首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing interest in poplars and willows due to their biomass production and phytoremediation potential. They host two major types of mycorrhizal fungi that can substantially modulate the physiology of their hosts. In this study, the effects of endo- and ectomycorrhizal fungi on growth, physiological parameters, and heavy metals accumulation were studied in a pot experiment using Salix alba L. and Populus nigra L. The mycorrhizal fungi were inoculated separately and in combination to a soil substrate polluted by a mixture of heavy metals (mainly Cd, Pb, and Zn). Tree species differed in their mycorrhizal affinities, with poplar being colonized predominantly by Glomus intraradices and willow by Hebeloma mesophaeum. H. mesophaeum increased willow height and biomass, while G. intraradices decreased poplar height. The photosynthetic rate remained unchanged, and only minor changes were observed in the relative composition of photosynthetic pigments. Poplar photosynthetic rates and levels of photosynthetic pigments declined, while the epicuticular waxes in leaves increased toward the end of the experiment, irrespective of the inoculation. H. mesophaeum strongly reduced the accumulation of Cd and Fe in willow and poplar shoots, respectively. Our results support the use of selected mycorrhizal strains to tune phytoremediation outcomes in their plant hosts.  相似文献   

2.
Metal accumulation was investigated in a range of woody species that were planted on Cd-, Zn- and Pb- polluted sites in North of France. The study is unique in that we directly compare a large number of woody species (25). The highest accumulation of Zn and Cd was found in the Salicaceae family members with up to 950 mg Zn kg?1 dry weight (DW) and 44 mg Cd kg?1 DW in leaves of Populus tremula × Populus tremuloides. Zn content was positively correlated with Cd content, both in leaves and stems. Pb concentration was generally low and was species-independent. Oak and birch species accumulated more Mn as compared to other woody species. A seasonal variation in metal accumulation could be found. Although soil compositions and metal bioavailabilities differed amongst the experimental sites chosen in this study, variation of metal concentrations within a given species was small. High bioconcentration factors for poplar and willow suggested the high potential of these species over other woody species for metal accumulation. Taken together, these data suggest that poplar and willow species are good candidates for phytoremediation programmes.  相似文献   

3.
Stem cuttings with homogenous diameter of Populus x euramericana (clone I-214) and Salix fragilis L. were grown in growth chamber in water culture method. After 45?days, the plants were treated with 10?7 and 10?5?M cadmium (Cd). As these species have different phytoextraction potentials, there is a need to analyze the level of Cd uptake, its translocation into aboveground organs, and changes in leaf structure. We analyzed micromorphological leaf characteristics: a fresh mass of the root, stem, and leaf, as well as a Cd concentration within them. Besides, we compared 23 micromorphological leaf blade quantitative traits of poplar and willow and monitored the structural changes induced by the intoxication of stem cuttings. Percent of Cd accumulation and translocation in plant organs varied between species. It depended on the level of Cd applied. When compared to the poplar clone, S. fragilis had a smaller leaf area and epidermal cells, thicker palisade tissue, smaller lumen of main vein vessels, and a higher percentage of main vein xylem. S. fragilis had more distinctive xeromorphic characteristics in the lamina structure. Increased concentrations of Cd led to significant structural changes, mainly in the main vein. When searching for valid parameters in assessing plant to be utilized in phytoremediation, it is necessary to take into consideration the interrelation of a large number of micromorphological parameters together with physiological and biochemical characteristics.  相似文献   

4.
Among energy crops, short‐rotation coppices (SRC) are recommended to provide renewable energy. Compared to annual crops, willows and poplars are regarded as plants with low requirements for nutrients, herbicides, pesticides, and soil maintenance. However, only little is known about N‐fertilizer effects on SRC and the few studies are even inconsistent. Therefore, we studied the effects of N on yields of willows and poplars in a field experiment. The effects of N fertilization on nitrate leaching and nitrous oxide emissions from the loamy‐sand soil were also measured. Cuttings of willows (Salix viminalis clone Inger) and poplars (Populus maximovizcii × P. nigra clone max 4) were planted on farmland in 2008. The experiment was arranged in a random block design with three levels of N fertilizer (0, 50, and 75 kg N ha–1 y–1). After 2 y, the trees were harvested for the first time. Fertilization did not affect the yields of willows or poplars. However, the application of 75 kg N ha–1 y–1 caused an average increase of N leaching in the willow and poplar plots of 25 kg N ha–1 y–1 and 40 kg N ha–1 y–1, respectively. Emissions of N2O were increased by a maximum of only 0.2 kg N ha–1 y–1. Further, the N fertilizer stimulated the growth of the weed biomass in case of the willow plots by 46% and of the weed N content by 52% (r = 0.53). In conclusion, in the first 2 y, SRC could be produced in a more effective and environmentally friendly manner without mineral fertilizer.  相似文献   

5.
Emergent wetland plant species may exhibit different capacity for phytoremediation when used in constructed wetlands. To evaluate cadmium (Cd) remediation capacity of four emergent wetland species [Baumea juncea (R.Br.) Palla, Baumea articulata (R.Br.) S.T. Blake, Schoenoplectus validus (M.Vahl) A. & D.Löve, and Juncus subsecundus N.A. Wakef.], a glasshouse experiment was conducted in hydroponics to investigate the effects of Cd (0, 5, 10, and 20 mg L?1) on plant growth and Cd uptake and translocation as well as uptake of other nutrients after 14 days. The relative growth rates of the three species changed little in various Cd treatments, but was severely inhibited for B. juncea at 20 mg Cd per liter treatment. Hence, the Cd tolerance index (root length in Cd treatment vs. control) was significantly lower in B. juncea compared to other species. Among the species, the highest concentration of Cd was in the roots of J. subsecundus, followed by S. validus, B. articulata, and B. juncea, while the lowest concentration of Cd was in the S. validus shoots. Of all the species, J. subsecundus had the highest bioconcentration factor (BCF) in shoots, whereas S. validus and B. juncea had the lowest BCF in rhizomes and roots, respectively. The translocation factor was significantly lower in S. validus compared to the other species. J. subsecundus had a higher Cd accumulation rate than the other species regardless of the Cd supply. The lowest allocation of Cd in shoots was recorded for S. validus and in roots for B. juncea. The concentrations of other elements (P, S, Ca, Fe, Cu, and Zn) in shoots decreased with Cd additions, but the interactions between Cd and other elements in roots varied with the different species. These results indicate that the four wetland species have good tolerance to Cd stress (except B. juncea at high Cd exposure), varying in Cd accumulation and translocation in tissues. These properties need to be taken into account when selecting species for wetlands constructed for phytoremediation.  相似文献   

6.
On numerous occasions, rhizosphere microbial activities have been identified as a key factor in metal phytoavailability to various plant species and in phytoremediation of metal-contaminated sites. For soil bioremediation efforts in heavy metal contaminated areas, microbes adapted to higher concentrations of heavy metals are required. This study was a field survey undertaken to examine rhizosphere microbial communities and biogeochemistry of soils associated with Zn accumulation by indigenous willows (Salix purpurea L.) in the naturally metalliferous peat soils located near Elba, NY. Soil and willow leaf samples were collected from seven points, at intervals 18 m apart along a willow hedgerow, on four different dates during the growing season. Soil bacterial community composition was characterized by terminal restriction fragment length polymorphism (T-RFLP) analysis and a 16S clone library was created from the rhizosphere of willows and soils containing the highest concentrations of Zn. Bacterial community composition was correlated with soil sulfate, but not with soil pH. The clone library revealed comparable phylogenetic associations to those found in other heavy metal-contaminated soils, and was dominated by affiliations within the phyla Acidobacteria (32%), and Proteobacteria (37%), and the remaining clones were associated with a wide array of phyla including Actinobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Bacteriodetes, and Cyanobacteria. Diverse microbial populations were present in both rhizosphere and bulk soils of these naturally metalliferous peat soils with community composition highly correlated to the soil sulfate cycle throughout the growing season indicative of a sulfur-oxidizing rhizosphere microbial community. Results confirm the importance of soil characterization for informing bioremediation efforts in heavy metal contaminated areas and the reciprocity that microbial communities uniquely adapted to specific conditions and heavy metals may have on an ecosystem.  相似文献   

7.
Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.  相似文献   

8.
Willows (Salix spp.) were supposed to be suitable candidates for the phytoremediation of polluted floodplain soils, but it is unknown how willow growth alters concentrations and mobility of pollutants under the conditions of ongoing periodically flooding. Therefore, effects of willow cropping on total concentrations and mobility of As and heavy metals and soil microbial properties were determined after three and four growing seasons under willows in comparison to native grassland in a flood channel of a River Elbe floodplain (Central Germany). After 4 y of willow coppice, the heavy metal concentrations (mg kg–1) were increased not only in the grass control plots (final Cu 274, Pb 276, Zn 935) but also under the willows (final Cu 248, Pb 251, Zn 779) compared to the initial concentrations (initial Cu 170, Pb 156, Zn 579). This increase might likely be caused by the ongoing sedimentation by flood events. The smaller increase under willows compared to grass might be related to an initial net effect of phytoextraction. The concentrations of the mobile fractions of Cd, Cu, Ni, and Zn were significantly lower under willows than under grass. Higher β‐glucosidase activities under willows than under grass might indicate a starting net decomposition of organic matter. Therefore, the study of long‐term and large‐scale effects are recommend before an appropriate evaluation of willow short‐rotation coppice for phytoremediation of polluted floodplains will be established.  相似文献   

9.
Willows (Salix spp.) are an integral component in the restoration of wetland plant communities that have been impacted by the fluvial deposition of mine tailings. A greenhouse study was conducted to compare growth and metal uptake of Geyer (S. geyeriana) and mountain (S. monticola) willow grown in topsoil versus lime and biosolids amended mine tailings. Biomass, leader length, and tissue metal contents were measured after four months growth. Above and belowground biomass and leader length of Geyer willow were greater for plants grown in topsoil compared to amended mine tailings. However, soil type did not affect mountain willow growth. Analysis for five metals yielded complex results for the two willow species and soil types. As compared to mountain willow, Geyer had greater concentrations of Mn and Pb in aboveground tissues, and Cu in senesced leaves and bark-less leaders when grown in tailings; mountain willow leaves contained greater levels of Cd than Geyer when grown in tailings. Both willow species had foliar Cd levels which were above livestock toxicity tolerance values. Based on growth characteristics, mountain willow appeared better suited for restoration of mine tailings compared to Geyer willow. However, because of the high Cd uptake by both willow species, care should be taken in restoration efforts where wildlife and domestic livestock are likely to browse on the willows.  相似文献   

10.
Iron (Fe) deficiency is a serious agricultural problem, especially in calcareous soils, which are distributed worldwide. Poplar trees are an important biomass plant, and overcoming Fe deficiency in poplars will increase biomass productivity worldwide. The poplar Fe-deficiency response and the genes involved in poplar Fe homeostasis remain largely unknown. To identify these genes and processes, we cultivated poplar plants under Fe-deficient conditions, both in calcareous soil and hydroponically, and analyzed their growth rates, leaf Soil and Plant Analyzer Development (SPAD) values, and metal concentrations. The data clearly showed that poplars have notable growth defects in both calcareous soil and a Fe-deficient hydroponic culture. They exhibited serious chlorosis of young leaves after 3 weeks of Fe-deficient hydroponic culture. The Fe concentrations in old leaves with high SPAD values were markedly lower in Fe-deficient poplars, suggesting that poplars may have good translocation capability from old to new leaves. The Zn concentration in new leaves increased in Fe-deficient poplars. The pH of the hydroponic solution decreased in the Fe-deficient culture compared to the Fe-sufficient culture. This finding shows that poplars may be able to adjust the pH of a culture solution to better take up Fe. We also analyzed the expression of Fe homeostasis-related genes in the roots and leaves of Fe-sufficient and Fe-deficient poplars. Our results demonstrate that PtIRT1, PtNAS2, PtFRO2, PtFRO5, and PtFIT were induced in Fe-deficient roots. PtYSL2 and PtNAS4 were induced in Fe-deficient leaves. PtYSL3 was induced in both Fe-deficient leaves and roots. These genes may be involved in the Fe uptake and/or translocation mechanisms in poplars under Fe-deficient conditions. Our results will increase a better understanding of the Fe-deficiency response of poplars and hence improve the breeding of Fe-deficiency-tolerant poplars for improved biomass production, the greening of high pH soils, and combatting global warming.  相似文献   

11.
This study was carried out to test ex situ growth and soil nutrient removal efficiency of 1-year-old potted willow and poplar plants. Plants were grown under two different water regimes: low irrigation—around soil field capacity (W)—and high irrigation—five times higher than field capacity (W 5). Results showed that plant productivity and water use efficiency were greater when trees were grown in the appropriate level of soil water content rather than at excessive moisture levels. Nutrient leaching was also affected by the high irrigation treatment. However, the poplar and willow clones used in this experiment showed different nutrient allocation patterns in the plant–soil–water system. The poplar clone accumulated the highest quantities of N and P in the soil. Willow accumulated N and P mainly in the biomass due to better root development under both treatments. This indicates the better performance of the willow clone in removing N and P from contaminated aquaculture wastewaters during the first growing season.  相似文献   

12.
为探究杨树对土壤锶污染的修复能力,以白杨、俄罗斯杨和青杨为试材,在100 mg·kg~(-1)Sr~(2+),15mg·kg~(-1)柴油,15 mg·kg~(-1)柴油+100 mg·kg~(-1)Sr~(2+)条件下处理60 d,通过测定杨树的生长指标及各器官Sr~(2+)富集浓度,探讨比较不同种的杨树对土壤Sr~(2+)的富集特征和富集能力差异。结果表明,单一Sr~(2+)胁迫能够促进俄罗斯杨和青杨幼苗的生长,对白杨的生长表现出一定抑制效应;而柴油污染胁迫对杨树的生长均具有明显的抑制作用,其中白杨对柴油胁迫的耐受性优于俄罗斯杨和青杨。单独Sr~(2+)胁迫下3种杨树幼苗各器官Sr~(2+)富集为叶根茎,其中白杨的总富集浓度最高,达到2.369 mg·g~(-1)DW,青杨最低,为1.203 mg·g~(-1)DW。在柴油和Sr~(2+)的复合胁迫下,白杨、俄罗斯杨和青杨对Sr~(2+)的富集浓度明显减小,分别为1.344、1.145和0.604 mg·g~(-1)DW;但白杨和俄罗斯杨富集特征变化不大,青杨Sr~(2+)富集浓度最大的器官由叶变为根。此外,柴油的施加对3种杨树转运能力的影响具有显著差异,其中白杨的转运能力增强了15.76%,青杨显著降低了61.83%,说明杨树对土壤Sr~(2+)及其与柴油复合污染胁迫都有较好的耐受及Sr~(2+)富集能力,其中白杨更适合作为污染治理树种。本研究结果为锶及柴油污染土壤的植物修复提供了参考依据。  相似文献   

13.
Phytoremediation is a helpful technique to remediate copper-contaminated areas. The aim of this study was to evaluate sunflower phytoremediation capacity in two vineyard copper-contaminated soils (Inceptisol and Mollisol) and a copper mining waste. Nutrient uptake, copper phytoaccumulation, translocation factor (TF), and bioaccumulation factor (BCF) of sunflower were evaluated after 57 days of growth. Plants grown in both the Mollisol and Inceptisol soils showed high plant height. Fresh biomass was high in the Mollisol in the shoots and roots and also demonstrated the highest values on the tolerance index (TI). The BCF after growth in all three of the copper contaminated soils as Inceptisol, Mollisol, and copper mining waste showed reduction of this index value to 0.19, 0.24, and 0.03, respectively against native soil (Mollisol under natural conditions (4.71). Sunflowers have some important characteristics such as high phytomass production, copper phytoaccumulation, and potential use to biofuel. Thus, sunflower is a potential candidate to phytoremediation of vineyard copper-contaminated soils.  相似文献   

14.
The polluted site object of our study was located on an island nourished using different materials, including industrial by-products, inside the area of Porto Marghera (Venice Lagoon, Italy). Until the 1970s, this area was one of the most important chemical districts in Italy and was largely subjected to heavy metals and metalloids pollution. In the year 2004, some Populus and Salix spp. had been planted in this polluted site in order to investigate both the hydrological control and the phytoremediation capability of these trees. In the present work, polluted soil was analyzed at different depths for both metals content and culturable microbial communities with the aim to evaluate the establishment of previously planted poplar and willow plants. Bacteria were characterized on the basis of the r/K-strategists distribution since r-strategists (fast-growing bacteria) and K-strategists (slow-growing bacteria) are characteristic for unstable and stable environments, respectively. A better characterization of bacterial communities composition was obtained from colony development and eco-physiological indices. Results appeared to confirm a good establishment of poplar and willow plants in the heavy metal contaminated site.  相似文献   

15.
采用速生树种修复重金属污染土壤的方法近年来受到越来越多关注,但已有结果存在很大不确定性。为了解杨树在不同Pb胁迫条件下生长响应和Pb富集效果,以长江上游两种典型土壤(酸性紫色土和钙质紫色土)为栽培介质,采用盆栽试验方法,研究了不同Ph浓度处理下(CK:0mg·kg^-1;T1:200mg·kg^-1;T2:450mg·kg^-1;T3:2000mg·kg^-1)欧美杂交杨(Populusdeltoides×Populusnigra)生物量生产与分配格局以及Pb吸收、富集特性。两种土壤条件下杨树各器官生物量及总生物量均表现出随Pb胁迫程度的增加而降低的趋势,Pb胁迫条件下杨树生物量分配格局在钙质紫色土中表现为茎〉粗根〉叶〉细根。相同浓度Pb处理条件下,单株杨树总生物量均表现为钙质紫色土大于酸性紫色土。随着Pb处理浓度的增大,杨树各器官Ph含量及积累量显著增加。Pb胁迫使杨树对Ph的富集系数逐渐增大而耐性系数逐渐减小。们处理条件下杨树对Pb的富集系数在酸性紫色土中较大,且各处理条件下杨树对Pb的耐性系数均为酸性紫色土中较大。这些结果表明,高浓度Pb胁迫条件下酸性紫色土中的欧美杂交杨表现出较好的吸收和富集Pb的特性,这为Pb污染土壤的生物修复提供了一定的科学依据。  相似文献   

16.
Use of ornamental plants for phytoremediation of metal-contaminated soil is a new option. A pot experiment was carried out to assess the effect of application of amendments, i.e., swine manure, salicylic acid (SA) and potassium chloride (KCl), on the growth, uptake and translocation of cadmium (Cd) and zinc (Zn) of ornamental sunflower (Helianthus annuus L.) grown on a contaminated soil. The three amendments increased sunflower height, flower diameter, and biomass. Manure significantly decreased Cd and Zn concentrations in sunflower, and thus decreased the bioaccumulation coeffcient (BCF) of Cd and Zn. However, using of KCl markedly increased Cd concentrations in sunflower and the BCF of Cd. Additionally, both swine manure and KCl application increased Cd and Zn translocation from root to aboveground part. Swine manure and salicylic acid reduced the Cd/Zn ratios in flower of sunflower, while KCl significantly increased the Cd/Zn ratios. Correlation analysis demonstrated that the Cd/Zn ratio in the root of sunflower was affected by K/Na ratio in root and soil available potassium (K) concentration. Ornamental sunflower could be grown as an alternative plant in the Cd- and Zn-contaminated soil with KCl application to get the balance between environmental and economic interests.  相似文献   

17.
The toxicity of fresh and weathered gasoline and diesel fuel to willow and poplar trees was studied using a tree transpiration toxicity test. Soils were taken from an abandoned filling station. Concentrations in the samples were measured as the sum of hydrocarbons from C5 to C10 (gasoline) and C12 to C28 (diesel). Concentrations ranged from 145 to 921 mg/kg gasoline and 143 to 18231 mg/kg diesel. The correlation between log soil concentration and toxicity to willows(Salix viminalis x schwerinii) was highly significant for the diesel fraction (r2=0.81, n=19) and for the sum of hydrocarbons (r2=0.84, n=19). The EC50 (50% inhibition of transpiration) for the sum of hydrocarbons was determined at 3910 mg/kg (95% C.I., 2900 to 5270 mg/kg) and followed a log-normally distributed sigmoidal curve. The EC10 was 810 mg/kg (95% C.I., 396 to 1660 mg/kg). The results were verified with artificially mixed diesel and gasoline contaminated soils, and two willow and one poplar species(S. viminalis, S. alba and Populus nigra). Fresh diesel at about 1000 mg/kg showed no effect onS. alba, althoughP. nigra was more sensitive. 10000 mg/kg seriously affected the transpiration of all species, silver willow(S. alba) being the least sensitive. Free phase diesel killed all trees within six weeks. Fresh gasoline at 1000 mg/kg was deadly for all trees, hence was more toxic than weathered gasoline. Survival of poplars and willows planted at the abandoned filling station was compared to the laboratory findings. There was some correlation, but in the field, trees also suffered from other stress factors than fuel pollution.  相似文献   

18.
利用实验室水培模拟试验,研究了轻度镉胁迫条件下10个燕麦品种生长及吸收积累镉的差异性。结果表明,经5μmol·L-1的镉处理后,供试燕麦品种的株高、根长、地上部与地下部生物量、叶绿素含量、类胡萝卜素含量均出现不同程度的下降,不同品种间存在明显的差异,有的甚至达到极显著水平;不同品种燕麦对镉的吸收与积累也存在明显差异;燕麦镉的吸收转运与耐性没有直接的联系。按照镉胁迫下燕麦耐镉性和镉含量的冠根比进行聚类分析,可将10个品种分为4类:①镉转运少且耐性强;②转运多但耐性强;③转运多且耐性弱;④转运较少但耐性弱。其中品5号地上部生长抑制率最小,并且镉含量、镉转运量较少,表现出较强的耐镉性,在轻度镉污染土壤上种植品5号有利于降低镉污染对人类健康的风险。  相似文献   

19.
Transpiration rates from poplar (Beaupré, Populus trichocarpa×deltoides) and willow (Germany, Salix burjatica) clones, grown as short-rotation coppice (three-year-old stems on four-year-old stools) at a site in south-west England, were measured through the summer of 1995. Area-averaged transpiration was estimated by scaling sap-flow rates measured in individual stems to a stand area basis using measurements of leaf area and stem diameter distribution. Sap flow in poplar was measured using the stem heat balance, heat pulse velocity and deuterium tracing techniques; in willow only the stem heat balance method was used. In June and early July the mean daily transpiration from the poplar was 6±0.5 mm day−1, stomatal conductances averaged 0.33 mol m−2 s−1 for leaves in the upper layer of the canopy and daily latent heat flux often exceeded the daily net radiation flux. Similarly high transpiration was estimated for the willow. The transpiration rates were higher than any reported rates from agricultural or tree crops grown in the UK and arose because of high aerodynamic and stomatal conductances. The high stomatal conductances were maintained even when atmospheric humidity deficits and soil water deficits were large. Much lower rates (1±1 mm day−1) from both clones were recorded in August at the end of a drought period.These results suggest that extensive plantation of poplar or willow short-rotation coppice will result in reduced drainage to stream flow and aquifer recharge.  相似文献   

20.
In this study, we evaluate the effectiveness of SSCP analysis of intron markers, as a routine tool for fingerprinting of clones of different poplar species and interspecific hybrids. Exon primed intron crossing primers were designed on two catalase genes. Analysis of these fragments on SSCP gels revealed that catalase introns exhibit substantial sequence variation within poplar species and cultivars. SSCP analysis resulted effective in detecting intra and interspecific polymorphisms among the 119 poplar cultivars obtaining 110 different individual profiles. A hierarchical clustering process showed the high level of divergence among clones reflecting in most cases the section and the species the clones belongs to. This marker system was also proved with high transferability within Salicaceae. SSCP intron analysis represents a powerful tool in detecting DNA sequence polymorphism, in screening diversity and an effective method for clonal fingerprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号