首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为探索低换水量的对虾养殖生产方式,该研究构建了一种简易式工厂化对虾养殖系统,试验组利用自行研发的蛋白分离器和新型集污盘去除系统总悬浮颗粒物和老化微藻,对照组不设置蛋白分离器和集污盘,进行对虾养殖和水质调控试验,结果表明:试验组平均总氨氮浓度、平均亚硝氮浓度、平均TSS(Total Suspended Solids)浓度、平均副溶血弧菌数量分别为(0.4±0.16)、(0.53±0.23)、(68.33±39.72)mg/L和(140±113.83)cfu/mL,显著低于对照组(0.96±0.62)、(1.17±0.59)、(147.14±94.18)mg/L和(661.34±473.96)cfu/mL(P0.05);试验组成活率及单位产量分别为82.62%±5.64%和(3.44±0.85)kg/m~3,显著高于对照组18.29%±4.63%和(1.09±0.23)kg/m~3(P0.05)。该研究构建的简易式循环水工厂化系统,设置蛋白分离器流量10 m~3/h且不间断运行,养殖前45 d不换水、后55 d利用集污盘进行强排污保持日换水量5%的情况下能够有效调控对虾养殖水质。  相似文献   

2.
基于物质平衡的循环水养殖系统设计   总被引:10,自引:7,他引:3  
刘晃  陈军  倪琦  徐皓 《农业工程学报》2009,25(2):161-166
针对工厂化循环水养殖系统中快速去除水中的溶解性氨氮和增加溶解氧等系统设计的核心问题,采用物质平衡关系建立氨氮、溶解氧的平衡方程式,推导出系统设计的计算公式,并根据工程实践的经验对部分公式进行了修正,得到了一组较贴近实际情况的设计参数,如:系统补水量、供氧量、循环量、循环次数、生物过滤器有效体积等。同时构建了一个工厂化循环水养殖系统设计的基本流程。以设计一套年产50 t鮰鱼(Ictalurus),养殖密度为50 kg/m3的高密度工厂化循环水养殖系统为例,可以计算得到系统的补水量为30 m3/d,系统补水率为6%,系统供氧为11.0 kg/h,系统循环量740 m3/h,循环次数为36次/d,生物过滤器有效体积为44.2 m3。  相似文献   

3.
超高密度全封闭循环水养殖系统设计及运行效果分析   总被引:11,自引:7,他引:4  
为进一步研究循环水养殖系统在高密度养殖生产过程中的水质变化情况、鱼类生长情况及应用推广价值,该文构建了一套超高密度全封闭循环水养殖系统,设计3条水处理环路,集成了鱼池双排水、竖流沉淀、转鼓式微滤机、移动床生物过滤、多腔喷淋式纯氧混合装置、二氧化碳脱气等高效水处理技术和装备。提出一种基于投饲量的循环水养殖系统设计计算方法,重点考虑氨氮、溶解氧和总悬浮颗粒物3个水质指标。使用该系统养殖吉富罗非鱼6个月,试验研究结果显示:鱼类生长情况良好,最高养殖密度104.2kg/m3。饵料系数1.4,成活率92.2%。水质检测结果显示:氨氮浓度维持在平均(1.09±0.55)mg/L;溶解氧维持在4~9mg/L范围内;pH值6.45~7.41。经济性分析研究结果表明,系统养殖运行成本约为25元/kg,略高于市场价格。但是,从环境成本考虑,系统的节水效果显著,日耗水仅为0.3~0.5m3。通过适当的精简并挑选合适的养殖品种,完全可以实现规模化的生产。  相似文献   

4.
海水循环水养殖系统生物膜快速挂膜试验   总被引:1,自引:1,他引:0  
循环水养殖系统生物膜的挂膜成熟是一个比较耗时的过程,通常需要30~40d。为解决这一技术瓶颈,该文在一个大型海水循环水养殖厂的生物滤池内进行了生物膜快速挂膜的中试试验。该养殖厂循环水养殖系统有并联的生物滤池4个,单个为跑道式2级串联结构,总容量为800m3,采用毛刷状聚乙烯丝为生物载体。试验设计为预先培养水质净化菌的种子液,制备经200目筛绢过筛后质量比为4:1的黏土和沸石粉超细颗粒混合物悬液,然后按103cfu/mL和5g/L的浓度在两级滤池中分别加入4种不同水质净化菌的种子液和"黏土-沸石粉"混合物悬液,静水充气培养8d后,生物载体上能够形成较为牢固的生物膜。打开循环水系统运行2d后,连续5d检测生物滤池进、出水口的氨氮、硝酸盐、亚硝酸盐和COD(化学需氧量)含量,其5d平均消除率分别为:52.04%、17.24%、26.82%和62.94%。结果表明,与传统生物膜自然培养方法相比,该文所采用的挂膜方法将海水循环水养殖系统生物膜的挂膜成熟提前了20d以上,起到了增速效果,在生产上也是可行的。  相似文献   

5.
种植密度对鱼菜共生系统氮素转化的影响   总被引:4,自引:2,他引:2  
为评估不同植物密度对鱼菜共生系统氮素转化的影响,在试验温室内搭建了基于营养液膜(nutrient film technique,NFT)栽培的鱼菜共生系统。养殖水量350L,养殖密度10 kg/m~3;栽培面积1.0 m~2,栽培密度60、45和30株/m~2。考察了系统33d运行期间的水质情况和鱼菜生长情况,探讨了投入氮素的转化情况以及时间和植物密度对氮化合物质量浓度的影响情况。结果表明:试验期间,不同植物密度系统的水质适合鱼菜生长,鱼类和蔬菜主要生物学特性指标有不同程度的增长。氨氮、亚硝酸盐氮、硝酸盐氮质量浓度随时间变化显著(P0.01);不同植物密度系统的硝酸盐氮质量浓度存在显著差异(P=0.028),植物密度为45株/m~2的系统具有较高的硝酸盐氮积累优势。系统运行后期,氮化合物质量浓度基本稳定,氨氮、亚硝酸盐氮、硝酸盐氮质量浓度分别为2.50、0.20和5.00 mg/L左右。49.32%~68.41%投入饲料的氮素积累在鱼菜生物体内,与普通水产养殖和NFT栽培相比,鱼、菜含氮量均不具优势。可通过扩大栽培面积、配备生物滤池、调整栽培模式等方法加强氮素转化。综上,试验系统的优势栽培密度为45株/m~2,应结合其他措施提升氮素转化效果。  相似文献   

6.
分隔式循环水池塘养殖系统设计与试验   总被引:3,自引:1,他引:2  
为了解决池塘养殖设施化程度低、净化能力不足和排污效果差等问题,设计了分隔式循环水池塘养殖系统。该系统由20%水面的吃食性鱼类养殖区和80%水面的滤杂食性鱼类养殖区构成,配置过水堰、螺旋桨式和水车式推流装置、集污和吸污装置等养殖系统设施和装备。性能测试结果表明:螺旋桨式推流装置提水动力效率为340 m~3/(k W·h),流量为204 m~3/h,空载噪音为60 d B;水车式推流装置提水动力效率为360 m~3/(k W·h),流量为180 m~3/h,空载噪音为67 d B;过水堰过水的总流量约为331 m~3/h,利用水循环装备实现水体流动可实现水体日交换量7 900 m~3,达到养殖池塘水体的50%左右。利用推流装置搅动水体,可实现水体大范围的对流,交替暴晒水体,增加水体中的溶解氧,试验池塘中下层溶解氧水平比对照塘高出59.5%,试验池塘叶绿素a浓度比对照塘低,说明一定程度上限制了浮游植物过渡繁殖。该养殖系统可为池塘健康养殖系统模式构建提供参考。  相似文献   

7.
对虾工程化循环水养殖系统构建技术   总被引:9,自引:4,他引:5  
讨论了一种高效经济保持藻类生长的对虾工程化循环水养殖系统构建技术。并利用此系统开展室内凡纳滨对虾生产试验。养殖用水采用经室外池塘充分氧化后的咸井水(盐度14‰~26‰),放苗密度:500尾/m2,排放水经系统处理后循环使用。并且在试验期间,探索了一种低耗高效运行模式。90 d养殖期,系统溶解氧均值5.1 mg/L,氨氮0.002~0.15 mg/L,pH值7.62~8.29,获良好水生态环境调控效果。系统产量4.6 kg/m2,饲料系数1.14,每生产1 kg虾耗水 1 000 L、耗电2.16 kWh,取得高产量、高效率养殖生产结果。  相似文献   

8.
人工湿地耦合微生物燃料电池(constructed wetland-microbial fuel cell,CW-MFC)被广泛应用于低碳氮比水产养殖废水处理。然而,高盐度抑制限制了其在海水养殖废水处理中的应用。针对高盐抑制,该研究利用海水底泥和海洋微藻构建电活性菌藻生物膜并结合虹吸曝气技术强化CW-MFC处理海水养殖废水。相比CW-MFC,强化系统对化学需氧量、总磷、总氮、磺胺甲恶唑、Cu2+的去除率分别提高33.46%,31.07%、25.64%、12.03%、24.25%。高通量测序显示,硝化和反硝化细菌Marinobacter、Muricauda、Xanthomarina生长状况良好;在MFC阳极和电活性菌藻生物膜表面,胞外呼细菌Geobacteraceae和Pseudomonas以及海洋微藻细菌Pseudooceanicola和Hoeflea被显著富集。研究结果表明,电活性菌藻生物膜耦合虹吸曝气技术可以有效提高CW-MFC系统处理海水养殖废水的效能。  相似文献   

9.
循环水养殖旋转式生物流化床生物过滤功能   总被引:2,自引:0,他引:2  
生物过滤是循环水养殖水处理的关键,生物过滤功能启动以及操作条件直接影响到生物过滤的效果。该文以实验室规模旋转式生物流化床为研究对象,采用自然挂膜法研究海水和淡水生物过滤功能的启动;设置了3个膨胀率50%、75%、100%和4个C/N0、0.5、1.0、2.0,研究其对旋转式生物流化床处理养殖污水效率的影响。结果表明:1)以氨氮和亚硝态氮浓度降低并稳定为判断标准,淡水和海水系统旋转式生物流化床生物过滤功能启动完成分别需要47和60 d;2)污水处理效率随膨胀率增大而提高,该研究膨胀率为100%时处理效率最高,总氨氮转换率高达881 g/(m3·d);3)C/N增大,抑制生物膜的硝化功能,污水处理效果变差,C/N大于2.0时污水处理效果显著变差。该研究可为旋转式生物流化床在应用过程中生物过滤功能的启动和日常操作管理提供技术指导。  相似文献   

10.
针对工厂化循环水养殖废弃物资源化利用难题,该研究将传统鱼菜共生技术进行改进,提出并构建一种菜-鱼复合设施种养模式。通过设计3路水循环工艺流程,将工厂化循环水养殖、蔬菜无土栽培(即鱼菜共生系统)与传统土壤种植结合,以促进水产养殖固液废弃物全循环利用。基于质量平衡原理,根据投饲量和养殖尾水排放量提出鱼菜生物量配比和发酵装置体积计算方式,以提高系统营养物质利用效率。建立一套中试系统,使用该系统同时养殖大口黑鲈、种植水培生菜和番茄160 d,结果显示:鱼类生长良好,最终养成密度为41.6 kg/m3,特定生长率为0.42%,存活率99.95%,饵料系数为1.4;蔬菜长势良好,收获水培生菜1 205 kg,收获番茄果实2 400 kg。水质情况总体稳定:总氨氮平均浓度为(0.83±1.46)mg/L、亚硝酸盐平均浓度为(0.035±0.062)mg/L、硝酸盐平均浓度为(25.1±8.06) mg/L、溶解氧浓度范围为4.25~7.16 mg/L、p H值平均为6.8;水产养殖废弃物发酵后,可使水体中总磷含量提高141%,钾离子含量提高7%;系统经济效益和生态效益较好:年利...  相似文献   

11.
本文以黑龙江省和北京市虹鳟养殖为例,应用生命周期评价方法,将虹鳟养殖生命周期划分为饵料生产、电力生产、化学品生产和养殖污染排放4个阶段,考虑了全球变暖潜势、能源消耗、酸化潜值和富营养化潜值4种环境影响类型,以获得1t养殖增重量为评价的功能单位,对虹鳟网箱养殖模式、工厂化流水养殖模式和工厂化循环水养殖模式的潜在环境影响进行了评价比较。结果表明,我国虹鳟养殖模式的环境影响从高到底依次是富营养化潜值、全球变暖潜势、酸化潜值和能源消耗;网箱养殖模式的环境影响指数分别为53.963、0.939、0.717和0.017,工厂化流水养殖模式的环境影响指数分别为35.213、4.827、2.896和0.049,工厂化循环水养殖模式的环境影响指数分别为7.404、5.545、3.305和0.055;富营养化潜值是虹鳟养殖的主要环境影响类型,其主要来自养殖污染排放。3种虹鳟养殖模式的环境影响综合指数分别为6.69、5.52和2.02,我国虹鳟养殖模式的环境性能从高到低依次为工厂化循环水养殖模式〉工厂化流水养殖模式〉网箱养殖模式。减少养殖污染排放、降低电能消耗和提高饵料利用率是提升我国虹鳟养殖模式环境友好性的关键。  相似文献   

12.
循环水养殖具有养殖密度大、环境污染低、经济效益高的优点,是重要的水产养殖模式。然而,如何快速高效地排出养殖池内的残饵粪便等污物,降低其对水质的影响是循环水养殖模式中面临的首要问题。该研究采用物理试验研究鱼类养殖密度对圆形循环水养殖池的水动力特性及污物运动汇集的影响,揭示不同流量驱动下养殖密度与养殖池自清洗能力的响应关系。结果表明:提高鱼类养殖密度会降低养殖池内整体流场的平均流速vavg,衰减幅度在0.05 m/s(25%)以内,并提高水中阻力系数Ct;鱼类游动引起的湍流能够导致池内污物再悬浮,有助于污物排出;集污时间同时受到养殖密度和流量的影响,9.8 L/min进水流量下集污时间都在5 min以内;进水流量为6.54 L/min时,养殖密度从0提高到6.2 kg/m3,湍流强度提高2.4倍,集污时间减少了40 min以上。因此,设计循环水养殖系统时需要综合考虑进水流量和预期养殖密度对养殖池自清洗性能的综合影响。研究结果可为圆形循环水养殖池的设计和日常管理提供参考。  相似文献   

13.
基于升降套筒体积调整的海蟹养殖定量投饵机设计   总被引:1,自引:1,他引:0  
为满足工厂化循环水养殖的需要,该文通过触摸屏后端控制单片机升降套筒调整体积定量设计了一套自动投饵机,克服了常用称重法的精度易受振动影响、行走式投饵设备称质量和行走不能同时进行的缺点,在保证性能的同时简化了结构、提高了效率。对系统投饵精度性能测试结果表明:该系统能够定时完成启停和控制过程,在设定投饵量在5~7 g/次时,误差控制在8%以内;设定投饵量在9~13 g时,误差不超过4%,可以满足工厂化海产养殖的需求。该研究可为今后海蟹类单筐养殖科学化、智能化提供参考价值。  相似文献   

14.
规模化水产养殖技术效率及其影响因素分析   总被引:4,自引:2,他引:2  
水产养殖园区是推动水产养殖业规模化生产的一种重要形式,对于促进中国水产养殖业生产方式转变和供给侧结构性改革具有重要意义。该文以浙江省为例,采用随机前沿方法分析了水产养殖产业园区的技术效率及其影响因素。结果表明:1)规模化水产养殖园区提高了养殖生产效率园区技术效率,技术效率从建成前的0.673上升到建成后的0.712;2)水产养殖园区标准化水平提升了养殖业技术效率,对技术无效率的回归系数为-0.0003;3)疾病控制设备对技术无效率起到积极的促进作用(回归对系数为0.0033),这意味着过度的基础设施投资将导致设备闲置,阻碍了提高技术效率;4)品牌建设对提高养殖技术效率起到积极作,回归对系数为0.0033;5)龙头企业对提高技术效率有最大的积极作用,渔业合作组织次之,养殖大户促进作用最小,三者对技术无效率的回归系数分别是-0.0017、-0.0015和-0.0008;而普通养殖户的回归系数则为0.0012,不利于提高养殖技术的效率。上述结果至少具有如下政策启示:应加大对水产养殖园区生产要素的投入,基础设施投入应遵循规模适度原则,注重品牌建设和创新渔业组织模式。  相似文献   

15.
为探索斑节对虾循环水养殖可行性及应用发展价值,该研究自主设计蛋白分离组合装置、内循环流化床等关键工艺环节水净化装备,构建了技术先进、结构紧凑的斑节对虾循环水养殖系统。针对其不同阶段生长特性及水环境需求,提出一种水质调控方法,科学投喂。运行试验120d,溶解氧浓度5.30~7.14mg/L,p H值7.23~8.44,氨氮浓度0.43~1.38 mg/L(稳定运行后),亚硝酸盐氮浓度0.15~0.56 mg/L(稳定运行后);斑节对虾在循环水养殖模式水生态环境下正常生长,先后经历快速生长期、稳定生长期及缓慢生长期,终末养殖密度3.02 kg/m2,取得高效养殖结果;终末饲料系数1.67,单茬每平方米利润34.78元,每平方米年利润69.56元(按1年2茬计),获得良好经济效益。该实践可为斑节对虾循环水养殖模式应用提供技术支持。  相似文献   

16.
基于有限元的深水延绳式浮筏养殖装置抗风浪能力分析   总被引:1,自引:2,他引:1  
由浮漂、网笼、主绳、桩绳以及锚固入海底的锚桩构成的延绳式深水浮筏养殖设施处于风大、浪高、流急的深水开放水域,受到复杂海况的作用,其结构的安全性与可靠性将直接影响到整个养殖生产的成败,在其结构设计时需要考虑海洋风浪流的影响,对其受力和运动特性进行研究,进而分析其抗风浪能力,为养殖设施结构的参数设计提供参考。该文基于有限元方法,通过对深水延绳式浮筏养殖装置的受力特性及其变形情况进行分析,建立筏架系统有限元分析模型,利用Broyden迭代法解有限元方程,计算了系统在不同浪级(即不同波高)海况下的筏架系统位移和桩绳的最大张力,对养殖装置的抗风浪能力进行了计算分析。以架设于獐子岛海域30 m水深的深水浮筏养殖设施为计算实例,结果显示,主绳长300 m的筏架系统在1.5 m/s流速的海域中,其桩绳最大张力为78.8 k N,横向最大位移为18.5 m,抗风浪能力为6~7级海浪(6 m波高);实测结果分别为72.7 k N、16.9 m,计算结果与实测值吻合良好。通过进一步的试验验证,该分析模型可为深水延绳式浮筏养殖设施的实际工程设计提供理论参考。  相似文献   

17.
为了探究微电流电解技术去除养殖水体中氨氮的效果,试验以盐度为30‰(质量分数)人造海水为对象,设置了循环水温度、流速和电流密度3个参数以及对应参数的3个水平,探究其对氨氮去除率的影响。试验结果表明,在试验设置的温度(18、25、32℃)和流速(100、300、500 m L/min)条件下,循环水温度和流速的变化对氨氮去除率影响并不明显。试验设置的电流密度(20、40、60 A/m2)条件下,对氨氮去除率有明显作用,且电流密度越大,单位时间内氨氮去除速率越快。正交试验确定了最优去除条件为电流密度、水温和流速分别为40 A/m2、32℃、500 m L/min。通过能耗分析可知,在设定的参数范围内,不同温度条件下最低能耗条件为电流密度40 A/m2、流速300 m L/min,最低的能耗为21.26 Wh/kg。研究结果可以为微电流电解在海水循环水养殖中氨氮降解提供参考。  相似文献   

18.
循环水养殖水处理系统中UVC-LED光反应器的CFD模拟及优化   总被引:1,自引:1,他引:0  
为探究循环水养殖水处理系统中紫外发光二极管(Ultraviolet C Light Emitting Diode,UVC-LED)光反应器的合理结构,基于计算流体力学(Computational Fluid Dynamics,CFD)的方法建立了UVC-LED光反应器消毒计算模型,并对该反应器进行了验证与优化.结果表明...  相似文献   

19.
生物絮凝反应器对中试循环水养殖系统中污水的处理效果   总被引:2,自引:0,他引:2  
试验设计了一种生物絮凝反应器,用作中试规模循环水养殖系统(recirculating aquaculture system,RAS)的唯一水处理装置,研究其在不同水力停留时间(hydraulic retention time,HRT,12、6、4.5、3 h)条件下的运行效果。试验结果表明,反应器可耐受最小HRT为4.5 h,当HRT降低至3 h,反应器发生不可逆的洗出现象而使试验不能继续进行。反应器絮体沉降性能一般,随着HRT的减小(12、6和4.5 h HRT),絮体体积指数(SVI-30)逐渐降低,但是始终大于150 m L/g,为丝状菌膨胀,主要的丝状细菌由TM7 genera incertae sedis逐渐演变为Haliscomenobacter和Meganema菌属,相对丰度逐渐降低。12 h HRT反应器污染物去除率最高。反应器亚硝氮(NO_2~--N)、硝氮(NO_3~--N)在4.5 h HRT出水质量浓度最低,分别为(0.02±0.01)、(1.70±0.06)mg/L;氨氮(total ammonium nitrogen,TAN)、总氮(total nitrogen,TN)、悬浮颗粒物(suspended solids,SS)出水质量浓度在12 h HRT时最低,分别为(0.48±0.05)、(4.47±1.00)、(14.20±8.14)mg/L,同时未造成有机污染。4.5 h HRT对RAS养殖区污染物的控制效果最佳,TAN、NO_2~--N、NO_3~--N、SS质量浓度分别被控制在0.76、0.10、2.95、60.00 mg/L以下。反应器在不同HRT条件下均以异养细菌为主,主要通过同化作用去除TAN,好氧反硝化细菌和厌氧反硝化细菌同时是反应器的优势菌属。反应器可获得较长的稳定运行状态和良好的水处理效果,具有用作RAS核心水处理装置的可行性,该研究可为其在RAS的进一步研究和应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号