首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 530 毫秒
1.
石灰与生物炭配施对不同浓度镉污染土壤修复   总被引:5,自引:2,他引:3  
通过室内培养试验,研究生物炭与石灰不同用量配施对镉污染土壤pH和镉赋存形态的影响。结果表明,生物炭与石灰配施能够明显提高污染土壤pH,且随着施入量的增加pH提升效果显著。随着石灰和生物炭配施用量的增加,土壤交换态镉降低比例逐渐增大。培养60天后,镉污染浓度为5mg/kg的土壤交换态镉含量同对照处理相比依次减少36.80%,49.12%和57.38%;而土壤镉污染浓度为20mg/kg的土壤交换态镉含量较对照相比分别降低29.27%,31.68%和39.03%。2个浓度中土壤碳酸盐结合态镉、铁锰氧化物结合态镉和有机结合态镉均有所增加,残渣态镉虽有所增加,但在不同浓度之间存在差异。总体来看,本试验用量条件下,石灰和生物炭配施对污染浓度为5mg/kg的土壤镉钝化效果优于污染浓度为20mg/kg的土壤。  相似文献   

2.
施用生物炭和石灰对土壤镉形态转化的影响   总被引:1,自引:0,他引:1  
通过室内培养试验,比较石灰、生物炭及生物炭和石灰配施3种改良剂作用下镉污染草甸土中土壤镉各形态转化以及pH的影响。结果表明,土壤添加生物炭培养60d,土壤pH呈随时间增加逐渐增加的趋势,而添加石灰和生物炭与石灰配施处理,土壤pH呈现先增加至最大值而后缓缓降低趋于稳定的趋势,但均显著高于对照。各改良剂的施用均显著降低土壤可交换态Cd含量,与CK处理相比,添加生物炭、石灰和生物炭石灰混合改良剂后,土壤可交换态Cd含量分别降低8.6%~13.7%,17.8%~21.7%和18.4%~23.3%。相关分析结果表明,土壤可交换态Cd含量与土壤pH之间均存在极显著的负相关关系(R2=0.74)。土壤添加改良剂后,显著降低土壤可交换态Cd比例,增加碳酸盐结合态、铁锰氧化物结合态、有机结合态和残渣态Cd比例,从而降低土壤重金属的生物有效性。  相似文献   

3.
河北主要土壤中Cd和Pb的形态分布及其影响因素   总被引:61,自引:2,他引:61  
刘霞  刘树庆  王胜爱 《土壤学报》2003,40(3):393-400
采用网室盆栽试验和大田取样 ,运用连续提取方法 ,研究了河北平原潮土和潮褐土两种土壤中Cd、Pb的化学形态特征及与其影响因素的关系。结果表明 :随着Cd、Pb污染程度的增加 ,其交换态有增加趋势。当高浓度重金属污染土壤时 ,Cd(潮土 >1mgkg- 1、潮褐土 >5mgkg- 1)主要以交换态存在 ,并表现为 :交换态 >碳酸盐结合态 >铁锰氧化物结合态 >有机结合态 >残留态 ;Pb主要以碳酸盐结合态和铁锰氧化物结合态存在。在低浓度重金属污染的土壤中 ,Cd (潮土 <1mgkg- 1、潮褐土 <5mgkg- 1)的残留态、有机结合态成倍增加 ,甚至超过交换态 ,表现为 :残留态 >碳酸盐结合态 >有机结合态 >交换态 >铁锰氧化物结合态 ;Pb主要以铁锰氧化物结合态和残留态存在。Cd、Pb在土壤中的分布与土壤的pH值 ,有机质含量密切相关。  相似文献   

4.
【目的】为了明确生物炭和菌肥修复石灰性土壤镉(Cd)污染的效果,探寻适宜石灰性土壤重金属Cd修复技术。【方法】采用盆栽的试验方法,研究施用3%的生物炭(B3)和1.5%的菌肥(M1.5)对不同外源Cd浓度(0、1、2、4 mg kg-1)石灰性土壤的pH值、Cd形态分布、酶活性以及棉花各器官Cd含量的影响。【结果】结果表明,生物炭和菌肥均能显著提高土壤的p H,但随着培养时间的延续添加改良剂处理的土壤的pH值呈现出下降的趋势:生物炭和菌肥的施用均能降低土壤可交换态Cd比例,提高土壤残渣态Cd比例,与对照相比,生物炭和菌肥处理下可交换态Cd的含量分别下降了18.42%~48.46%和15.21%~50.19%。生物炭和菌肥的添加显著提高土壤酶活性,其中蔗糖酶、过氧化氢酶、脲酶和碱性磷酸酶的最大增幅分别为89.1%、140.1%、39.7%和38.1%,菌肥处理总体优于生物炭处理。生物炭和菌肥的施用降低了植株各器官Cd含量,其中生物炭处理各器官中Cd含量最大降幅为34.0%,菌肥处理下最大降幅为39.5%。相关性和主成分结果表明,可交换态Cd与土壤酶活性呈显著负相关(...  相似文献   

5.
粤东凤凰山茶区土壤镉赋存形态特征及茶叶有效性   总被引:1,自引:0,他引:1  
通过对粤东凤凰山茶区12个大型茶园土壤和茶叶进行采样,采用连续提取法将茶园土壤Cd分为可交换态、碳酸盐结合态、铁锰氧化物结合态、有机束缚态和残渣态,探讨了茶园土壤Cd的5种化学形态组成特征及其与土壤理化性质和茶叶Cd积累的关系。结果表明:(1)茶区土壤中镉的化学形态分布受到土壤pH值和有机质含量的影响,土壤中Cd的5种化学形态分布的规律为:残渣态>碳酸盐结合态>可交换态>铁锰氧化物结合态>有机束缚态;茶区土壤可交换态Cd和残渣态Cd与土壤中的pH值呈极显著负相关性关系,而有机结合态Cd与土壤pH值呈显著正相关关系;有机质含量与氧化物结合态Cd和有机束缚态Cd呈显著正相关关系,而与可交换态Cd和残渣态Cd呈显著负相关关系。(2)茶叶中Cd含量在0.30~0.98mg/kg,平均含量为0.65mg/kg;茶叶中的Cd含量与土壤中可交换态Cd有显著正相关关系,而与土壤pH值呈显著负相关关系。因此,可以通过调节茶园土壤pH值,影响土壤中Cd的化学形态分布,最终达到降低茶叶中Cd含量,提高茶叶品质的目的。  相似文献   

6.
应用生态环境效应法,借助区间线性规划理论,以稻谷Cd与活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)Cd含量间的线性回归模拟方程为目标函数,以稻谷Cd限量卫生标准为限制条件,筛选各约束条件下的最大最优值为各活性形态Cd含量的限量标准,为成都平原土壤重金属污染控制提供参考,为深入研究基于生物有效性的土壤重金属限量标准的制定提供科学依据。结果表明,土壤Cd活性形态限量标准分别为:可交换态Cd≤0.0865 mg/kg,碳酸盐结合态Cd≤0.2641 mg/kg,铁锰氧化物结合态Cd≤0.2461 mg/kg,有机物结合态Cd≤0.0760 mg/kg。  相似文献   

7.
赤泥施用量对镉污染稻田水稻生长和镉形态转化的影响   总被引:2,自引:0,他引:2  
通过盆栽试验,研究了不同赤泥施用量对水稻产量、土壤中镉生物有效性及其形态和糙米镉含量的影响。结果表明,适宜的赤泥施用量能提高水稻有效穗数和促进水稻生长,实现水稻增产,与不施赤泥处理相比,0.75%(W/W)赤泥处理(RM-3处理)的水稻株高、有效穗数和产量分别提高了5.02%、1.12%和6.93%。随着赤泥施用量的增加,土壤pH值增加,土壤交换态Cd含量逐渐减少,碳酸盐结合态、铁锰氧化物结合态和残渣态Cd含量逐渐增加,但对有机结合态Cd含量的影响不明显,相比不施赤泥处理,1.25%(W/W)赤泥处理(RM-5处理)的土壤交换态Cd含量下降了31.6%(P<0.01),碳酸盐结合态、铁锰氧化物结合态和残渣态Cd含量分别增加了16.3%、22.5%和8.7%(P<0.01)。水稻糙米中Cd的含量随赤泥施用量的增加而降低,当赤泥施用量达到或高于0.5%(W/W)时,糙米Cd含量达到国家粮食卫生标准,综合考虑水稻产量、土壤修复效应和糙米品质,本试验Cd污染程度的稻田土壤上赤泥的适宜施用量为0.75%(W/W)。  相似文献   

8.
施用有机物料对土壤镉形态的影响   总被引:12,自引:1,他引:11  
采用室内培养试验,研究作物新鲜秸秆和腐熟猪粪对模拟镉(Cd)污染的土壤中Cd形态转化的动态影响。结果表明,各处理土壤交换态Cd含量随培养时间均逐渐降低。碳酸盐结合态和铁锰氧化物结合态Cd含量先增加后降低, 而有机质结合态和残渣态Cd含量则逐渐增加。添加秸秆可增加土壤交换态Cd含量,但随时间延长,增幅逐渐降低, 猪粪则可降低土壤交换态Cd含量。添加有机物后土壤交换态Cd含量的变化主要是由有机质结合态或残渣态Cd含量的变化而引起。秸秆和猪粪对土壤Cd形态的转化与土壤胡敏酸(HA)和富里酸(FA)的变化有关。秸秆对能活化土壤Cd的FA增加幅度大于对能钝化土壤Cd的HA增加幅度,降低HA/FA比,但降幅随时间逐渐减少; 猪粪在整个培养阶段对HA增加幅度均大于FA的增加幅度,增加HA/FA比。秸秆和猪粪均可降低潮土pH而提高红壤pH,但只有猪粪可通过提高红壤pH降低Cd向交换态转化。添加秸秆和猪粪后,Cd由低活性态向交换态转化与HA/FA呈显著负相关。  相似文献   

9.
棉纤维生物炭对稻田土壤及水稻Cd含量的影响   总被引:1,自引:1,他引:0  
为生物炭应用于农田Cd污染的控制及治理提供相关科学依据,研究通过根箱试验,研究棉纤维生物炭对水稻根际和非根际土壤可交换态和不可交换态Cd含量及水稻植株中Cd分配的影响。研究表明:随着棉纤维生物炭的施用量增加,根际和非根际土壤可交换态Cd含量都呈下降趋势,同时不可交换态Cd含量都呈上升趋势。随着棉纤维生物炭的施用量增加,非根际土壤pH值呈逐渐上升趋势。非根际土壤pH值与可交换态Cd含量之间存在显著负相关关系,与不可交换态Cd含量之间存在显著正相关关系。可见,施用棉纤维生物炭可在一定程度上提高非根际土壤pH值,进一步降低了非根际土壤可交换态Cd含量;而根际土壤可交换态Cd含量的下降,主要受棉纤维生物炭的理化性质影响,受土壤pH值影响不大。随着棉纤维生物炭的施用量的增加,水稻各部位Cd含量及累积量都呈现下降趋势,其中籽粒Cd含量的下降幅度最大,为36.57%,根的Cd含量的下降幅度最小,为12.56%。由于茎鞘的生物量和Cd含量都较大,茎鞘中Cd累积量最高,平均为25.44μg plant-1,是籽粒的2.85倍。因此,在进行农田土壤Cd修复的同时,除了要关注农产品Cd污染,还要考虑如何妥善处理大量的富集Cd的农业废弃物,避免产生二次污染风险。  相似文献   

10.
【目的】为探究非灌溉季节生物炭施用对滴灌棉田耕层土壤团聚体及碳含量的调控效应,确定滴灌棉田在非灌溉季节的最佳施炭量。【方法】以不施用生物炭(B0)为对照,探究非灌溉季节施用15(B1)、30(B2)、45(B3)和60 t hm-2(B4)生物炭对新疆滴灌棉田耕层(0~40 cm)土壤总碳、有机碳、微生物量碳、土壤呼吸速率、土壤团聚体及其结合态总碳和结合态有机碳的影响。【结果】施用生物炭处理与对照处理相比土壤总碳、团聚体结合态总碳和土壤呼吸速率随生物炭用量的增加而增加,增幅分别为6.85%~18.14%、6.15%~17.71%和13.52%~53.88%。>0.25 mm水稳性团聚体含量、团聚体结合态有机碳、土壤有机碳和微生物量碳随生物炭用量的增加先增加后减少,增幅分别为11.80%~21.68%、12.64%~57.54、17.58%~55.27%和13.02%~46.96%。通过建立最小数据集计算土壤质量指数得出,土壤质量指数最高(0.4632...  相似文献   

11.
不同有机物料对苏打盐化土有机碳和活性碳组分的影响   总被引:5,自引:1,他引:4  
【目的】在大同盆地苏打盐化土上,研究不同有机物料对春玉米产量、土壤有机碳及活性碳组分的影响,明确土壤有机碳及活性碳组分与主要盐碱指标的相关关系,为苏打盐化土改良及有机物料资源化利用提供理论支撑。【方法】2016-2017年在山西省北部怀仁县开展田间定位试验,设对照(CK)、风化煤、生物炭、牛粪和秸秆5个处理,各处理有机物料施用量按照每年9000 kg/hm^2等有机碳投入量折算,收获时对春玉米进行测产。2017年春玉米收获后,采集土壤样品测定土壤有机碳总量(SOC)和水溶性有机碳(WSOC)、易氧化有机碳(EOC)、轻组有机碳(LFOC)含量,分析土壤活性碳组分占有机碳的比例、土壤有机碳及活性碳组分与盐碱指标之间的关系。【结果】与CK相比,生物炭和秸秆处理春玉米产量无明显差异,而风化煤和牛粪处理春玉米产量则分别显著提高30.2%和30.3%。添加有机物料促进了0-20 cm土层SOC累积,其中以风化煤和牛粪处理效果最佳,较CK分别提高47.6%和36.1%。在有机碳组分方面,风化煤和牛粪处理提高WSOC、EOC含量的效果显著高于生物炭、秸秆处理;风化煤、牛粪和秸秆处理的LFOC含量显著高于生物炭处理。四类有机物料处理的WSOC占总有机碳的比例差异不显著,牛粪处理的占比显著高于CK。EOC占总有机碳的比例以牛粪处理最高,风化煤次之,且二者均显著高于CK处理;LFOC占总有机碳的比例则表现为秸秆、牛粪>风化煤、生物炭> CK。此外,添加有机物料能有效降低0-20 cm土层土壤pH、电导率(EC)和碱化度(ESP),其中以风化煤和牛粪处理降幅最大。相关分析表明,土壤SOC与pH、EC和ESP呈显著负相关。【结论】通过有机物料改良效果比较,发现牛粪和风化煤处理能促进苏打盐化土有机碳累积,提高可溶性、易氧化态及轻组有机碳组分在总有机碳中的占比,降低土壤pH、EC和ESP,明显提高春玉米产量。因此,风化煤和牛粪是山西北部苏打盐化土良好的改良剂。  相似文献   

12.
秸秆直接还田及炭化还田对土壤酸度和交换性能的影响   总被引:3,自引:1,他引:2  
【目的】 本研究旨在通过连续4年田间微区定位试验,比较等氮磷钾养分条件下秸秆炭化还田与等量秸秆直接还田对土壤酸度及交换性能的影响,以期为土壤酸化改良及秸秆、生物炭资源合理利用提供理论依据。 【方法】 试验以沈阳农业大学植物营养与肥料研究所玉米渗滤池微区定位试验为基础,共设6个处理,分别为不施肥 (CK)、氮磷钾配施 (NPK)、单施生物炭 (C)、生物炭+NPK(CNPK)、单施秸秆 (S)、秸秆+NPK(SNPK)。其中NPK、CNPK和SNPK处理养分投入总量相等,均为N 225 kg/hm2、P2O5 112.5 kg/hm2和K2O 112.5 kg/hm2,S处理秸秆施用量为4500 kg/hm2,单施生物炭处理生物炭施用量为1500 kg/hm2。应用化学分析法对土壤活性酸、交换性酸、阳离子交换量及交换性盐基离子进行分析和测定。 【结果】 经过连续4年的不同施肥处理,施用生物炭及秸秆均显著提高了土壤pH,降低了土壤交换性酸总量和交换性铝含量,但各处理间交换性H+含量差异不显著。相较于试验前土壤 (pH 6.05),单施生物炭和单施秸秆处理分别使土壤pH提高了0.55和0.45个单位。在等氮磷钾养分条件下,CNPK和SNPK处理较试验前分别使土壤pH提高了0.31和0.13个单位,且CNPK处理显著高于SNPK,但二者之间对土壤交换性酸含量的影响无显著差异。同时各处理交换性盐基离子总量均显著高于CK,单独施用生物炭对提高土壤盐基总量、交换性Ca2+和交换性Mg2+的效果显著优于单独施用秸秆。在等秸秆量与等氮磷钾养分条件下,秸秆炭化还田及秸秆直接还田较不施肥对照分别使交换性盐基总量提高了17.6%和15.1%,且秸秆炭化还田对提高土壤有效阳离子交换量的效果显著优于秸秆直接还田。与CK处理相比,C、CNPK、S和SNPK处理分别使土壤阳离子交换量提高了1.68、2.52、1.53、2.30 cmol/kg,其中以CNPK处理效果最佳。 【结论】 在等秸秆量和等氮磷钾养分条件下,施用生物炭和秸秆能有效降低土壤酸度和交换性酸中交换性铝含量,提高土壤盐基离子含量及交换性能,且秸秆炭化还田的效果更为明显。   相似文献   

13.
  【目的】  长期过量施用化学氮肥加剧了红壤区农田土壤酸化,严重制约着该区域农业的可持续发展。施用石灰和有机肥是防治红壤酸化的主要措施,我们研究了有机无机肥配合提高红壤抗酸化能力的作用与机理。  【方法】  本研究基于2009年在湖南祁阳中国农业科学院红壤站开展的有机肥替代化学氮肥长期定位试验,其中4个处理分别为单施化肥(由于酸化严重,于2018年底添加石灰改良)、有机肥替代化肥氮20%、40%和60%,供试有机肥为猪粪。采集2018和2020年的土壤样品,分析各施肥处理红壤pH、交换性酸铝、阳离子交换量、有机质、酸缓冲能力等指标的变化及相互关系。  【结果】  至2018年,单施化肥处理较试验之初土壤pH降低了0.48个单位,交换性酸、铝分别增加了2.74和1.06 cmol/kg;添加石灰改良后,土壤pH升高了0.58个单位,交换性酸、铝分别降低了2.62和1.45 cmol/kg。有机肥替代化肥氮40%和60%处理均可有效防治红壤酸化,其中以替代60%处理效果最佳;至2020年60%有机替代处理土壤pH较初始值提高了0.78个单位,交换性酸和交换性铝分别降低了1.10和1.25 cmol/kg。有机肥替代化肥氮40%和60%处理较单施化肥处理显著提高了土壤阳离子交换量,而石灰改良前后土壤阳离子交换量无显著变化。土壤酸缓冲曲线表明,土壤交换性铝含量随着pH的降低而显著升高,单施化肥、有机肥替代化肥氮20%、40%和60%处理的斜率分别为2.71、2.42、1.93和0.16;土壤交换性铝对pH响应斜率与土壤pH、交换性镁、阳离子交换量、交换性钾、有机质含量呈极显著或显著负相关关系。  【结论】  有机肥替代40%以上化学氮肥既能防治红壤酸化,又能提升红壤抗酸化能力。土壤阳离子交换量和有机质可能是导致土壤交换性铝对pH响应差异的主要因素,即阳离子交换量和有机质含量高的土壤pH降低1个单位时,交换性铝增幅较小,但其作用机理还有待进一步研究。  相似文献   

14.
  【目的】  研究紫云英(Astragalus sinicus L.)还田及配施石灰或生物炭等不同土壤调理剂,对镉(Cd)污染水稻土中Cd有效性及水稻吸收转运Cd的影响,以期为我国南方Cd污染稻田的修复和水稻的安全生产提供理论依据和技术支撑。  【方法】  盆栽试验在湖南省土壤肥料研究所科研实验基地进行,供试土壤为重度污染的水稻土 (总镉 1.27 mg/kg、有效镉0.15 mg/kg)。以水稻收获后冬闲为对照(CT),设冬季种植并翻压等量紫云英3个处理:紫云英单独还田(GM)、紫云英还田+石灰(GL)、紫云英还田+生物炭(GB)。在水稻分蘖期和成熟期,测定土壤主要理化性质和有效Cd含量,测定水稻各器官吸收和富集Cd量,并于成熟期测定水稻产量。  【结果】  1) GM处理提高了水稻分蘖期土壤有效Cd含量和水稻根部Cd富集系数,但GM处理降低了分蘖期水稻茎叶Cd含量,对稻米中Cd含量没有显著影响;GM处理对水稻成熟期土壤pH无显著影响,但提高土壤微生物量碳(MBC)的效果最好(P<0.05)。2) GL处理和GB处理均显著提高了土壤pH,降低了土壤Cd活化率和有效Cd含量,两处理分别平均降低了分蘖期水稻根部Cd累积量55.4%和57.8%。与紫云英单独还田(GM)相比,紫云英配施石灰还田(GL)减少了稻米中Cd的累积量,而紫云英配施生物炭还田(GB)提高了成熟期水稻根部Cd富集系数和茎叶–籽粒的Cd转运系数,导致水稻籽粒中Cd含量(0.08 mg/kg)显著高于对照(低于国家稻米Cd含量标准)。3)冗余分析(RDA)和随机森林模型预测结果显示,土壤pH、可溶性有机碳(DOC)和土壤有效磷(AP)是决定土壤Cd生物有效性的最重要的环境因子。  【结论】  紫云英还田提高了水稻产量,配施石灰或生物炭还田可通过提高土壤pH而有效降低土壤有效Cd含量。紫云英配施石灰可减少稻米中的Cd含量,而紫云英配施高量生物炭则会增加稻米Cd污染的风险。  相似文献   

15.
生物炭对酸化茶园土壤性状和细菌群落结构的影响   总被引:1,自引:0,他引:1  
  【目的】   生物炭作为一种高效、绿色、多功能的土壤调理剂受到了广泛关注,但生物炭对酸化茶园土壤改良的长期效应还缺乏了解。研究施用生物炭5年后对茶园土壤性状和细菌群落结构的影响,为生物炭在酸化土壤改良上的合理应用提供科学依据。   【方法】   茶园生物炭田间试验在福建安溪县进行,茶园种植年限超过7年,茶树品种为铁观音,土壤为黄壤 。试验设生物炭施用量0、2.5、5、10、20和40 t/hm2共6个水平,一次施入土壤,5年后调查了茶园土壤pH、电导率 (EC)、可溶性有机碳含量、细菌群落结构变化及它们间的相关关系。   【结果】   施用生物炭5年后,茶园土壤pH提高了0.16~1.11个单位,可溶性有机碳含量提高了52.6%~92.3%,EC值降低了1.85%~47.77%,其中施用10~40 t/hm2生物炭处理的pH值均显著高于0~5 t/hm2处理。施用生物炭5年对土壤性质的改变,进一步影响了细菌群落结构,细菌群落Chao指数、ACE指数表现为随生物炭施用量增加而增加得趋势,Shannon指数呈现先增加后降低的趋势。施用生物炭促进了适宜酸中性或弱碱性环境的节杆菌属、硝化螺旋菌属、黄色杆菌科细菌相对丰度的增加,降低了嗜酸性细菌如酸杆菌属细菌的相对丰度。细菌群落结构与环境因子的关联分析表明,施用0~10 t/hm2生物炭处理细菌群落结构受pH、EC环境因子的影响较大;施用20~40 t/hm2生物炭处理细菌群落结构受土壤可溶性有机碳等环境因子的影响较大;其中硝化螺旋菌属、α-变形菌门、酸杆菌属、康奈斯氏杆菌属等的相对丰度与土壤pH、EC值间具有显著相关性。   【结论】   在酸化茶园施用生物炭5年后,土壤pH、EC和可溶性有机碳含量发生了显著变化,增加了细菌群落多样性指数,且适宜酸中性或弱碱性环境的细菌丰度增加,嗜酸性细菌丰度降低;其中施用0~10 t/hm2生物炭的处理土壤pH、EC是显著影响细菌群落结构的环境因子,施用20~40 t/hm2生物炭的处理土壤可溶性有机碳含量是显著影响细菌群落结构的环境因子。  相似文献   

16.
湘西植烟土壤pH时空变异及其主要驱动因素   总被引:2,自引:1,他引:1  
【目的】研究湘西州烟区土壤pH时空变异特征,为湘西烟区土壤pH调节提供科学依据。【方法】以湘西州2000年和2015年耕层土壤pH值为研究对象,利用多元统计学和地统计学方法分析了土壤pH时空变异特征及其影响因素。【结果】湘西植烟土壤pH均值由6.21下降至6.12,同时表现出最小值变小,而变异系数、最大值、极差均变大的规律,说明湘西植烟土壤pH在大幅下降的同时,其变异也在增大。地学统计分析结果显示,2000年和2015年植烟土壤pH空间结构模型分别符合指数模型和球状模型,Moran’s I变小,分形维数变大,块金效应由58.17%增加至64.13%,表明空间变异主要由结构因子和随机因子共同决定,且随机因子的影响效应在增强;空间分布表现为不同等级插花状分布,土壤pH“极低”、“低”、“高”和“极高”等级的面积显著增加,分别增加了2.61、6.48、4.39和0.17个百分点,而“适宜”等级的面积则下降了13.65个百分点。影响因素的分析结果显示,交换性钙、交换性镁、有效硫、有机质、粘粒 (< 0.002 mm)、粉粒 (0.02~0.002 mm) 和碱解氮是植烟土壤pH的主控因素,7项指标对植烟土壤pH的累计解释能力达83.8%,其中以交换性钙的独立解释能力最大,可解释其变异的60.6%,交换性钙、交换性镁和有机质为主要控酸因子,有效硫和碱解氮为土壤主要致酸因子。【结论】长期施用不同化学肥料和有机物料,湘西植烟土壤的pH变异程度在加大,适宜等级的土壤面积总体上减少。交换性钙是土壤pH升高的主要驱动因素,而有效硫和碱解氮是土壤pH降低的主要驱动因素。因此,湘西植烟土壤需要增加含钙物料的投入,控制含硫物料的投入以及化学氮肥的使用,以维持土壤的可持续利用。  相似文献   

17.
红壤不同利用方式下的剖面酸度特征   总被引:3,自引:0,他引:3  
【目的】 作物类型及其管理模式是影响红壤酸化的主要因素之一,研究不同利用方式下红壤剖面酸度的变化特征,对红壤酸化防治具有重要指导意义。 【方法】 选取由红砂岩母质发育红壤的4种主要利用方式 (水田、旱地、果园和林地),通过分层 (0—20、20—40、40—60、60—80 cm和80—100 cm) 测定pH、交换性酸、交换性盐基总量和盐基饱和度,定量比较不同利用方式下各酸度指标在剖面上的变化特征及程度。 【结果】 在不同利用方式下,红壤剖面pH为水田 (5.69) > 旱地 (4.71) ≈ 果园 (4.74) > 林地 (4.49);交换性酸含量为林地 (6.54 cmol/kg) ≈ 旱地 (6.52 cmol/kg) > 果园 (3.51 cmol/kg) > 水田 (0.79 cmol/kg);交换性盐基总量为水田 (4.47 cmol/kg) > 旱地 (1.97 cmol/kg) > 果园 (1.26 cmol/kg) > 林地 (0.48 cmol/kg);盐基饱和度为水田 (53.14%) > 旱地 (20.87%) > 果园 (15.41%) > 林地 (4.67%)。随着土层深度的增加,红壤剖面pH值逐渐升高;不同层次间交换性酸含量无显著差异;交换性盐基总量随土壤深度增加逐渐升高,为60—100 cm (2.34 cmol/kg) > 40—60 cm (2.05 cmol/kg) > 0—40 cm (1.75 cmol/kg);水田利用方式下红壤盐基饱和度随土壤深度增加逐渐升高,为80—100 cm (33.95%) > 60—80 cm (32.27%) > 40—60 cm (31.31%) > 20—40 cm (25.47%) > 0—20 cm (21.08%)。水田、果园利用方式下红壤pH与交换性酸含量呈显著负相关,与交换性盐基总量和盐基饱和度呈显著正相关;旱地利用方式下红壤pH与交换性盐基总量呈显著正相关;林地利用方式下pH与交换性酸含量呈显著负相关。 【结论】 4种利用方式下,在0—40 cm土层,林地红壤酸度最高,其次是果园和旱地,水田红壤酸度最低,在40—100 cm土层酸度变异较小。通过改变土地利用方式,降低红壤交换性酸含量、增加交换性盐基总量和盐基饱和度可以有效降低红壤酸度。   相似文献   

18.
生物炭和有机肥施用提高了华北平原滨海盐土微生物量   总被引:2,自引:0,他引:2  
【目的】研究施加不同量生物炭和有机肥对山东滨州滨海盐地土壤微生物量碳、氮 (MBC、MBN) 含量的影响,为改善盐地土壤环境质量和盐地的可持续利用提供科学依据。【方法】试验共设置6个处理:CK (无机肥)、C1[生物炭5 t/(hm2·a)]、C2[生物炭10 t/(hm2·a)]、C3[生物炭20 t/(hm2·a)]、M1[有机肥7.5 t/(hm2·a)]、M2[有机肥10 t/(hm2·a)]。各处理均施加等量的N[200 kg/(hm2·a)]和P2O5[120 kg/(hm2·a)],生物炭和有机肥处理不足部分由尿素和磷酸二铵补充。生物炭、有机肥和基肥均分为玉米、小麦两季人工施入,每个处理3次重复,小区随机排列。在玉米和小麦的不同生育期,取0—20 cm和20—40 cm土样,测定土壤MBC和MBN、土壤pH、土壤含水量、硝态氮和铵态氮含量。【结果】施加生物炭和有机肥均可增加土壤MBC和MBN。施用基肥5天后,生物炭和有机肥显著增加了土壤MBC和MBN含量,而追肥对土壤MBC和MBN的影响并不显著。生物炭处理土壤MBC变化范围在64.1~570.0 μg/g,有机肥处理变化范围在90.6~451.3 μg/g之间。C3、M1、M2处理均显著增加了0—40 cm土壤MBC (增幅在40.9%~118.4%之间) ,而C1、C2仅显著增加20—40 cm土层的MBC含量 (增幅分别为47.7%、60.0%) 。生物炭处理MBN含量在5.3~92.5 μg/g之间,与CK相比差异不显著;有机肥处理变化范围为4.2~163.9 μg/g,M1和M2显著增加了土壤MBN含量,增加幅度达56.4%~162.3%。生物炭和有机肥的施加对土壤pH影响显著,生物炭显著降低了20—40 cm的土壤pH,而有机肥显著降低了0—40 cm的土壤pH。相关分析表明,土壤pH与土壤MBC和MBN均呈极显著的负相关关系。土壤MBC和MBN均与土壤矿质氮表现出显著正相关关系。除M1处理玉米产量显著降低外,生物炭和有机肥的施加对玉米和小麦产量均没有产生显著影响。玉米季前期以细菌为主,后期则以真菌为主。小麦季MBC/MBN波动较大。【结论】施加生物炭和有机肥对土壤MBC和MBN含量影响显著,对盐地土壤MBC和MBN均具促进作用。土壤MBC和MBN与土壤pH具有显著的负相关关系,与土壤矿质氮呈显著正相关关系,说明生物炭和有机肥的施加能够降低盐地土壤pH,增加土壤矿质氮,有利于盐地土壤环境质量的改善。  相似文献   

19.
不同硝化抑制剂组合对铵态氮在黑土和褐土中转化的影响   总被引:3,自引:0,他引:3  
【目的】添加硝化抑制剂和氮肥增效剂是提高氮肥利用率的有效方法。研究不同硝化抑制剂和氮肥增效剂组合对不同性质土壤中铵态氮转化特征的影响,为科学合理选择抑制剂提供理论依据。【方法】供试生化抑制剂包括2-氯-6 (三氯甲基) -吡啶 (Nitrapyrin,CP)、3,4-二甲基吡唑磷酸盐 (DMPP)、1-甲氨甲酰-3-甲基吡唑 (CMP)、3-甲基吡唑 (MP)、2-氨基-4-氯-6-甲基嘧啶 (AM)、N-guard、二氰二胺 (DCD)。供试土壤为黑土和褐土,以氯化铵为氮肥,按照常用量添加各生化抑制剂制备稳定性肥料,用于室内恒温、恒湿土壤培养试验。试验设不施肥 (CK)、氯化铵 (N)、N + CP、N + CP + AM、N + CP + DCD、N + CP + N-guard、N + CP + DMPP、N + CP + CMP、N + CP + MP等9个处理。在培养第1、4、7、11、15、22、30、45、60、75、90、105、120天取土样,测定土壤含水量、土壤NH4+-N和NO3–-N含量,并计算硝化抑制率。【结果】在黑土和褐土两种类型土壤中,铵态氮转化特征具有显著差异,在弱酸性黑土中硝化反应速率显著低于碱性褐土。在黑土中,不同硝化抑制剂组合N + CP、N + CP + N-guard、N + CP + DMPP、N + CP + DCD、N + CP + CMP、N + CP + AM、N + CP + MP都表现出较好的硝化抑制效果,可以维持黑土中较高的铵态氮含量超过4个月以上。其中N + CP、N + CP + DCD、N + CP + N-guard处理在120天时,其硝化抑制率为37%~40%。而N + CP + AM、N + CP + MP、N + CP + DMPP为32%~36%,N + CP + CMP为26%。在褐土中,N + CP + DCD组合硝化抑制效果最大,在培养120天,其硝化抑制率为20%;其次是N + CP、N + CP + AM,其硝化抑制率在培养第105天时分别为23%、12%,在培养第90天时分别为63%、60%;N + CP + N-guard、N + CP + DMPP、N + CP + MP、N + CP + CMP在培养第75天时硝化抑制率分别为43%、42%、37%、35%,有效硝化抑制作用时间可维持75天左右。【结论】在黑土和褐土2种不同类型土壤中施用氯化铵氮肥,应添加专一硝化抑制剂或组合制成高效稳定性铵态氮肥。在湿润地区pH较低的酸性土壤上,例如黑土,适宜的硝化抑制剂较多,其中N + CP或N + CP + N-guard、N + CP + DCD组合的硝化抑制效果显著且持续时间长。在干旱半干旱的碱性土壤上,例如褐土,N + CP + DCD组合的硝化抑制效果和持续时间优于其他组合,可用于褐土上施用的高效稳定性氯化铵氮肥的生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号