首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 359 毫秒
1.
  【目的】  探明不同钾供应条件下控制产量及钾效率相关性状的稳定的显著关联分子标记位点,为小麦产量及钾效率相关性状的遗传控制机理研究及相关基因的克隆提供参考。  【方法】  利用134个小麦品种 (系) 组成的群体为试验材料,设置正常供钾 (T1) 和不施钾 (T2) 两个处理,进行了2年田间试验 (E1、E2)。对小麦成熟期株高、穗长、穗粒数及钾吸收、利用效率等23个性状进行了表型鉴定,分别定义了同年同一处理和同一处理两年平均共6个环境平均值。采用GLM+Q一般线性模型和MLM+K+Q混合线性模型相结合的方法,利用群体差异SNP分子标记 (90K SNP芯片) 对小麦产量和钾效率相关性状进行全基因组关联分析。  【结果】  与正常钾处理相比,不施钾处理条件下籽粒钾利用效率显著升高,单株钾累积量、单株钾含量及总小穗数等性状显著降低。供试小麦各性状的群体变异系数为6.98%~350.38%,有14个性状的遗传力在50%以上,以株高的遗传力最高 (92.03%)。利用保留的7485个多态性好的群体差异 (SNP) 进行了全基因组关联分析,共检测到1420个分子标记位点与供试23个性状在P ≤ 0.001水平存在显著关联,分布在21条染色体上。有1097个 (77.25%) 分子标记位点仅在一个关联分析环境中被检测到;能在至少两个关联分析环境中被检测到的相对稳定分子标记位点有323个,其中113个位点与钾效率相关性状有关,Tdurum_contig26281_139、Kukri_c307_2053等分子标记位点可以提高钾吸收效率,Ex_c19038_571、BS00039148_51等分子标记位点能够提高钾利用效率。在至少4个关联分析环境中被检测到的位点有22个,分别与株高、千粒重、穗粒数等5个性状相关。与株高和千粒重显著关联的分子标记位点RFL_Contig4069_2628和BS00003632_51可同时在全部6个关联分析环境中检测到,平均贡献率为9.59%和13.66%,环境稳定性非常好,与株高的降低和千粒重的提高显著关联。  【结论】  不同钾供应水平下与产量及钾效率相关性状显著关联的分子标记位点存在显著差异,77.25%的分子标记位点仅在特定环境下被检测到。但也有22个显著关联分子标记位点 (涉及9个产量及钾效率相关性状) 在至少4个关联分析环境 (共6个环境) 下被检测到,形成高频表达分子标记位点。其中与株高和千粒重分别显著关联的两个分子标记位点在所有6个关联分析环境中均稳定被检测到,能显著降低株高和提高千粒重。这些分子标记位点的相关基因对相关性状的调控效应受钾处理环境影响小,具有较高的理论和应用价值,值得深入研究。  相似文献   

2.
  【目的】  探明控制产量及氮效率相关性状的稳定基因关联位点,为高产和氮素高效小麦育种及养分管理提供参考。  【方法】  采用134个小麦品种 (系) 为试验材料,依据小麦产量水平600和400 kg/hm2的需氮量设置正常氮 (T1) 和低氮 (T2) 2个处理,进行了2年田间试验,共形成4个处理环境。对小麦成熟期与产量及氮效率相关的14个性状进行了表型鉴定,采用GLM + Q一般线性模型和MLM + K + Q混合线性模型相结合的方法,利用群体差异SNP分子标记 (90K SNP芯片) 对小麦产量和氮效率相关性状进行全基因组关联分析。  【结果】  与正常氮处理相比,低氮处理条件下小麦籽粒产量、秸秆产量显著下降;所有性状的遗传力均在75%以上,其中小穗数的遗传力最高 (95.12%)。利用9329个SNP标记进行关联分析,共检测到382个SNP标记位点与供试14个性状存在显著关联(P ≤ 0.001),分布在21条染色体上。有305个 (79.84%) SNP标记位点仅在一个关联分析环境中被检测到;有77个位点在至少两种处理环境 (包含平均值环境) 中被检测到与同一性状显著关联 (稳定关联标记)。其中9个SNP标记位点在至少3个环境中被检测到。在4个环境下 (包括平均值环境) 均检测到的稳定关联位点有4个:BobWhite_c47168 _598、Kukri_c31599_1456、wsnp_CAP11_c1761_958064和Excalibur_c62826_254,分别与穗粒数、籽粒氮含量和小穗数显著关联;同时与至少3个性状显著关联的SNP标记位点共12个,分别位于2A、3A、4A、5B和7B染色体上,贡献率为11.14%~22.97%,其中,标记BobWhite_c47168_598和Kukri_c31599_1456还分别定位了两个多环境 (4种环境) 稳定位点。根据12个与多性状共同定位位点和4个多环境 (4个环境) 稳定位点关联的SNP标记位置获得稳定位点附近区域的基因 (基于LD block等方式估算的区间大小),使用NCBI中CDD工具和EnsemblPlants网站对这些基因进行基因功能注释,根据功能注释,共得到10个与产量和氮效率性状相关的候选基因。  【结论】  氮供应水平对小麦成熟期产量和氮效率相关性状均有显著影响,氮素累积量与小麦产量显著正相关。本试验中检测到的与产量及氮效率相关性状显著关联的位点中,79.84%的SNP标记位点仅在一个氮处理环境中出现,环境稳定性较差;4个位点在4个环境条件下均被检测到,环境稳定性较好;12个SNP标记位点同时与至少3个性状显著关联,涉及性状均为产量及氮效率相关性状,反映了籽粒产量与氮素效率之间的显著相关关系,也可能是同时控制这些性状的遗传热点位点。根据这些热点位点和环境稳定性好的位点筛选到10个与产量及氮效率相关性状有关候选基因,值得深入探讨。  相似文献   

3.
不同磷、钾处理小麦苗期氮营养性状的QTL分析   总被引:1,自引:0,他引:1  
【目的】 对不同浓度磷、钾处理下小麦苗期氮养分效率相关性状进行QTL分析,以深入理解磷、钾与氮养分效率的相互关系,为氮营养相关性状的图位克隆及分子标记辅助选择育种奠定基础。 【方法】 采用苗期液培试验,以“川35050 ×山农483”组合衍生的小麦重组自交系群体(131个株系)为研究材料,设置了中磷中钾(MPMK)、高磷(HP)、低磷1 (LP1)、低磷2 (LP2)、低磷3 (LP3),高钾(HK)、低钾1 (LK1)、低钾2 (LK2)、低钾3 (LK3)共9个处理,对不同磷、钾处理下的氮养分效率相关性状进行研究,并结合分子标记遗传图谱,从整个基因组水平对与小麦苗期氮养分效率相关的10个性状进行QTL定位及遗传分析。 【结果】 不同处理下的10个性状共检测到137个QTL,位于除3D外的20条染色体上,大部分QTL (89.05%)仅在单一处理下被定位到,有3个QTL (QRnue-1A.2、QSnue-1A.1和QTnue-1A.1)可在至少4个处理中被检测到,有5个QTL (QRnue-1A.1、QTnue-1A.1、QSnc-4A、QRnc-6A.3和QSnue-6B)可同时在低磷和低钾环境中被检测到。本研究还检测到至少包含3个以上QTL的QTL簇17个,分别位于1A、1B、2B、2D、3A、3B、4A、4B、5D、6A、6B、6D和7A染色体上,共涉及66个QTL,占QTL总数的48.18%。其中,有5个QTL簇仅与特定磷、钾处理有关,大多数QTL簇均同时定位了不同磷、钾处理的不同性状,许多QTL簇位点还与前人定位的生物量、产量及其他养分有关。 【结论】 磷、钾的供应能够显著影响小麦苗期对氮素的吸收利用及其相关QTL的表达。影响苗期小麦氮养分效率相关性状的QTL大多数仅在特定处理下被检测到,但大多数QTL会形成QTL簇,构成了控制氮养分效率的QTL热点,许多热点区域也与前人定位的许多成株期性状如生物量、产量及其他养分效率有关,这些QTL/基因密集区域及其特点的发现,为我们深入理解小麦氮养分效率的遗传控制特点及其与磷、钾养分供应的关系提供了新的视角,也为这些重要位点的克隆及其应用提供数据支持。  相似文献   

4.
  【目的】  筛选与小麦耐低钾性状相关的标记,为揭示小麦耐低钾性状的遗传机理奠定基础。  【方法】  本研究以198份中国黄淮南片麦区的小麦品种 (系) 作为供试群体。小麦种子发芽后,幼苗在正常钾营养液中生长4天,然后在低钾 (0.01 mmol/L) 和正常钾 (2 mmol/L) 营养液中生长25天。调查生物量,分析地上部和根部钾含量,计算小麦7个性状的相对值,利用小麦35K SNP芯片结合Q + K混合线性模型 (mixed linear model,MLM) 对7个耐低钾性状进行全基因组关联 (genome-wide association study,GWAS) 分析,筛选位于显著关联位点上的候选基因并进行功能注释,对显著关联位点进行等位变异分析,发掘优异等位变异。  【结果】  低钾胁迫条件下,地上部、根部、全株钾累积量和钾累积量根冠比显著降低,地上部、根部、全株钾利用指数显著升高。群体结构分析和PCA分析均将供试群体分为2个亚群。通过GWAS分析,共检测到75个显著关联单核苷酸多态性 (single nucleotide polymorphism,SNP) 标记 (P < 0.001),分布在除1A、3B、3D、4D和6A染色体外的16条染色体上。通过候选基因搜寻及注释,共筛选出13个可能与小麦耐低钾胁迫相关的候选基因。等位变异分析共挖掘了 14 个优异等位变异,其中 6 个优异等位变异在供试群体中出现的频率较大。  【结论】  7个耐低钾性状均具有明显的数量性状特征,变异系数范围为20.66%~30.44%。40%的SNP标记分布在2B、5B和6B染色体上,21个SNP位点与多个耐低钾性状显著关联,单个SNP标记解释的表型贡献率的变异范围为5.78%~11.22%。TraesCS4A02G335400、TraesCS2B02G306000、TraesCS5B02G260000可能参与物质转运过程,TraesCS1D02G350600和TraesCSU02G105300可能参与逆境胁迫响应等生理过程,TraesCS2A02G000200可能参与逆境胁迫下的信号转导过程。  相似文献   

5.
为进一步了解小麦苗期钾、钠吸收的相关性和遗传特征,本试验在温室环境下,以RIL(Recombinant Inbred Lines, RIL)群体为试验材料,采用营养液培养法对不同K+、Na+浓度处理条件下小麦苗期生长及钾、钠的积累、分配及利用等相关的20个性状进行了鉴定,探讨了K+和Na+的关系及其对小麦苗期生长的影响;并对所有相关性状进行了QTL(Quantitative trait loci,QTL)分析。结果表明,缺钾条件下,供应钠能够显著提高小麦体内的Na/K比,但对小麦的生物量没有显著影响,表明钠替代钾的能力较差。而正常钾条件下,供钠可显著促进钾、钠的吸收,提高了Na/K比,但地上部的生物量反而显著下降,表明大量的钾和钠的累积对小麦地上部生物量的形成不利。小麦苗期对钾、钠离子的吸收与累积呈显著正相关。本试验在小麦全部的21条染色体上共检测到与生物量及钾、钠相关性状有关的QTLs 141个。其中的103个QTLs 组成了14个重要的QTL簇,有11个QTL簇同时定位了钾、钠相关性状位点。另外,试验还发现了8个在多个养分环境条件下均可检测到的QTL位点高频表达的QTL位点(RHF-QTLs),其中4个是新发现的位点。这些重要的QTL位点为K+、Na+关系及其遗传控制的深入研究提供了重要参考。  相似文献   

6.
不同氮水平下玉米苗期根系形态和氮吸收量的 QTL 定位   总被引:4,自引:2,他引:2  
【目的】玉米的根系形态与氮素吸收能力关系密切,利用单片段代换群体对玉米苗期根系形态相关性状和植株氮吸收量进行 QTL 定位,可为进一步精细定位并克隆控制玉米低氮下优异根系形态和氮吸收的主效 QTL 奠定基础。【方法】以氮效率差异显著的两亲本许 178 和综 3 构建的 150 个玉米单片段代换系 (SSSL) 群体作为研究材料,进行水培试验。以 Ca (NO3)2 作为氮源,设置高氮 (4 mmol/L NO3– )和低氮 (0.05 mmol/L NO3– ) 两个处理,培养 20 d 后分根、冠收获植株,测定生物量和氮含量。通过 WinRHIZO 根系分析系统获得根系的总根长、根表面积、根体积、根直径和根尖数等指标。根据代换系与亲本许 178 表型值的 T-test 结果,利用该群体 SSR 遗传连锁图谱,在 P ≤ 0.001 条件下定位所调查性状的 QTL。【结果】高氮条件下 SSSL 群体除了根直径与总根长和根尖数没有显著相关性以外,其它各性状之间均显著或极显著正相关,并且植株氮吸收量也与根系各性状呈显著或极显著正相关;低氮条件下,除了根直径以外,植株氮吸收量与其他根系性状均呈极显著正相关,并且地上部和根部氮累积量均与根表面积的相关性最大。在高氮条件下共检测到 102 个 QTL 位点,包括 40 个根形态相关 QTL、34 个植株生物量 QTL 和 28 个氮吸收量 QTL;在低氮条件下共检测到 85 个 QTL 位点,包括 47 个根形态 QTL、22 个植株生物量 QTL 和 16 个氮吸收量 QTL。所检测到的根形态相关 QTL 与生物量和氮积累量 QTL 成簇存在,同一 QTL 区间多同时检测到根形态 QTL 和氮吸收量 QTL。高氮条件下,在代换系 1428、1376、1282、1266 和 1473 的代换区间上检测到高氮特异的 QTL 簇,同时包括多个根形态和氮吸收量 QTL,贡献率从–43% 到 84%。低氮下,在代换系 1419 和 1314 的代换区间上同时检测到低氮特异的多个根形态和氮吸收量 QTL,贡献率从–32% 到 55%。【结论】单片段代换系 1419 和 1314 所包含的代换片段 bnlg182—bnlg2295 和 umc1013—umc2047 检测到多个低氮特异的 QTL,并且这两个区间在前人的研究中均有玉米氮效率相关 QTL 检测到,说明该区间包含有玉米根系形态和氮吸收量的主效 QTL,在玉米氮高效吸收中可能起重要作用。  相似文献   

7.
小麦萌发期幼苗相关性状耐旱系数的QTL定位   总被引:2,自引:0,他引:2  
为了检测与小麦幼苗耐旱性相关的数量性状位点,用3个关联重组自交系(RIL)群体,对小麦萌发期幼苗的胚芽鞘长、苗高、最大根长、根数、苗鲜重、茎叶鲜重、根鲜重、根冠鲜重比、苗干重、茎叶干重、根干重、根冠干重比等12个表型性状的耐旱系数进行QTL定位。结果显示,共检测到28个耐旱相关位点,分布在小麦的1BL、1D、2B、3A、3B、3D、4A、6A、6B、6D、7A、7B等12条染色体上,可分别解释表型变异的5.61%~64.22%,其中,6个位点通过同一群体不同性状的耐旱系数检测到,2个位点通过2个群体不同性状的耐旱系数检测到,分别位于4A染色体的Xbarc61~wpt-9675标记区间和6A染色体的wpt-9679~wpt-8177标记区间内,这2个位点实现了在不同群体间的相互验证,可靠性大大提高。这些位点的发现对于小麦萌发期耐旱性的精细定位、图位克隆和分子标记辅助选择具有重要的意义。  相似文献   

8.
【目的】鉴定影响水稻氮、磷、钾利用相关性状的QTL,为开展水稻养分高效利用分子标记辅助选择育种和肥高效基因的图位克隆提供依据。【方法】以云南强耐冷(2级)粳稻地方品种丽江新团黑谷与十和田杂交、回交获包含105个株系的孕穗期耐冷性近等基因系BC4F8及双亲为材料,在云南白邑(冷水胁迫)、寻甸(自然低温胁迫)和玉溪(正常生长环境)3种生长环境下进行水稻氮、磷、钾养分吸收相关性状的鉴定,并利用构建的含有180个SSR标记,全长为1820.6 c M,标记间平均距离为15.67 c M的遗传图谱,用基于完备区间作图法的QTL Ici Mapping V3.2软件对16个性状进行QTL定位分析。【结果】3种环境下共检测到56个QTL,分布在第1、2、3、4、5、6、7、9和10染色体上,单个性状QTL数为1~10个,单个QTL可解释的各自性状表型贡献率为8.88%~35.30%。其中,氮、磷、钾利用效率QTLs数分别为12个、27个和17个。而q TNA-1a、q TPA-1、q PHI-1、q PHI-6、q PHI-7b和q KHI-6共6个QTL在冷害和正常环境下均能检测到,稳定性较高,其贡献率变幅为10.63%~31.57%。在第1、3、4、5、6、7和10染色体上有13个标记区域存在QTL成族分布,单个QTL位点控制的性状数为2~5个,其中共同控制磷总吸收量、磷素干物质生产效率、磷素收获指数、每100 kg籽粒需钾量和钾素收获指数等性状的位点数最多。【结论】获得56个影响氮、磷、钾利用相关性状的QTL,且发现的13个QTL富集区可作为水稻氮、磷、钾高效利用分子育种的重要候选区域。  相似文献   

9.
  【目的】  磷素是植物生长发育过程中必需的大量元素之一,土壤磷水平的高低对植物地上部和地下部性状有着显著的影响。探究高、低磷水平对小麦地上和地下部性状变化以及地上和地下部性状相关性变化的影响,为研究不同磷环境对小麦生长的影响,选育适应不同磷环境的优良小麦品种提供参考。  【方法】  小麦品种和磷水平双因素盆栽试验在河北农业大学温室内进行,供试土壤有效磷含量为5.50 mg/kg。试验设置0和200 mg/kg两个施磷水平;选用10个小麦品种。小麦分别在两个磷水平下生长35天后收获,测定小麦幼苗地上部性状(干重、相对生长速率、地上部磷吸收量、地上部磷含量和叶绿素含量)和根部性状(根干重、根长、根冠比、比根长、根直径、细根比例、根组织密度、根际土壤pH和酸性磷酸酶活性)。  【结果】  与高磷处理相比,低磷处理小麦地上部干重、地上部磷吸收量以及地上部磷含量分别显著降低了57.9%~72.2%、85.7%~89.8%、61.3%~71.7%,小麦根长、细根比例、根组织密度、根冠比以及比根长分别增加了50.9%~249.5%、32.5%~442.5%、–34.5%~400.0%、27.4%~198.9%、74.4%~395.3%,酸性磷酸酶活性提升了–8.1%~120.9%。在低磷条件下,小麦有32组地上和地下部性状间显著相关,在高磷条件下只有20组性状显著相关;低磷处理小麦地上和地下部协同相关性较高磷处理提升了60%。  【结论】  低磷条件下,小麦地上和地下部性状关联性较高,高磷供给弱化了小麦地上和地下部性状的关联性。  相似文献   

10.
【目的】设施蔬菜生产中施用蚓粪能够促进蔬菜生长发育和提高产量与品质,但施用蚓粪替代化肥的最佳比例尚需明确。【方法】以黄瓜为供试材料,以100%化肥(100%CF)处理和不施肥处理(CK)为对照,研究不同比例蚓粪(VM)部分化肥对温室黄瓜植株钾素吸收、果实产量和品质的影响。【结果】与100%化肥处理相比,减施25%化肥处理黄瓜植株钾素含量、生物量和产量并未显著降低;蚓粪替代25%化肥处理植株钾素吸收量、果实产量和品质均得到显著提升,其中产量提高14.51%,植株钾吸收量提高42.27%;蚓粪替代50%化肥处理黄瓜果实硝酸盐含量显著降低,植株钾素吸收量、生物量和产量无显著差异;100%蚓粪处理植株钾素吸收量、生物量、产量、品质均显著降低,其中产量降低了24.25%,果实可溶性固形物含量降低15.59%。【结论】在等养分条件下,蚓粪替代25%化肥,能促进植株钾素吸收,提高产量和改善品质。  相似文献   

11.
【目的】施用小分子有机酸钾是促进水稻生长和提高水稻产量的重要措施之一。本试验研究了3种小分子有机酸钾在不同浓度下对水稻种子萌发和幼苗生长的影响,为促进水稻增产及研发新型肥料增效剂提供理论依据。【方法】以水稻种子‘临稻21’为试验材料进行了种子萌发试验和水培试验。以不含钾盐处理为空白对照 (CK),供试钾盐包括硫酸钾 (IOS)、甲酸钾 (OSA)、乙酸钾 (OSB) 和丙酸钾 (OSC),设两个K+浓度分别为0.25和0.50 mmol/L。将种子置于25℃培养箱中,培养至两叶一心时,转入含有不同浓度钾盐的营养液中进行12 h光照/12 h黑暗、25℃恒温处理,至水稻幼苗长到四叶一心时,测定幼苗生长、根系形态和光合特性。【结果】1) 小分子有机酸钾促进了水稻种子提早萌发,培养48 h后,当K+浓度为0.25 mmol/L时,OSA-1和OSB-1较IOS-1水稻发芽率显著提高35.6%和37.8%;当K+浓度为0.50 mmol/L时,OSA-2和OSB-2较IOS-2水稻发芽率显著提高34.0%和27.7%;2) 与IOS相比,OSA-1、OSA-2和OSB-1显著促进了水稻幼苗叶片的宽度和鲜重的提高,并使水稻幼苗根重、总根长、根表面积和根体积显著提升;3) 与IOS处理相比,OSC处理提高了水稻幼苗叶片叶绿素含量,OSA和OSB处理显著提高了水稻幼苗叶片净光合效率、气孔导度和蒸腾速率;4) 施用小分子有机酸钾能够提高水稻幼苗根系活力,进而促进了水稻幼苗对钾素的吸收,OSA-2和OSB-2处理幼苗全钾含量较IOS-2显著提高19.6%和28.3%。【结论】与硫酸钾相比,甲酸钾、乙酸钾和丙酸钾3种小分子有机酸钾处理可促进水稻种子提前萌发,促进水稻幼苗的生长、光合效率的提高以及对钾素的吸收,以0.25 mmol/L甲酸钾 (OSA) 的促生效果最好。  相似文献   

12.
【目的】探索宁夏引黄灌区春小麦不同生育时期氮(N)、磷(P)、钾(K)养分吸收利用对气候变暖的响应机制,为预测气候变暖对干旱半干旱区春小麦生长的影响提供依据。【方法】试验于2018年3月在宁夏银北引黄灌区宁夏大学试验站进行。供试春小麦品种为‘宁春50号’,供试肥料为磷酸二铵和尿素。采用自动控制红外线辐射器进行野外增温,每个小区内分别设置一组红外灯管作为增温装置、一套自动控温电子设备与一组可移动温度传感器作为控温装置,增温装置直接连接控温装置以使增温梯度达到预设水平,增温时间为昼夜不间断增温。以春小麦冠层自然温度为对照温度 (增温0℃,CK),设置4个增温梯度 (0.5℃、1℃、1.5℃、2.0℃) 处理。于苗期、拔节、抽穗、灌浆、灌浆后10天、成熟期采集植株样品,测定叶、茎、穗的N、P、K养分含量,计算地上部各器官的养分累积吸收量、养分分配率和地上部植株养分累积量,并测定春小麦植株地上部干物重和产量。【结果】增温0.5℃,春小麦植株苗期干物重、拔节期地上部各器官N、P、K养分含量及养分累积吸收量均显著高于CK。增温1.0℃,苗期植株N、K含量和N素吸收量以及拔节期叶片的N、P、K含量显著高于CK,较对照提高3.2%~23.7%。增温1.5℃,仅苗期植株K含量显著高于CK,较对照提高22.2%。增温2.0℃,从苗期开始各项指标均显著低于CK。拔节期以后,除增温0.5℃春小麦K素含量与CK差异不显著外,其余指标均显著低于CK,春小麦成熟期小穗数、穗粒数、千粒重、产量均随温度的升高呈下降的趋势,增温2.0℃,分别较对照降低53.7%、24.1%、13.4%、21.7%。增温梯度越大,各指标下降的幅度越大。【结论】春小麦苗期温度升高0.5℃~1.0℃尚有利于拔节期前春小麦对N、P、K养分的吸收,但拔节期后增温超过1.0℃以上都会对N、P、K养分吸收产生显著负作用,导致使生育后期干物质的累积量减少,千粒重、穗粒数等降低,并最终导致产量和品质的下降。  相似文献   

13.
低氮胁迫下玉米幼苗氮素和蔗糖分配特性   总被引:1,自引:1,他引:0  
  【目的】  明确玉米自交系幼苗氮素吸收、转运与利用特性,探究低氮胁迫下其不同表型和生理性状的变化规律。  【方法】  以玉米自交系XY4和PH4CV为供试材料,进行了水培试验。设置正常氮 (N 2 mmol/L,NN) 和低氮 (N 0.04 mmol/L,LN) 两个氮水平,从培养3 h起,每3天测定一次幼苗生物量、光合特性、根系性状及氮素和蔗糖含量,直至第12天。  【结果】  玉米幼苗根系对低氮胁迫的反应早于地上部,与NN处理相比,LN处理PH4CV和XY4的根干重分别在培养第3和第6天时增加了65.15%和84.63%,而从培养第9天开始,LN处理下两自交系幼苗地上部干重显著低于NN处理,由此导致根冠比增加;与NN处理相比,LN处理下除了胞间CO2浓度 (Ci) 和水分利用效率 (WUE) 外,两自交系幼苗叶片的SPAD值、净光合速率 (Pn)、蒸腾速率 (Tr) 和气孔导度 (Gs) 等光合特性均显著降低,且XY4下降幅度均大于PH4CV;LN处理下两自交系幼苗根干重的变异来源并不一致,XY4根干重的增加与总根长、根表面积、根体积、侧根数和初生根长增加有关,而PH4CV主要与侧根数目增加有关;与NN处理相比,LN处理两自交系幼苗地上部的氮素积累量和蔗糖含量显著降低,且XY4老叶的氮素含量下降速率明显快于PH4CV,而根系的氮素积累量、单株氮素生理利用效率和根中蔗糖含量均显著增加,且XY4增加的幅度均大于PH4CV。  【结论】  低氮胁迫促使玉米幼苗分配给地上部的氮素和蔗糖相对较少,因此限制地上部生物量积累及叶片光合能力的发挥,而分配给根系的氮素和蔗糖相对较多,从而促进根系形态建成,以利于吸收更多的氮素。  相似文献   

14.
草珊瑚植株表型对光照和氮素营养的响应   总被引:1,自引:0,他引:1  
【目的】草珊瑚 [Sarcandra glabra (Thunb.)Nakai] 是一种极具药用及观赏价值的多年生草本或亚灌木植物,氮素与光照强度均是植物生长发育过程中的关键性因素。本文研究了不同光照强度和氮素浓度下草珊瑚植株的形态特征、生物量积累及分配的变化,初步提出了草珊瑚人工栽培适宜的光氮组合。【方法】以1年生草珊瑚为试验材料,在华南农业大学跃进北实验大棚内 (N23°09′58.80″ 、E113°21′46.00″,海拔高度约为60 m) 进行了盆栽试验。设定自然光照的80%(L1)、60%(L2)、40%(L3) 三个强度水平,施N 0(N0)、83.3 mg/kg(N1)、167 mg/kg(N2)、250 mg/kg(N3) 四个水平。幼苗于2016 年3月移栽,12 月取样监测了苗木苗高、地径、生物量、根系特征和叶片特征等指标。【结果】草珊瑚形态指标中主根长、根尖数、苗高、地径、叶面积均在L2N2处理下达到最高,比叶面积在L2N1处理下达到最大。氮素水平一定时,根、茎、叶鲜重和干重均在L2光照水平下达到最大;光照强度一定时,其在N2水平下达到最大。生物量分配受氮素影响显著,受光照影响不显著,但光照和氮素有一定的交互作用。N0和N1水平的根系生物量占比和根冠比显著高于N2和N3水平;N2和N3水平的茎叶生物量占比及叶根生物量比均显著高于N0和N1水平;叶生物量占比在N2水平下显著高于其他氮水平,其在N2水平下,L2光照水平的叶生物量和叶根比达到最大;形态参数对光照强度和氮浓度变化的可塑性指标PI = 0.38、PI = 0.37;生物量积累对氮浓度变化的可塑性指标PI = 0.43,是光照强度对其影响的表型可塑性的1.65倍;生物量分配的表型可塑性参数PI = 0.19,是其对光照响应的3.80倍。【结论】草珊瑚有较好的氮浓度变化适应性,即当氮浓度在试验范围内变化较大时,草珊瑚仍能较好地适应性生长,对光照强度变化的可塑性较低,即当光照强度在试验范围内变化较大时,不利于草珊瑚的生长,对光照强度变化适应性低。在60%自然光+施氮167 mg/kg土组合处理下草珊瑚生长最佳,有利于提高草珊瑚产量。草珊瑚应对不同光氮环境的策略主要是通过调整根茎叶的形态特征来适应光照及氮素的变化,且主要通过调整根、茎、叶生物量的积累及分配来适应氮素的变化。  相似文献   

15.
【目的】苹果连作障碍发生普遍,严重影响果树生长。研究连作条件下平邑甜茶对氮素吸收、分配和利用的影响,为阐明连作障碍发生机制和防控苹果连作障碍提供理论依据。【方法】盆栽条件下,以平邑甜茶为试材,利用15N同位素示踪技术,研究了平邑甜茶对氮素吸收、分配和利用的影响。试验处理分为连作土溴甲烷熏蒸 (T1)、连作土高温灭菌 (T2)、麦田土 (T3) 和连作土 (CK) 四个处理。分别在8月和9月份进行两次取样,测定了不同处理间生物量、根系、氮素和土壤微生物的差异。【结果】连作显著抑制了平邑甜茶幼苗的生长和根系构型。与连作土溴甲烷熏蒸、高温灭菌和麦田土处理相比,连作土处理9月份幼苗的鲜重分别减少了46.77%、46.50%和27.38%;株高分别减少了41.97%、41.95% 和 23.51%;根系面积分别减少了56.21%、55.72%和48.04%。与麦田土相比,连作改变了土壤微生物群落,增加了有害真菌数量,减少了细菌数量,降低了细菌/真菌比值。9月份连作土壤真菌数量是麦田土处理的1.76倍,细菌占麦田土的78.77%。连作减少了氮素对各器官的贡献率 (NDff),显著低于连作土溴甲烷熏蒸、高温灭菌和麦田土处理。与连作土溴甲烷熏蒸、高温灭菌和麦田土处理相比,连作土处理9月份叶片组织的NDff分别减少了61.34%、58.65%、57.36%。同时,连作还影响氮素在植株各器官的分配。连作平邑甜茶根系分配了更多的15N,9月份达到42.11%。而叶片组织的15N分配率显著低于其他三个处理,并随着连作时间的延长,叶片组织的15N分配率越少,9月份仅占29.25%。连作还减少了氮肥的利用率,显著低于正常水平。9月份连作土氮肥的利用率为13.33%,与连作土溴甲烷熏蒸、高温灭菌和麦田土处理相比,分别减少了67.19%、67.68%、60.39%。连作还影响了根系功能,与溴甲烷熏蒸、高温灭菌和麦田土处理相比,连作条件下幼苗的根系活力分别降低了39.71%、40.64%和26.80%;根系质膜H+-ATP-ase活性分别减少了41.44%、38.24%、25.78%。【结论】土壤微生物是引起苹果连作障碍的主要因素,连作不仅抑制了植株生长和根系构型,还抑制了根系功能,减少对土壤氮素的吸收,降低氮肥的利用率,影响各器官氮素的分配。连作使根系消耗过多的营养,减少了对地上部分的供应,进而影响地上部分的生长和发育。  相似文献   

16.
苗期耐低磷烟草基因型筛选及其磷效率   总被引:3,自引:0,他引:3  
【目的】筛选耐低磷及磷高效作物是充分利用土壤磷素和磷肥,减少磷肥施用对环境污染的重要手段。调查烟草基因型的磷素利用效率可为培育磷高效烟草品种提供理论依据。【方法】以71个烟草品种为供试材料进行了水培试验。以Hoagland营养液为基础(1.0 mmol/L KH2PO4),调整营养液磷水平0.01 mmol/L KH2PO4 (低磷)。烟苗在完全营养液中生长至4叶1心时进行处理。处理21天后,采样分析烟草主要生长、形态和生理指标,筛选耐低磷基因型判别指标,并对品种进行磷效率类型划分。【结果】全株磷累积量、地上部干重、根干重、株高、总根长及根直径可作为鉴定耐低磷烟草基因型的苗期筛选指标。将全株磷累积量和地上部干重的耐低磷相对值进行聚类热图分析,鉴定出8个耐低磷品种、21个低磷敏感品种及42个中间型品种。同时,依磷效率综合值作散点图发现,耐低磷品种中有4个低磷低效正常磷低效型、2个低磷高效正常磷高效型和2个低磷高效正常磷低效型,低磷敏感品种中有14个低磷低效正常磷低效型、1个低磷高效正常磷高效型和6个低磷低效正常磷高效型。【结论】初步确定K326和云烟105为耐低磷且磷高效品种,G28、闵烟3号、DB101、Oxford 2028、14P10、CV70、云烟98、MSB44、单育2号、净叶黄、CB1、中烟101、RG11和MSB31等14个为不耐低磷且磷低效品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号