首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Cucumber green mottle mosaic virus (CGMMV) is a severe threat for cucumber production worldwide. At present, there are no cultivars available in the market which show an effective resistance or tolerance to CGMMV infection, only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis sativus, as well as C. anguria and C. metuliferus, were mechanically infected with the European and Asian strains of CGMMV and screened for resistance, by scoring symptom severity, and conventional RT-PCR. The viral loads of both CGMMV strains were determined in a selected number of genotypes using quantitative RT-PCR. Severe symptoms were found following inoculation in C. metuliferus and in 44 C. sativus accessions, including C. sativus var. hardwickii. Ten C. sativus accessions, including C. sativus var. sikkimensis, showed intermediate symptoms and only 2 C. sativus accessions showed mild symptoms. C. anguria was resistant to both strains of CGMMV because no symptoms were expressed and the virus was not detected in systemic leaves. High amounts of virus were found in plants showing severe symptoms, whereas low viral amounts found in those with mild symptoms. In addition, the viral amounts detected in plants which showed intermediate symptoms at 23 and 33 dpi, were significantly higher in plants inoculated with the Asian CGMMV strain than those with the European strain. This difference was statistically significant. Also, the amounts of virus detected over time in plants did not change significantly. Finally, the two newly identified partially resistant C. sativus accessions may well be candidates for breeding programs and reduce the losses produced by CGMMV with resistant commercial cultivars.  相似文献   

2.
3.
Wheat grain yield and protein content are significantly influenced by the onset of senescence and the duration of the grain filling phase. The onset of senescence also affects Nitrogen use efficiency (NUE) through interacting pathways involving N accumulation and translocation of N into the grains. The objective of this study was to relate variation in NUE and its components with two groups of the NAM-A1 gene alleles; (i) early onset of senescence in cultivars carrying the NAM-A1a allele, (ii) delayed onset of senescence in cultivars carrying the Non-NAM-A1a allele (b, c, d) in wheat cultivars grown under Western Australia conditions. A field trial was carried out over two seasons examining 19 cultivars under different N rates and time of N application. The Normalized Difference Vegetation Index was utilized to determine the onset of senescence after anthesis. The early onset of senescence results in high grain yield, harvest index, and NUE due to improvements in the N utilization ability. Accelerating the onset of senescence results in a short grain filling period leading to grain maturity before the onset of unfavourable summer conditions. The function of alleles of NAM-A1 gene in controlling senescence hence the NUE is highly regulated by environmental conditions. This study concluded that the function of NAM-A1a allele induces the onset of senescence with a positive effect on the NUE and its components under Western Australian conditions.  相似文献   

4.
The Brassicas are affected by several diseases, of which black rot, Xanthomonas campestris pv. campestris (Pam.) Dowson (Xcc), is one of the most widespread and devastating worldwide. The black rot bacteria causes systemic infection in the susceptible plants and penetrate the plants through the hydathodes or wounds. Typical disease symptoms are ‘V’ shaped necrotic lesions appearing from the leaf margins with blackened veins. Periodic outbreaks of the black rot pathogen have occurred worldwide, especially in the continental regions, where high temperatures and humidity favor the incidence of disease occurrence causing huge yield loss. The challenge to control the losses in vegetable brassicas production is made more difficult by the adverse climatic changes and evolution of new pathogenic races. The development of black rot resistant hybrids/varieties is the most reliable long term practical solution for effective disease control. Identification of new resistant genetic resources, tightly linked markers with resistance loci and QTL mapping would facilitate the breeding programme for black rot resistance. Information regarding genetics of resistance and mapping of resistance genes/QTLs will accelerate the marker assisted resistance breeding in brassica crops against Xcc. In future we need to identify the race specific candidate genes for and their validation through transgenics and gene expression. Moreover, it is imperative to identify functional markers for resistance genes through identification of R gene families and their relationship with resistance expression. This comprehensive review will help the researchers working in this area to understand the dynamics of black resistance breeding and to formulate future breeding strategies.  相似文献   

5.
Faba bean (Vicia faba L.) has high utility as a food and soil fertility improving crop. One of the major fungal pathogens of faba bean is Botrytis fabae, the causative agent of chocolate spot. The disease affects significantly the leaf, stem, pod and seed of faba bean compromise its productivity in the smallholder farming sector. Nonetheless, there are limited resistant/tolerant faba bean varieties available and disease control technology options. Therefore, it was prudent to evaluate faba bean landraces for chocolate spot resistance. Fifty landraces together with ten improved varieties were evaluated both in the field and in the greenhouse under natural and artificial inoculation with previously selected aggressive Botrytis fabae isolate (Iso-016) from West Gojjam, in Ethiopia. There were highly significant differences (p?<?0.001) among the landraces for reaction to the disease and agronomic traits. Significant positive correlation was recorded between reaction of genotypes in the field and greenhouse disease data. The overall mean disease epidemics varied from 92.5 to 697.5 for the area under disease progress curve (AUDPC). The highest level of resistance was found in the ICARDA lines, ILB-4726, ILB-938 and BPL-710. Of all 18 landrace collections displayed significantly lower disease reaction than the susceptible check. However the resistance was moderate. The selected eighteen landraces will be recommended for use in breeding for chocolate resistance. Overall, resistance was highly heritable, suggesting that phenotypic selection can be exploited to improve chocolate spot resistance in faba bean varieties.  相似文献   

6.

Background

Cucumber mosaic virus (CMV) is the most serious virus disease affecting chilli (Capsicum annuum L.) worldwide and the absence of natural resistance makes management of CMV outbreaks difficult. The characterization of improved sources of resistance to CMV in chilli would facilitate the development of commercially acceptable chilli varieties with adequate levels of CMV resistance. A total of 30 chilli genotypes were evaluated for their reaction to CMV in field and artificial inoculated conditions during 2010-2011 and 2011-2012. Large differences were observed among genotypes for disease incidence, severity indexes, and yield losses. Based on observed data, genotype CA23 (Noakhali) was identified as resistant, while CA12 (Comilla-2) was categorized as moderately resistant to CMV both in natural and inoculated conditions. Enzyme-linked immunosorbent assay absorbance values of samples taken from CMV-infected leaves corresponded well with visible viral symptoms for these genotypes. The identified C. annuum CA23 and CA12 genotypes represent previously undescribed and potentially useful sources of CMV resistance.
  相似文献   

7.
Outcrossing is an important problem in specialty maize (Zea mays L.) that can be prevented by using gametophyte factors, such as Ga1-s, which preserve maize plants from pollen contamination. Our objective was to check if the gametophyte factor Ga1-s can protect sweet corn homozygous for sh2 in an efficient and stable way. We combined Ga1-s and sh2 by crossing two popcorn and three sweet corn inbred lines, respectively, in a North Carolina Design II, followed by an ear-to-row breeding program with selection for sh2 phenotype and absence of outcrossing. The released inbred lines homozygous for Ga1-s and sh2 were used for obtaining five hybrids that were evaluated for outcrossing and agronomic performance. Our results show that the gametophyte factor Ga1-s effectively protects the sh2 plants and that this effect was stable across environments. However, the agronomic performance of these inbred lines must be improved. Popcorn donors and sweet corn receptors of Ga1-s were unevenly represented in the released Ga1-s / sh2 inbred lines, suggesting that the viability of sh2 is affected by the genotypes involved. Therefore, breeders should pay attention to the choice of donors of Ga1-s that favors the viability of sh2.  相似文献   

8.
The S core and its flanking sequences were identified from two independent draft genome sequences of radish (Raphanus sativus L.). After gap-filling with PCR, the S core regions and full-length S receptor kinase (SRK) genes from two radish genomes were obtained. Phylogenetic analysis of the SRK genes clearly showed that one S core region belonged to the class I S haplotypes, but the other was included in the class II S haplotypes. Three sequences showing homology with known transposable elements were identified in the core regions, and one intact copia-type long terminal repeat (LTR)-retrotransposon containing a 4125-bp open reading frame (ORF) was identified in the class I S haplotype. A total of 61 genes showing homology with the SRK genes were identified from two draft genome sequences. Among them, the RsKD1 showed the highest homology with the SRK genes. There was 90% nucleotide sequence identity between the RsKD1 and RsSRK1 genes in the kinase domains. The phylogenetic tree of SRK genes and 13 most closely related homologs showed that all homologs were more closely related to the class II SRK genes than to the class I SRKs. Physical mapping of radish SRK-homologous genes and their B. rapa orthologs showed that two radish homologs and their B. rapa orthologs were tightly linked to the SRK genes in radish and B. rapa genomes. Sequence information about multiple SRK-homologs identified in this study would be helpful for designing reliable primer pairs for faithful PCR amplification of the SRK alleles, leading to improvement of the S haplotyping system in radish breeding programs.  相似文献   

9.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

10.
The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A m -genome) and 5 (24%) Triticum urartu (A u -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.  相似文献   

11.
The information of ploidy, karyotype and genetic relationship is useful for interspecific hybridization in ornamental plants. For Tulipa species native to China, very limited cytological information is available now. The objective of this study was to verify the chromosome number, karyotype and genetic relationship of the eight Tulipa species: T. edulis, T. schrenkii, T. iliensis, T. thianschanica, T. altaica, T. sinkiangensis, T. heterophylla and T. buhseana. And the interspecific crosses were made between T. altaica and ten tulip cultivars to obtain novel germplasm. The ovary-swelling, fruit-setting and bulblet formation rates were surveyed when different ploidy cultivars were used as female parents. This work confirmed that all eight species collected in China were diploid (2n?=?2x?=?24), among which chromosome numbers of T. thianschanica, T. sinkiangensis and T. heterophylla were firstly reported and the karyotypes of all any other species except for T. edulis were determined for the first time. The karyotypes of eight Tulipa species were classified as 3A, 4A or 3B. The results of interspecific hybridization showed significant difference when different ploidy cultivars were used as female parents. The highest fruit-setting rate was obtained when diploid cultivars were used as female parents crossed with diploid T. altaica, whereas the ovary swelling was observed in two out of four triploid cultivars as female parents, and no seeds were harvested when tetraploid cultivars were used as female parents. Our findings provided an effective means of cultivar improvement in tulip.  相似文献   

12.
The development of rapeseed cultivars (Brassica napus L.) with high oleic acid and low linolenic acid is highly desirable for food and industrial applications. In this study, the Korean rapeseed cultivar Tamla was used for ethyl methanesulfonate (EMS)-induced mutagenesis and seed oils were screened up to generation M7 for high oleate mutants. Two mutant populations (M7) with an average of approximately 76% oleic acid content were isolated. Yield components between two mutant populations and untreated Tamla plants were not substantially different, although the mutants in the vegetative stage were slightly smaller in size than Tamla. Genomic analyses of six fatty acid desaturase (four FAD2 and two FAD6) genes revealed that the elevated oleic acid content in the mutants is the result of single gene mutations. Changes in DNA sequence were observed in two genes out of six fatty acid desaturase (four FAD2 and two FAD6). FAD2-2 exhibited a 2-bp deletion in the upstream region of the gene in the two mutants, resulting in a severely truncated polypeptide (57 aa instead of 469 aa), while six point mutations in the other gene did not result in changes in the amino acid sequence. Based on these results, FAD2-2, an endoplasmic reticulum (ER) oleic acid desaturase, is affected in the mutants, resulting in a ~ 7% increase in oleic acid content in comparison to untreated Tamla plants. The induced mutants could be utilized for the development of high oleic oil rapeseed varieties and for regulatory studies of lipid metabolism in seed oils.  相似文献   

13.
Ten F2 clones from an initial hybridization of Prunus webbii?×?Prunus persica cv Harrow Blood were evaluated under greenhouse conditions for their reaction to Xylella fastidiosa subsp. fastidiosa strain M23 during two growing seasons. Clonal accessions used for the study were selected on the basis of horticultural diversity, and were a small subset of trees from a large F2 population. Foliar symptoms of M23-inoculated trees were monitored weekly throughout the 20-week growth period. Clones were then sampled for bacterial titer determinations. With the exception of parental accession Harrow Blood, all clones yielded measurable titer; however, almond leaf scorch disease symptoms were never observed in five of the ten sibling clonal accessions. Vegetative bud break and bloom phenology data collected from field-grown mother trees over a 7 year period as well as leaf morphology characters of the clonal accessions were examined for associations with bacterial titers of inoculated clones using a principal components analysis. No clear associations were noted, with small sample size limiting the predictive ability of the analysis.  相似文献   

14.
Nineteen accessions of the tuber-bearing species Solanum berthaultii, S. chacoense, S. leptophyes, S. microdontum, S. sparsipilum, S. sucrense, S. venturii, S. vernei and S. verrucosum were tested for their resistance to late blight in two years of field experiments. Plants were artifically inoculated with zoospores of race 1.2.3.4.5.7.10.11 and the development of the disease was followed. Resistance ratings, calculated as the areas under the disease progress curves (ADPC), demonstrated a high resistance in all accessions except in S. sparsipilum, S. leptophyes and their interspecific hybrid. Segregations suggest that major genes for resistance are present in S. sucrense and S. venturii, and may also play a role in S. verrucosum. It is not yet certain wether the resistance of the other accessions is comparable to the partial and durable resistance of S. tuberosum cultivars like Pimpernel, as inheritance and mechanism have yet to be established. However, segregations suggesting the presence of single major genes with complete dominance were not found in these other accessions. Tuber initiation in the field occurred in only one accession, S. tuberosum ssp. andigena, and maturity of the clones was not related to their resistance. In the other accessions maturity types could not be assessed, as the clones require short day conditions for tuber initiation.  相似文献   

15.
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids.  相似文献   

16.
This study aimed to evaluate the effects of soil types and environmental factors for optimum conditions of seedlings growth of the Platycodon grandiflorum for establishing the in vivo acclimatization system of regenerated plants derived from the in vitro culture. P. grandflorum seedlings were transferred to the in vivo condition and acclimatized under different soil types, light intensities, and various temperatures. Changes caused by environmental factors and soil types in plant growth viz. plant height, leaf width, leaf length, stem diameter, number of leaves, branches and nodes were recorded in this study. Among the nine types of soil, the best growth performances were obtained from the soil type SVP (Soil mixed with horticultural bed soil, vermiculite, and perlite @ 2:1:1). Seedlings of P. grandiflorum showed the best growth at higher levels of light intensity (60 μmol·m-2·s-1). In contrast, P. grandiflorum seedlings showed the best growth response at a moderate level of temperature (25°C). Collectively, the present study provides a better understanding of the responses of growth characteristics in P. grandiflorum seedlings exposed to various soil types, light intensities, and temperatures.  相似文献   

17.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   

18.
A balance of maternal and paternal genetic factors, conceptually named the endosperm balance number (EBN), is required for normal endosperm development in interspecific crosses in potato. We previously found that Solanum demissum (D), a hexaploid wild species widely used in potato breeding, has a slightly lower EBN than S. tuberosum (T). To explore the genetic nature of the EBN, the berry-setting rate, seed number/berry, and seed weight were evaluated in BC1 [(D?×?T)?×?T] plants, each possessing different portions of the S. demissum chromosomes, by reciprocal crosses with D and T, and a quantitative trait locus (QTL) analysis was performed. At least 99 S. demissum-derived QTLs were detected, of which 29 were associated with differential responses to D and T. Three QTLs were possibly co-localized on chromosomes 7A and 10D1, while the remaining 23 QTLs were independently located. The QTLs in the three S. demissum homoeologous chromosomes exhibited three types of interaction: (1) positive, (2) negative, and (3) one positive and one negative effect on the same trait. We found that several major genes, one of which was localized in the S. demissum chromosome 9A, and many minor genes controlled the crossability of BC1 plants. The QTLs responsible for the differential responses to D and T were different between the BC1 plants used as male and female parents, indicating that different genes control the male and female EBNs. Consequently, we conclude that the EBN is represented by the sum of various genetic effects controlled by a large number of genes.  相似文献   

19.
Wheat is one of the most widely grown cereal crops based on the amount of calories it provides in the human diet. Durum wheat (Triticum turgidum ssp. durum) is largely used for production of pasta and other products. In order to use genetic knowledge to improve the understanding of N-use efficiency, we carried out, for the first time in durum wheat, the isolation and the characterization of four members of the asparagine synthetase (AsnS) gene family. Phylogenetic inference clustered the Ttu-AsnS1 (1.1 and 1.2) and Ttu-AsnS2 (2.1 and 2.2) genes in AsnS gene class I, which is present in monocots and dicots. Class I genes underwent a subsequent duplication leading to the formation of two subgroups. Plants of Svevo cultivar were grown under N-stress conditions and expression of the four AsnS genes was investigated at three developmental stages (seedling, booting, and late milk development), crucial for N absorption, assimilation and remobilization. AsnS1 genes were down-regulated in N-stressed roots, stems and leaves during seedling growth and booting, but seemed to play a role in N remobilization in flag leaves during grain filling. AsnS2 genes were scarcely expressed in roots, stems, and leaves. In N-stressed spikes there was no differential expression in any of the genes. The genes were mapped in silico using a durum wheat SNP map, assigning Ttu-AsnS1 genes to chromosome 5 and Ttu-AsnS2 to chromosome 3. These findings provide a better understanding of the role of ASN genes in response to N stress in durum wheat.  相似文献   

20.
Two new varieties of interspecific hybrids of Passiflora have been developed from the cross between P. gardneri versus P. gibertii, both registered under the Passiflora Society International. Twelve putative hybrids were analyzed. Hybridization was confirmed using RAPD and SSR markers. Primer UBC11 (5′-CCGGCCTTAC-3′) generated informative bands. Primer SSR Pe75 has amplified species-specific fragments and a heterozygote status was observed with two parent bands 300 and 350 bp. The molecular markers generated have been analyzed for the presence or absence of specific informative bands. Based on the morphological characterization, we have identified two hybrid varieties: P. ‘Gabriela’ and P. ‘Bella’. P. ‘Gabriela’ produced flowers in bluish tones, bluish petals on the adaxial and abaxial faces, light blue sepals on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. P. ‘Bella’ produced flowers in lilac tones, intense lilac petals on the adaxial and abaxial faces, dark lilac sepals with whitish edges on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. The cytogenetic analysis verified that the hybrids have the same chromosomal number as the parents (2n = 18); the formation of bivalents between the homeologous chromosomes (n = 9) was observad, leading to regular meiosis, which allows the sexual reproduction and use of these hybrids in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号