首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水稻条纹病毒与水稻互作中的生长素调控   总被引:2,自引:0,他引:2  
利用real-time RT-PCR和高效液相色谱技术对水稻条纹病毒(Rice stripe virus, RSV)病株和RSV侵染的水稻悬浮细胞中生长素合成酶基因YUCAA1和内源生长素的相对表达量和含量进行分析结果表明,在细胞水平,RSV侵染能显著引起YUCAA1基因表达上调2.98倍和内源生长素含量升高2.66倍。而在植株水平,RSV侵染后却导致YUCAA1基因表达下调70%和内源生长素含量降低75%。这暗示RSV与寄主互作的不同阶段能够调控寄主植物生长素的信号传导。同时,利用KPSC缓冲液处理来消除病株内源生长素,能够引起RSV CP基因表达上调近3倍,30 μM IAA溶液处理可使病株内RSV CP基因表达下调45%。由此可见水稻体内生长素含量的变化能够影响RSV在寄主体内的复制。  相似文献   

2.
【目的】研究‘天红2号/冀砧2号’幼树生长、光合特性及内源激素变化对缺锌胁迫的响应。【方法】以1年生‘天红2号/冀砧2号’砧穗组合苹果幼苗为试材,采用营养液浇灌方式进行盆栽试验。营养液设置供锌浓度分别为0μmol/L (Zn0)、2μmol/L (Zn2)、4μmol/L (Zn4,对照),共3个处理。处理后40天,测量幼树株高、叶面积,取样测定叶片锌含量、光合特性、叶绿素含量、叶绿素荧光参数、内源激素含量等指标,并分析叶绿素合成关键酶基因MdHEMA1、叶绿素降解关键酶基因MdPAO、生长素合成基因MdYUCCA4a和MdYUCCA6a相对表达量。【结果】‘天红2号/冀砧2号’幼树的株高、叶面积及叶片锌含量随供锌浓度的下降而显著降低;供锌浓度越低,生长素合成基因MdYUCCA4a和MdYUCCA6a相对表达量越低,植株体内IAA和GA3水平越低;与对照(Zn4)相比,净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)在缺锌条件下显著降低,胞间CO2浓度(Ci)升高;缺锌胁迫下,叶绿素a、叶绿素b、总叶绿素含量下降,叶绿素a/b值上升,叶绿素合成关键酶基因MdHEMA1和叶绿素降解...  相似文献   

3.
A commonly occurring auxin indole‐3‐aceticacid (IAA) and a rarely occurring chlorosubstituted auxin (4‐Cl‐IAA) were compared for their impact on growth and nitrogen metabolism in mung bean for the first time. The plants were generated from healthy and Rhizobium coated seeds in earthen pots. The seedlings at 7 and/or 14 days were percolated with 0, 10?10, 10?8, or 10?6 M of IAA or 4‐Cl‐IAA. The plants were sampled at 30 days after sowing (DAS) to assess the growth and various biochemical characteristics. The auxins significantly enhanced the growth (length and dry mass of shoot and root), nodule fresh mass, nitrogenase activity in fresh nodules, leaf carbonic anhydrase activity, chlorophyll content, and rate of photosynthesis. The effect of the auxins lasted up to the harvest where the seed yield, 100 seed mass, and number of pods per plant were significantly affected by the auxins. At a moderate concentration (10?8 M), 4‐Cl‐IAA generated the best response. However, a comparable response was generated by the higher concentration (10?6 M) of 4‐Cl‐IAA. The application of the hormone twice (at 7 and 14 DAS) was much more effective than single application (at 7 or 14 DAS). It was concluded that IAA and 4‐Cl‐IAA improved the growth and nitrogen fixation in mung bean. The 4‐Cl‐IAA proved more effective than IAA.  相似文献   

4.
草鱼leptin基因的分离鉴定及在巴斯德毕赤酵母中的表达   总被引:1,自引:0,他引:1  
利用RT-PCR技术扩增出草鱼(Ctenopharyngodonidellus)的leptin基因,将leptin基因克隆至真核表达载体pPIC9K,电穿孔转化GS115菌株,经G418筛选和甲醇诱导后,对表达产物进行SDS-PAGE琼脂糖凝胶电泳和Westernblot分析。结果表明,草鱼leptin基因cDNA序列由438个核苷酸组成,编码146个氨基酸组成的多肽(GenBank登陆号AY551335),与鲤鱼(Cyprinuscarpio)leptin基因相比,核苷酸和氨基酸的同源性为99%;与人、猪和鼠相比,核苷酸同源性分别为84%、86%和95%,氯基酸的同源性分别为84%、82%和96%;与河豚(Takifugurubripes)相比,氨基酸具有较大的差异,仅有9%的同源性,表明leptin在物种的进化上具有一定的差异;实现了草鱼leptin基因在毕赤酵母(Pichiapastoris)中的表达,表达蛋白的分子量约为16kD,Westernblot分析表明,表达产物具有一定的免疫学活性。  相似文献   

5.
兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究   总被引:28,自引:2,他引:28  
姚拓  龙瑞军  王刚  胡自治 《土壤学报》2004,41(3):444-448
结合气相色谱仪和高效液相色谱仪 ,利用乙炔还原等方法对兰州地区盐碱地小麦根际联合固氮菌进行分离和固氮酶活性、溶磷性、分泌植物激素特性研究。结果表明 :从小麦根际分离获得的 12株联合固氮菌株固氮酶活性差异较大 (C2 H4,12 4 6~ 6 5 1 6nmolh-1ml-1) ,具有较高固氮酶活性的菌株较少 (C2 H4大于 5 0 0nmolh-1ml-1的菌株只有 4株 ) ;固氮菌株中有 2株具有溶磷性 ,其溶磷强度 (P)分别为 16 30 μgml-1和 9 82 μgml-1;9株固氮菌株可分泌IAA ,但分泌IAA浓度相对较低 (1 4 0~ 15 13μgml-1) ,大于 10 μgml-1的菌株只有 2株。从菌株固氮酶活性、溶磷性和分泌植物生长素特性看 ,Pseudomonassp ChW1、Azotobactersp ChW5、Zoogloeasp ChW6、AzotobacterchroococcumChW11和Azospirillussp ChW15等在研制小麦菌肥方面具有较大的开发潜力。  相似文献   

6.
We prepared soil with greater populations of bacterial-feeding nematodes either by stimulating the native populations of the soil, adding an additional mixed community of nematodes, or by adding Caenorhabditis elegans, to investigate the effects of bacterial-feeding nematodes on root morphology, soil auxin (indolyl-3-acetic acid—IAA) concentrations and microbial community structure. In the presence of enhanced bacterial-feeding nematode populations, tomato plants had a more highly branched root system with longer and thinner roots. Root system development was greater with native nematodes than C. elegans. The changes of root morphology were accompanied by an increase of soil IAA content and an altered microbial community structure. Bacterial-feeding nematodes may have affected plant growth by stimulating hormone production through grazing-induced changes to the soil microbial community.  相似文献   

7.
低钾胁迫下外源生长素对烟草根系生长及钾吸收的影响   总被引:3,自引:2,他引:1  
【目的】探明生长素参与低钾胁迫下植株根系的生长发育及吸钾机制,同时为提高植物体内钾素水平提供理论依据。【方法】采用室内水培法,以模式植物烟草为试验材料,通过设置2个钾浓度(5、0.15 mmol/L)和5个外源生长素(3–吲哚乙酸)浓度(0、5、10、20、40μmol/L),对植物根系生理特征、内源生长素浓度、钾素累积及钾吸收动力学和相关钾离子通道基因转录表达进行比较研究。【结果】1)与正常钾水平相比,在低钾胁迫条件下,植株地上部干重显著降低15.6%;根系扫描8项指标中,除根平均直径外,其余7项指标值均显著降低;ATPase活性显著降低43.3%;主根尖、侧根尖及叶片内源生长素浓度显著升高;钾吸收动力学参数Vmax、Km值分别显著降低了89.2%、99.6%;植株根系、叶片钾浓度分别显著降低了93.0%、62.2%;根系中内流型钾离子通道基因Ntkc1的表达量显著降低56%。2)添加外源生长素后,正常供钾植株的根系干物质重、根系活力、主根尖及侧根尖内源生长素浓度有增加的趋势,Vmax值和内流型钾离子通道基因NKT2、NtKC1的表达量明显增加;低钾条件下,植株表现出和正常供钾相似的规律,除此之外,低钾植株的根系生长得到明显改善,ATPase活性和地上地下部钾素浓度明显增加,外流型钾离子通道基因Ntork1的表达量明显降低。3)当添加生长素浓度为10μmol/L时,与未添加生长素相比,正常供钾植株的地上地下部干重显著增加了6.05%、8.54%;根体积及根系交叠数显著增加16.5%、23.2%;根系活力显著增加了298%;Vmax值显著增加了118%;低钾植株地上地下部干重与不添加相比显著提高了5.61%、28.6%;根系活力达到113μg/(g·h), FW,为无添加生长素时的3.3倍;根系ATPase活性相对增加了87.5%;根系钾浓度显著增加250%;钾离子通道基因NKT2在根系中表达量显著增加了7.04倍,Ntork1在根系及叶片中表达量显著降低了49.5%、72.5%。【结论】低钾胁迫影响烟草根系生长及植株对钾素的吸收累积,添加适当浓度外源生长素可改善植株根系生长发育状况,增加内流型钾离子通道基因NKT2、NtKC1的表达量,降低外流型钾离子通道基因Ntork1的表达量,且提高植株钾吸收动力学参数Vmax值、降低Km值,从而提高了植株对钾离子的吸收能力与亲和力,进而增加植株钾素浓度。  相似文献   

8.
Abstract

Comparisons were made between the chemical compositions of humic substances extracted from three soils covered by different vegetation and their biological activities assayed using 15‐ and 30‐day‐old seedlings of Pinus sylvestris and Picea abies. The growth, “α‐amylase and invertase activity were affected by humic fractions and by gibberellic acid (GA), indicating that humic matter had a gibberellin‐like activity. The isoenzymatic polymorphism in the electrophoretic patterns of esterase was influenced in a similar way by all humic fractions and by indoleacetic acid (IAA), which also suggested that the humic fractions exhibited an auxin‐like activity. The humic fractions extracted from the grassland, exhibiting higher amounts of phenolic and a considerable amount of carboxyl carbon, showed the best metabolic effect. The forest humic fractions, characterized by lower phenolic carbon content, appeared less effective in influencing plant metabolism, whereas the grassland‐forest humic substances proved to be even more less effective. The auxin‐ and the gibberellin‐like activities were related to a high content of phenolic and carboxylic groups. These results presented evidence that the biological activity of the humic substances was attributed to their chemical structure and to their functional groups, which could interact with hormone‐binding proteins in the membrane systems, evoking a hormone‐like response.  相似文献   

9.
为了探究孕穗期低温胁迫对小麦幼穗蔗糖代谢和内源激素含量的影响,以温度敏感性不同的小麦品种为材料,采用盆栽试验,在小麦孕穗期于人工气候室内模拟低温胁迫,测定小麦幼穗穗轴维管束数目、蔗糖代谢相关酶活性及基因表达特征、内源激素含量以及产量构成因素。结果表明,孕穗期低温胁迫后,小麦幼穗穗轴维管束数目减少,幼穗蔗糖含量增加,蔗糖磷酸合成酶(SPS)活性增强;蔗糖合成酶(SS)活性在2℃处理下升高,在0℃和-2℃处理条件下活性降低;随着处理温度的降低,尿苷二磷酸-葡萄糖焦磷酸化酶(UGP)活性与转化酶(Inv)活性下降幅度逐渐增大。孕穗期低温胁迫后,小麦幼穗小花中细胞壁转化酶基因IVR1和液泡转化酶基因IVR5表达量受到抑制,幼穗中生长素(IAA)与赤霉素(GA)含量下降,脱落酸(ABA)含量增加,小麦穗粒数和千粒重均显著下降。综上,孕穗期低温胁迫导致小麦幼穗穗轴维管束数目减少,幼穗中蔗糖积累,蔗糖代谢相关酶活性、基因表达及内源激素含量发生显著变化,严重影响了小麦产量的形成。本研究结果为小麦抗逆减灾和高产稳产研究提供了理论依据。  相似文献   

10.
Eight botanical preparations that are commonly used for the treatment of menopausal symptoms were tested for estrogenic activity. Methanol extracts of red clover (Trifolium pratense L.), chasteberry (Vitex agnus-castus L.), and hops (Humulus lupulus L.) showed significant competitive binding to estrogen receptors alpha (ER alpha) and beta (ER beta). With cultured Ishikawa (endometrial) cells, red clover and hops exhibited estrogenic activity as indicated by induction of alkaline phosphatase (AP) activity and up-regulation of progesterone receptor (PR) mRNA. Chasteberry also stimulated PR expression, but no induction of AP activity was observed. In S30 breast cancer cells, pS2 (presenelin-2), another estrogen-inducible gene, was up-regulated in the presence of red clover, hops, and chasteberry. Interestingly, extracts of Asian ginseng (Panax ginseng C.A. Meyer) and North American ginseng (Panax quinquefolius L.) induced pS2 mRNA expression in S30 cells, but no significant ER binding affinity, AP induction, or PR expression was noted in Ishikawa cells. Dong quai [Angelica sinensis (Oliv.) Diels] and licorice (Glycyrrhiza glabra L.) showed only weak ER binding and PR and pS2 mRNA induction. Black cohosh [Cimicifuga racemosa (L.) Nutt.] showed no activity in any of the above in vitro assays. Bioassay-guided isolation utilizing ER competitive binding as a monitor and screening using ultrafiltration LC-MS revealed that genistein was the most active component of red clover. Consistent with this observation, genistein was found to be the most effective of four red clover isoflavones tested in the above in vitro assays. Therefore, estrogenic components of plant extracts can be identified using assays for estrogenic activity along with screening and identification of the active components using ultrafiltration LC-MS. These data suggest a potential use for some dietary supplements, ingested by human beings, in the treatment of menopausal symptoms.  相似文献   

11.
脱落酸通过影响生长素合成及分布抑制拟南芥主根伸长   总被引:3,自引:0,他引:3  
脱落酸(ABA)在介导植物生长发育及逆境响应中发挥重要功能,但ABA抑制根伸长的机制尚不清楚。本文以拟南芥为材料,通过研究ABA对拟南芥根伸长的影响以及ABA受体突变体根发育表型的鉴定,探讨ABA抑制植物主根的机制。研究发现:ABA能够抑制主根生长及伸长,并且经典受体PYR1/PRL介导了ABA抑制根伸长的过程;ABA能够改变细胞周期蛋白CycB1;1::GUS表达模式,并影响根中生长素分布和响应。结果表明,ABA可能通过影响生长素在根部的分布和剂量,进而影响根尖分生区细胞分裂,从而抑制根伸长。  相似文献   

12.
The bioaccumulation of phthalate acid esters (PAEs) from industrial products and their mutagenic action has been suggested to be a potential threat to human health. The effects of the most frequently identified PAE, Di-n-butyl phthalate (DBP), and its biodegradation, were examined by comparison of two small scale plots (SSP) of integrated vertical-flow constructed wetlands. The influent DBP concentration was 9.84 mg l−1 in the treatment plot and the control plot received no DBP. Soil enzymatic activities of dehydrogenase, catalase, protease, phosphatase, urease, cellulase, β-glucosidase, were measured in the two SSP after DBP application for 1 month and 2 months, and 1 month after the final application. Both treatment and control had significantly higher enzyme activity in the surface soil than in the subsurface soil (P<0.001) and greater enzyme activity in the down-flow chamber than in the up-flow chamber (P<0.05). In the constructed wetlands, DBP enhanced the activities of dehydrogenase, catalase, protease, phosphatase and inhibited the activities of urease, cellulase and β-glucosidase. However, urease, cellulase, β-glucosidase activities were restored 1 month following the final DBP addition. Degradation of DBP was greater in the surface soil and was reduced in sterile soil, indicating that this process may be mediated by aerobic microorgansims. DBP degradation fitted a first-order model, and the kinetic equation showed that the rate constant was 0.50 and 0.17 d−1, the half-life was 1.39 and 4.02 d, and the r2 was 0.99 and 0.98, in surface and subsurface soil, respectively. These results indicate that constructed wetlands are able to biodegrade organic PAEs such as DBP.  相似文献   

13.
Enhancement of plant growth by Bacillus is well documented and several mechanisms have been suggested for the phytostimulatory activity of this group of plant growth-promoting rhizobacteria (PGPR). In the present work, the PGP potential of plant associated Bacillus spp. and their growth-promoting effect on wheat were studied. Six out of 35 strains were chosen based on seed germination assay, plant growth-promoting abilities, enzymatic function, and auxin production. All tested strains were subjected to pot experiments and their phenotypic and molecular assays were also done. Two Bacillus strains including WhIr-15 and WhIr-12 produce maximum amount of auxin (16.2 and 14 µg ml?1, respectively). Strain WhIr-15 had just the ability to produce indo-3-acetic acid (IAA), lipase, and protease enzymes. Strain WhIr-12 was also recorded positive for siderophore, auxin production, and phosphorus (P) solubilization. Bacterial IAA production positively correlated with root length (r = 0.875; p ≤ 0.05). Significant enhancement in root weight (71% and 53%) and in panicle weight (91% and 77%) was recorded in WhIr-15 and WhIr-12, respectively, over untreated controls. Based on phenotypic and 16S rDNA sequencing, these two strains belong to Bacillus sp. Based on our results, phytohormone-producing Bacillus sp. can be applied at field level to improve wheat productivity.  相似文献   

14.
Abstract

Laboratory bioassays were used to investigate plant growth‐regulating effects of three different experimental soil additives, designated EXP95, W91, and Z96. A yeast growth test was used as a general assay of bioactivity, responses to soil additives were compared to those of known plant growth regulators [indoleacetic acid (IAA), gibberellic acid (GA3), and kinetin]. A corn coleoptile elongation test was used to assay for auxin‐like activity and a dwarf pea bioassay was used for gibberellin‐like activity. The three soil additives were tested at five solution concentrations ranging from 1 to 10,000 ppm (by volume). All three soil additives stimulated yeast growth, depending on the concentration of the test solutions. However, all three soil additives inhibited plant growth in the two plant bioassays. Although this study clearly demonstrated that the three soil additives had significant biological activity at very low concentrations, there was little evidence for auxin‐like or gibberellin‐like activity.  相似文献   

15.
Garlic organosulfur compounds are recognized as potential chemopreventive compounds. This protection is related to the induction of phase II detoxification enzymes. We previously reported that diallyl disulfide (DADS) and diallyl trisulfide (DATS) up-regulate the gene expression of the pi class of glutathione S-transferase (GSTP) and that an enhancer element named GPE I is required for this induction. In the present study, we further investigated the signal pathway involved in DADS and DATS up-regulation of this detoxification enzyme in Clone 9 cells. Cells were cultured with 25-200 micromol/L of DADS or DATS for 24 h. Western and Northern blots showed that both garlic allyl sulfides concentration dependently induced GSTP protein and mRNA expression, respectively. Changes in GST activity toward ethacrynic acid were consistent with the increase in GSTP expression (P < 0.05). Electromobility gel shift assay showed that the DNA binding activity of nuclear activator protein-1 (AP-1) is concentration-dependently increased in the presence of DADS and DATS as compared with that of the control cells. The phosphorylation of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), but not of p38, was stimulated in the presence of both garlic allyl sulfides. Pretreatment with SP600125 and PD98059, which are JNK and ERK inhibitors, respectively, abolished the increase in AP-1-DNA binding activity and also the induction of GSTP protein by either allyl sulfide. Our results indicate that the effectiveness of DADS and DATS on GSTP expression is likely related to the JNK-AP-1 and ERK-AP-1 signaling pathways and, thus, that DADS and DATS enhance the binding of AP-1 to GPE I.  相似文献   

16.
对生玉米互生玉米内源激素含量的差异分析   总被引:2,自引:0,他引:2  
摘要:利用植物激素ELISA方法测定和分析不同叶序玉米的不同组织、不同生育期内源细胞分裂素(ZRs、DHZRs、iPAs)、内源生长素(IAA)含量差异,结果表明:不同叶序玉米在不同生育期幼胚、成熟花粉、成熟叶片内源ZRs、DHZRs、iPAs和IAA均无显著差异;不同生育期对生叶序玉米幼苗顶端分生组织、成熟苗顶端雄幼穗ZRs、DHZRs、iPAs含量显著高于的互生玉米,IAA含量在两者之间无显著差异;对生叶序玉米幼苗顶端分生组织、成熟苗顶端雄幼穗CTK/IAA比值显著高于同期近等基因系互生叶序玉米.但在不同生育期幼胚、叶片及花粉内均无显著差异。对生叶序的形成与生长点组织细胞分裂素含量增加密切相关,玉米生长点CTK/IAA域值的稳定和变化是调节叶序稳定和变异重要因素。三类内源细细胞分裂素同步增加预示该对生叶序突变的分子基础可能是细胞分裂素合成基因上游调控基因的变异所致。  相似文献   

17.
Humic-like substances synthesized by Aspergillus sydowi, Epicoccum nigrum, Hendersonula toruloidea and Stachyhotrys atra inhibited indoleacetic acid (IAA) destruction by lentil roots extracts. The fungus polymers were similar to soil humic acids with respect to the effect on IAA-oxidase activity. Model polymers prepared using pure phenols reduced the IAA oxidation too. The relationships between the effect of fungal substances on IAA-oxidase activity and their phenolic units content are briefly discussed.  相似文献   

18.
为探究ROP基因在棉花抵御逆境胁迫中的生物学功能,利用同源克隆的方法获得一个陆地棉GhROP6基因,通过生物信息学方法分析其理化性质、结构及进化关系,利用实时荧光定量PCR(qRTPCR)技术探究GhROP6基因的组织表达特异性及不同逆境胁迫和外源激素处理下的表达模式,构建GhROP6基因的VIGS载体并转化棉花,利用qRT-PCR技术检测其沉默效率。结果显示,GhROP6基因开放阅读框(ORF)为597 bp,编码一个含198个氨基酸的I类ROP蛋白;多重序列比对结果显示,GhROP6符合ROP蛋白结构特征,且与其他物种ROP蛋白高度同源;进化树分析结果显示GhROP6蛋白与拟南芥AtROP6蛋白同源性最高;GhROP6基因在棉花根、茎、真叶及子叶中均有表达,且在真叶中表达量最高;GhROP6基因对干旱、高盐、低温、高温等胁迫和外源脱落酸(ABA)、生长素(IAA)处理均有不同程度的响应,可能在棉花抗逆反应中扮演着重要角色。GhROP6在棉花的叶片和根部均得到有效沉默,表明已获得GhROP6基因沉默植株。本研究为进一步了解GhROP6基因的分子生物学功能奠定了基础。  相似文献   

19.
Five bacteria (Pseudomonas fluorescens, P. fluorescens subgroup G strain 2, P. marginalis, P. putida subgroup B strain 1 and P. syringae strain 1) and three fungi (Penicillium brevicompactum, P. solitum strain 1 and Trichoderma atroviride) were evaluated to determine their promoting effect on the growth of mature healthy tomato plants grown under hydroponic conditions. P. putida and T. atroviride were shown to improve fruit yields in rockwool and in organic medium. The production or degradation of indole acetic acid (IAA) by the two microorganisms was investigated as possible mechanisms for plant growth stimulation. Both P. putida and T. atroviride were shown to produce IAA. The production of IAA by the two microorganisms was stimulated in vitro by the addition of l-tryptophan, tryptamine and tryptophol (200 μg ml−1) in the culture medium. P. putida and T. atroviride also increased the fresh weight of both the shoot and the roots of tomato seedlings grown in the presence of increasing concentrations of l-tryptophan (up to 0.75 mM). Both microorganisms showed partial degradation of IAA in vitro when grown in a minimal medium with or without sucrose. In addition, the capacity of these microorganisms to reduce the deleterious effect of exogenous IAA was investigated using tomato seedlings. The results showed that the roots of tomato seedlings grown in the presence of increasing concentrations of IAA (0-10 μg ml−1) were significantly longer when seeds were previously treated with P. putida or T. atroviride. The reduction in the detrimental effect of IAA on root elongation could be associated with a reduced ethylene production resulting from a decrease of its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) by microbial degradation of IAA in the rhizosphere and/or by ACC deaminase activity present in both microorganisms.  相似文献   

20.
A large root system plays a decisive role in potassium (K)‐acquisition efficiency of cotton. Coronatine (COR), a non‐host‐specific phytotoxin, may affect the auxin level in plants and might therefore be useful in regulating lateral‐root (LR) development. Our objectives were (1) to examine the effects of COR on root development, especially the LR formation in hydroponically grown cotton seedlings, and (2) to explore possible mechanisms involved. The results showed that K deficiency (0.05 mM) significantly reduced LR formation in cotton seedlings, possibly due to the decrease of endogenous indole acetic acid (IAA) in roots by more than half. Following the application of 10 nM COR, the LRs significantly increased by 26% in K‐sufficient (0.5 mM) solution and by 95% in K‐deficient solution. Although COR did not increase the free IAA level in the primary root, the polar auxin‐transport inhibitor N‐1‐naphthylphthalamic acid (NPA) decreased its stimulating effects on LR formation by 25%–30%, suggesting that the COR‐induced LR formation was independent of increased auxin level but likely associated with auxin transport. Treatment of plants with 1‐naphthalene acetic acid (NAA) increased LR formation at NAA concentrations of 100 nM, but had no effect at 10 nM. In the presence of 1 nM COR, however, NAA increased LR formation at 10 nM concentrations. This indicates that LR formation due to COR possibly involves changes in auxin sensitivity. In addition, the shorter LRs of COR‐treated seedlings were clearly restored when COR was removed from solutions for 12 d, and the total root length, total root surface area as well as K uptake increased significantly, suggesting that COR may be potentially useful for enhancing the K‐acquisition efficiency of cotton seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号