 52–401 mL kg–1 minute–1 for TEECO. The differences when compared to TDCO ranged – 62–235 mL kg?1minute?1 for BICO, 18–220 mL kg?1 minute?1 for NICO, and – 35–32 mL kg–1 minute–1 for TEECO. Differences were maximum at the highest CO in BICO and NICO. In conclusion, this study demonstrated that BICO and NICO underestimate CO in sevoflurane anesthetized dogs. TEECO is a viable noninvasive method for determining CO in sevoflurane anesthetized dogs.  相似文献   

13.
Same‐day mass sterilization of feral cats requires rapid onset, short‐duration anesthesia. The purpose of this study was to compare our current anesthetic protocol, Telazol–ketamine–xylazine (TKX) with medetomidine–ketamine–buprenorphine (MKB). Feral female cats received either IM TKX (n = 68; 0.25 mL cat?1; tiletamine 12.5 mg, zolazepam 12.5 mg, K 20 mg, and X 5 mg per 0.25 mL) or MKB (n = 17; M 40 µg kg?1, K 15 mg kg?1, and B 10 µg kg?1). Intervals measured included time from injection to recumbency, time to surgery, duration of surgery, and time from reversal of anesthesia (TKX: yohimbine 0.50 mg cat?1 IV; MKB: atipamezole 0.50 mg cat?1 IM) to sternal recumbency. Following instrumentation (Vet/Ox 4403 and Vet/BP Plus 6500), physiological measurements were recorded at 5‐minute intervals, and included rectal temperature, heart rate (HR), respiratory rate (RR), SpO2 (lingual or rectal probes), and indirect mean arterial blood pressure (MAP) (oscillometric method). Nonparametric means were compared using Mann–Whitney U‐tests. Parametric means were compared using a two‐factorial anova with Bonferroni's t‐tests. The alpha‐priori significance level was p < 0.05. Values were mean ± SD. Body weight (TKX: 2.9 ± 0.5 kg, MKB: 2.7 ± 0.7 kg), time to recumbency (TKX: 4 ± 1 minutes, MKB: 3 ± 1 minutes), time to surgery (TKX: 28 ± 7 minutes, MKB: 28 ± 5 minutes), and duration of surgery (TKX: 11 ± 7 minutes, MKB: 8 ± 5 minutes) did not differ between groups. In contrast, MKB cats required less time from reversal to sternal recumbency (TKX: 68 ± 41 minutes, MKB: 7 ± 2 minutes) and were recumbent for shorter duration (TKX: 114 ± 39 minutes, MKB: 53 ± 6 minutes). Temperature decreased during the study in both groups, but overall temperature was higher in MKB cats (38.0 ± 0.95 °C) than in TKX cats (37.5 ± 0.95 °C). RR, HR, and SpO2 did not change during the study in either group. However, overall HR and RR were higher in TKX cats (RR: 18 ± 8 breaths minute?1, HR: 153 ± 30 beats minute?1) compared to MKB cats (RR: 15 ± 7 breaths minute?1, HR: 128 ± 19 beats minute?1). In contrast, overall SpO2 was lower in the TKX group (90 ± 6%) compared to the MKB group (94 ± 4%). MAP was also lower in the TKX group (112 ± 29 mm Hg) compared to that in the MKB group (122 ± 20 mm Hg). However, MAP increased in the TKX group during surgery compared to pre‐surgical values, but did not change in the MKB group. The results of this study suggested that MKB might be more suitable as an anesthetic for the purpose of mass sterilization of feral female cats.  相似文献   

14.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

15.
The cardiac effects of high dosages of the ß2-adrenergic agent clenbuterol have been the focus of several histological, biochemical and echocardiographic studies in the past. Possible effects of a therapeutic dosage on myocardial contractility and velocities have not been evaluated using tissue Doppler imaging (TDI) and two-dimensional speckle tracking (2DST) in equine medicine. Twenty-five healthy horses were treated over 14 days with clenbuterol in a normal dosage (0.8 μg/kg every 12 hours). Before and after the treatment, an echocardiographic examination was performed using B-mode, M-mode, color flow Doppler, and tissue Doppler imaging (TDI). In all horses, the radial and circumferential myocardial functions were recorded in the right parasternal short-axis view (SAX). Pulsed-wave (PW) and color TDI were used for evaluation of peak and mean myocardial velocities; myocardial deformation was documented in 2DST. An improvement of diastolic function after clenbuterol treatment was demonstrated by a significant increase of the early diastolic radial wall motion velocity (Em) in all myocardial sections except the right ventricular free wall (RVFW) in TDI, as well as an increase of the E/A quotient in the left ventricular free wall (LVFW) and the interventricular septum (IVS). Shortened time intervals, in particular in the LVFW and a tendency of increase of all deformation parameters showed improved relaxation characteristics of the cardiac muscle after treatment. The results can be interpreted as beginning physiologic cardiac hypertrophy due to clenbuterol treatment. No signs of increased rigidity or reduced compliance of the heart muscle could be found at the applied dosage. This study demonstrates the sensitivity of TDI and 2DST in equine cardiology to detect myocardial remodeling before the appearance of obvious findings in conventional echocardiographic techniques. This technique can be used to detect pharmacologic effects on myocardial function.  相似文献   

16.
Acepromazine, a phenothiazine tranquilizer, causes hypotension in standing horses ( Parry et al. 1982 ). However, a retrospective study ( Taylor & Young 1993 ) showed that acepromazine pre‐anesthetic medication did not affect arterial blood pressure (MAP) in anaesthetized horses. This study examined the effects of acepromazine on MAP during romifidine–ketamine–halothane anaesthesia in horses anaesthetized for various surgical procedures. Forty‐four horses were allocated by block randomization to groups A and B. Group A received acepromazine 0.05 mg kg?1 IM 30 minutes before induction of anaesthesia, group B did not. All horses received romifidine 0.1 mg kg?1 IV 5 minutes before anaesthesia was induced with diazepam 0.05 mg kg?1 and 2.2 mg kg?1 ketamine IV. The horses' trachea were intubated and horses breathed 50% oxygen and 50% nitrous oxide plus halothane (concentration adjusted as required clinically) from a circle breathing system. Nitrous oxide was discontinued after 10 minutes and analgesics, flunixin 1.1 mg kg?1 and either morphine 0.1 mg kg?1 or butorphanol 0.05 mg kg?1 (matched for horses undergoing the same procedure) administered IV. The facial or dorsal metatarsal artery was catheterized for direct measurement of MAP (every 10 min) and withdrawal of blood for gas analysis (every 30 min). The electrocardiogram (ECG) was monitored continuously with a 10 seconds printout obtained every 10 minutes. Intermittent positive pressure ventilation (IPPV) was instigated if PaCO2 exceeded 9.3 kPa (70 mm Hg). Dobutamine was infused (1.0–5.0 kg?1minute?1) if MAP < 58 mm Hg and was continued until MAP > 70 mm Hg. Mean age, weight and duration of anaesthesia were compared between the groups using a t‐test for independent samples. Gender distribution and numbers of horses requiring IPPV or dobutamine were compared between groups using a chi‐squared test (with Yates correction). To compare MAP over time, the area under the curve (MAPAUC) was calculated and compared between groups using a t‐test. Horses receiving dobutamine were excluded from MAPAUC and MAP comparisons. The ECG printouts were examined for arrhythmias. There were no significant differences between groups (p > 0.05). Group A contained three stallions, 10 geldings and nine mares, aged 6.3 years (range 0.75–18). Group B comprised eight stallions, 11 geldings and three mares aged 7.3(1–16) years. Duration of anaesthesia was group A 97 (50–140) minutes, group B 99 (50–160) minutes. Eight horses in group A and three in group B required IPPV. Nine horses in group A and four in group B received dobutamine. Mean arterial pressure ranged from 60 to 128 mm Hg in group A and 58–96 mm Hg in group B. Mean MAPAUC was 5941 mm Hg minute?1 in group A, in B 6000 mm Hg minute?1. Atrial pre‐mature complexes were recorded from one horse in group B. No other arrhythmias were detected. Although MAP was lower in the acepromazine group, this appeared unlikely to cause a clinical problem. The incidence of arrhythmias was too low to determine the influence of acepromazine in this study.  相似文献   

17.
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 ± 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg?1) followed by induction of anesthesia with IV propofol (5 mg kg?1). Anesthesia was maintained with IV propofol (0.2 mg kg?1 minute?1) and remifentanil, infused as follows: R1, 0.125 μg kg?1 minute?1; R2, 0.25 μg kg?1 minute?1; and R3, 0.5 μg kg?1 minute?1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end tidal CO2 (Pe′CO2), arterial hemoglobin O2 saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72–98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25–0.5 μg kg?1 minute?1 remifentanil combined with 0.2 mg kg?1 minute?1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.  相似文献   

18.
ObjectiveTo investigate plasma drug concentrations and the effect of MK-467 (L-659′066) on sedation, heart rate and gut motility in horses sedated with intravenous (IV) detomidine.Study designExperimental randomized blinded crossover study.AnimalsSix healthy horses.MethodsDetomidine (10 μg kg?1 IV) was administered alone (DET) and in combination with MK-467 (250 μg kg?1 IV; DET + MK). The level of sedation and intestinal sounds were scored. Heart rate (HR) and central venous pressure (CVP) were measured. Blood was collected to determine plasma drug concentrations. Repeated measures anova was used for HR, CVP and intestinal sounds, and the Student's t-test for pairwise comparisons between treatments for the area under the time-sedation curve (AUCsed) and pharmacokinetic parameters. Significance was set at p < 0.05.ResultsA significant reduction in HR was detected after DET, and HR was significantly higher after DET + MK than DET alone. No heart blocks were detected in any DET + MK treated horses. DET + MK attenuated the early increase in CVP detected after DET, but later the CVP decreased with both treatments. Detomidine-induced intestinal hypomotility was prevented by MK-467. AUCsed was significantly higher with DET than DET + MK, but maximal sedations scores did not differ significantly between treatments. MK-467 lowered the AUC of the plasma concentration of detomidine, and increased its volume of distribution and clearance.Conclusions and clinical relevanceMK-467 prevented detomidine induced bradycardia and intestinal hypomotility. MK-467 did not affect the clinical quality of detomidine-induced sedation, but the duration of the effect was reduced, which may have been caused by the effects of MK-467 on the plasma concentration of detomidine. MK-467 may be useful clinically in the prevention of certain peripheral side effects of detomidine in horses.  相似文献   

19.
ObjectivesTo evaluate the cardiorespiratory and biochemical effects of ketamine-propofol (KP) or guaifenesin-ketamine-xylazine (GKX) anesthesia in donkeys.Study designProspective crossover trial.AnimalsEight healthy, standard donkeys, aged 10 ± 5 years and weighing 153 ± 23 kg.MethodsDonkeys were premedicated with 1.0 mg kg?1 of xylazine (IV) in both treatments. Eight donkeys were administered ketamine (1.5 mg kg?1) and propofol (0.5 mg kg?1) for induction, and anesthesia was maintained by constant rate infusion (CRI) of ketamine (0.05 mg kg?1 minute?1) and propofol (0.15 mg kg?1 minute?1) in the KP treatment. After 10 days, diazepam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) were administered for induction, and anesthesia was maintained by a CRI (2.0 mL kg?1 hour?1) of ketamine (2.0 mg mL?1), xylazine (0.5 mg mL?1) and guaifenesin (50 mg mL?1) solution. Quality of anesthesia was assessed along with cardiorespiratory and biochemical measurements.ResultsAnesthetic induction took longer in GKX than in KP. The induction was considered good in 7/8 with KP and in 6/8 in GKX. Anesthetic recovery was classified as good in 7/8 animals in both treatments. Xylazine administration decreased heart rate (HR) in both treatments, but in KP the HR increased and was higher than GKX throughout the anesthetic period. Respiratory rate was higher in GKX than in KP. PaO2 decreased significantly in both groups during the anesthetic period. Glucose concentrations [GLU] increased and rectal temperature and PCV decreased in both treatments. Arterial lactate [LAC] increased at recovery compared with all time points in KP. [GLU] and calcium were higher in GKX than in KP at recovery.Conclusion and clinical relevanceThese protocols induced significant hypoxemia but no other cardiorespiratory or metabolic changes. These protocols could be used to maintain anesthesia in donkeys, however, they were not tested in animals undergoing surgery.  相似文献   

20.
It has been described in humans that chronic obstructive bronchitis leads to pathologic changes, especially in the right ventricular myocardium due to hypoxia, which can be assessed by tissue Doppler imaging (TDI). In our study, different TDI techniques, that is, pulsed-wave TDI and color TDI, were evaluated for applicability in different scan planes (apical long-axis view and short-axis view) for the analysis of right ventricular myocardial function in six healthy horses (control) and six horses affected with recurrent airway obstruction (RAO) (RAO group). Tissue Doppler imaging was applicable to all scan planes described. Myocardial movement directions in general and the absolute values of TDI parameters were assessable. Significantly reduced early diastolic filling velocities (E), elevated late diastolic filling velocities (A), thereby decreased E/A quotient, prolonged electromechanical coupling periods between electrocardiograph Q-wave and maximal velocities, and compensatory elevated systolic strain as well as diminished displacement could be observed in horses with RAO compared with the control group. To conclude, equine right ventricular myocardial function is assessable by TDI. Significant changes of right ventricular myocardial function could be demonstrated by TDI in horses with RAO compared with matched healthy controls. The hypothesis that RAO potentially leads to right ventricular dysfunction detectable by TDI before conventional echocardiography changes are evident is supported by this explorative study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号