首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐week feeding trial was conducted to compare the effects of dietary protein sources on nutrient digestibility and digestive enzyme activity. Four experimental diets were formulated to contain one of the following as the sole protein source: fish meal (FM), fish protein concentrate (FPC), soy protein concentrate (SPC) and soy protein isolate (SPI). Each diet was randomly assigned to triplicate aquaria stocked with 25 Japanese flounder (Paralichthys olivaceus) each. The dry matter, crude protein and energy digestibility and individual amino acid availability of the SPC‐based diet were significantly lower than those of the other diets. The crude lipid digestibility of soy protein‐based diets was significantly lower than that of the FM‐based diet. The pepsin/protease activity was significantly higher in fish fed fish protein‐based diets compared with fish fed soy protein‐based diets. The lipase activity in fish fed the SPI‐based diet was the highest among the dietary treatments. These results indicate that P. olivaceus can effectively digest the protein from FPC and SPI (but not SPC) as well as FM. The low protein digestibility and amino acid availability of the SPC‐based diet may be related to the non‐protein compounds present in SPC, whereas the low‐lipid digestibility of soy protein‐based diets may contribute to the undigested soy protein fractions and/or the alcohol‐soluble components.  相似文献   

2.
A feeding trial was conducted to compare the effects of supplemental cholesterol in fish meal (FM), fish protein concentrate (FPC), soy protein isolate (SPI) and soy protein concentrate (SPC)‐based diets on growth performance and plasma lipoprotein levels of Japanese flounder (Paralichthys olivaceus). Eight isonitrogenous and isocaloric diets including FM, FPC, SPI or SPC as sole protein source with or without supplementation with 10 g cholesterol kg?1 diet were fed to juvenile fish for 8 weeks. Dietary cholesterol supplementation significantly increased the feed intake and specific growth rate in fish fed SPI‐based diets, but decreased those in fish fed FPC‐based diets. In addition, cholesterol supplementation significantly increased the level of cholesterol and ratio of low‐density lipoprotein cholesterol to high‐density lipoprotein cholesterol in plasma of fish fed fish protein‐based diets, whereas no effects were observed in fish fed soy protein‐based diets. The hepatic lipid content of fish fed FPC‐, SPI‐ or SPC‐based diets were significantly increased by supplemental cholesterol, but no influence was observed in fish fed FM‐based diets. These results suggested that dietary protein source modify the growth‐stimulating action of cholesterol; cholesterol supplementation may increase the arteriosclerotic lesion in fish fed fish protein‐based diets and the incidence of fatty liver in fish fed soy protein‐based diets.  相似文献   

3.
The aim of this study was to determine the impact of diets with different plant protein ingredients on proximate composition, tissue metabolites and tissue fatty acid composition, as well as hepatic and intestinal histological modifications in Senegalese sole (Solea senegalensis). Fish (21.5 ± 2.8 g body weight) were fed six isonitrogenous and isoenergetic diets during 11 weeks. A control diet containing fish meal as the main protein source was compared with five experimental diets replacing 30% fish meal protein by different plant protein sources: soybean meal (SBM), soybean protein concentrate (SPC), soybean protein isolate (SPI), wheat gluten meal (WGM) or pea protein concentrate (PPC). The inclusion of different plant protein did not significantly affect growth and proximate composition of fish. The hepatosomatic index was not significantly different to the control group; however, utilization of WGM significantly increased hepatocyte size. Plasma protein values and muscle triglycerides were influenced by the inclusion of SBM and WGM in the diets respectively. Feeding fish on SBM, WGM and PPC diets significantly enhanced n‐6 fatty acid levels in muscle, particularly linoleic acid. None of the plant protein ingredient used in the diets decreased arachidonic, eicosapentaenoic as well as docosahexaenoic acid values in liver and muscle. Overall, histological studies did not reveal the existence of any intestinal alterations induced by the inclusion of different plant proteins. Despite moderate changes produced by SBM, SPC and WGM, inclusion of dietary plant protein ingredients has no major impact on growth, tissue and blood biochemistry, fatty acid profile and gut integrity of Senegalese sole juveniles.  相似文献   

4.
Two experiments were conducted for red sea bream (Pagrus major). In experiment 1, the optimum level of glutamic acid and natural feeding stimulants to enhance feed intake were determined and found that glutamic acid level of 0.5% and fish meat hydrolysate (FMH) were effective. In experiment 2, fish were fed with soy protein concentrate (SPC)‐based diet with synthetic feeding stimulants (Basal diet), the Basal diet with FMH (FMH diet), the FMH diet with glutamic acid (FMHG diet) and with fish meal diet (FM diet) as a control until satiation for 8 weeks. Feed intake of FMHG‐fed fish was significantly higher than others (p < 0.05). Specific growth rate and the feed conversion ratio of FMHG were comparable to those of FM‐fed fish (p > 0.05). Relative visceral fat ratio and crude lipid content of any SPC‐based diet‐fed fish tended to be lower than those of FM diet‐fed fish. There were no significant differences in trypsin and lipase activities hepatopancreas among treatments. SPC can be utilized as a sole protein source in a diet for red sea bream. The lower growth performance in SPC‐based diet‐ fed fish was not due to poor digestive enzyme secretion but could be associated with lipid utilization disorder.  相似文献   

5.
In diet formulation for fish, it is critical to assure that all the indispensable amino acids (IAA) are available in the right quantities and ratios. This will allow minimizing dietary AA imbalances that will result in unavoidable AA losses for energy dissipation rather than for protein synthesis and growth. The supplementation with crystalline amino acids (CAA) is a possible solution to correct the dietary amino acid (AA) profile that has shown positive results for larvae of some fish species. This study tested the effect of supplementing a practical microdiet with encapsulated CAA as to balance the dietary IAA profile and to improve the capacity of Senegalese sole larvae to utilize AA and maximize growth potential. Larvae were reared at 19 °C under a co-feeding regime from mouth opening. Two microdiets were formulated and processed as to have as much as possible the same ingredients and proximate composition. The control diet (CTRL) formulation was based on commonly used protein sources. A balanced diet (BAL) was formulated as to meet the ideal IAA profile defined for Senegalese sole: the dietary AA profile was corrected by replacing 4 % of encapsulated protein hydrolysate by CAA. The in vivo method of controlled tube-feeding was used to assess the effect on the larvae capacity to utilize protein, during key developmental stages. Growth was monitored until 51 DAH. The supplementation of microdiets with CAA in order to balance the dietary AA had a positive short-term effect on the Senegalese sole larvae capacity to retain protein. However, that did not translate into increased growth. On the contrary, larvae fed a more imbalanced (CTRL group) diet attained a better performance. Further studies are needed to ascertain whether this was due to an effect on the voluntary feed intake as a compensatory response to the dietary IAA imbalance in the CTRL diet or due to the higher content of tryptophan in the BAL diet.  相似文献   

6.
An experiment with 0.2‐kg Atlantic salmon, Salmo salar in saltwater was conducted to determine if the fish could grow normally, and maintain normal nitrogen (N) and mineral balance when fed a diet with the majority of the protein (75%) derived from soy‐protein concentrate (SPC). The two diets contained 50% SPC and 15% fish meal (FM) or 60% FM as the sources of protein. No calcium phosphate was added to the diets in order to assess the availability of P from the ingredients. A second aim was to investigate if whole‐body concentrations of essential elements and growth were related in individual salmon. Growth (SGR=0.88–0.89) was similar in salmon fed the two diets, and the fish nearly doubled their body weights during the 84 days of feeding. Feed conversion was more efficient for the FM diet (0.81 kg intake kg?1 gain) than for the SPC diet (0.89 kg kg?1). The intake of N was similar, faecal loss of N was lower, while the metabolic N excretion was greater in the fish fed the FM than the SPC diet. This resulted in a total excretion of 35.4 g N kg?1 gain for the salmon fed the FM diet and 35.5 g N for the fish fed the SPC diet. Both the intake, faecal and metabolic excretion of P were higher in the fish fed the FM diet than the SPC diet, resulting in a total excretion of 10.5 g P kg?1 gain for the FM diet and 7.2 g P for the SPC diet. Whole‐body concentrations of Ca, Mg, P and Zn were lower in the fish fed the SPC diet, while the Ca–P ratio was decreased, both when compared with the fish at the start of the experiment, and the fish fed the FM diet. The differences in elemental composition were ascribed to a combination of reduced availability of elements due to phytic acid and lower concentration of elements in the SPC than in the FM. No reduction in growth of individual fish, which could be ascribed to reduced availability of essential elements, was seen.  相似文献   

7.
Stressful husbandry conditions are likely to affect growth and amino acid metabolism in fish. In this study, chronic ammonia exposure was used to test the effects of a stressor on growth and amino acid metabolism of Senegalese sole juveniles. The fish were exposed for 52 days to 11.6 mg L−1 [low‐TAN (L‐TAN)] or 23.2 mg L−1 [high‐TAN (H‐TAN)] of total ammonia nitrogen (TAN), or to 0 mg L−1 (Control). Growth in L‐TAN groups was slightly but significantly different from the Control groups [relative growth rate (RGR=0.35±0.13 and 0.52±0.23% day−1 respectively)]. In H‐TAN groups, growth was severely affected (RGR=0.01±0.13% day−1). Stress parameters (plasma cortisol and glucose) showed slight or no significant differences between treatments. Plasma free amino acid (FAA) concentrations were affected after H‐TAN treatment. Increases in glutamine and aspartate concentrations in H‐TAN fish suggest alterations in amino acid metabolism related to nitrogen excretion processes. Some of the changes in FAA concentrations also suggest mobilization to energy supply and synthesis of metabolites related to stress response. Therefore, Senegalese sole seem to adapt to the L‐TAN concentration tested, but the H‐TAN concentration reduced growth and affected amino acid metabolism.  相似文献   

8.
The potential of soya protein concentrate (SPC) as an alternative protein source in diets for Totoaba macdonaldi juveniles was evaluated. Seven isonitrogenous and isolipidic diets were formulated containing 15–100% SPC (SPC15, SPC30, SPC45, SPC60, SPC75, SPC90 and SPC100) to replace fishmeal (FM‐protein), and a FM‐protein‐based diet without SPC was used as a reference diet (RD). Each diet was randomly assigned to triplicate groups of 20 totoaba (50 ± 1.0 g) and was fed twice daily to apparent satiation. After 60 days of experiment, effects on totoaba were evaluated. Growth performance in fish fed RD to SPC45 was similar. The maximum FM‐protein replacement for weight gain (g kg ABW?1 day?1) was estimated to be 34.17% using a broken‐line model. In vitro digestibility of fish fed RD, SPC15 and SPC30 was similar. Trypsin activity was higher in fish fed the RD (9.38 ± 0.52 mU × 10?3 mg protein?1. Chymotrypsin activity was similar in fish fed RD, SPC15 and SPC30. Activity of alkaline protease and phosphatase was similar in fish fed RD, SPC15 and SPC30. Red blood cells (RBC) were the highest in fish fed RD to SPC60. Fish fed the RD, SPC15 and SPC30 present the highest haematocrit (HT) and haemoglobin (HB) content. Diets SPC90 and SPC100 presented similar MCV and MCHC. Total protein (TP) profile overall decreased in fish fed SPC90 and SPC100, pointing to nutritional hypoproteinemia due to deficient digestion and absorption. These results indicate that SPC‐based diets could be used efficiently by totoaba with FM‐protein replacement of less than 45%.  相似文献   

9.
The 8‐week experiment was conducted to evaluate the effects of partial replacement of fish meal (FM) with soybean protein concentrate (SPC) on juvenile black sea bream, Acanthopagrus schlegelii (10.70 ± 0.04 g). Diets were formulated to replace FM protein by SPC at 0, 8, 16, 24, 32 or 40% (designated as T1, T2, T3, T4, T5 and T6, respectively). Diets except T1 were supplemented with phytase at 2000 phytase activity U kg?1. The results showed that survival rate, growth performance and feed utilization were not significantly affected by increasing dietary SPC. Fish fed diet T3 had higher feed intake compared to those fed T1, T2 and T5 diets. Whole body compositions of black sea bream were significantly influenced by SPC replacing FM except for protein, ash and phosphorus content. Condition factor of fish was significantly lower in T2 than that of fish in T3 group. Apparent digestibility coefficients (ADCs) of dry matter was higher in fish fed T6 diet than those of fish fed T1 and T2 diets, ADCs of phosphorus increased with dietary SPC level up to T3 and then decreased. The results obtained in this study indicate that FM protein could be effectively replaced by SPC protein with phytase in diet of black sea bream.  相似文献   

10.
An 8‐week experiment was conducted to evaluate the effects of dietary fish meal (FM) replaced by soybean protein concentrate (SPC) on Japanese strain of soft‐shelled turtle, Pelodiscus sinensis juveniles. Diets were formulated to replace FM protein by SPC at 0, 15, 30, 45, 60 or 60% supplemented with phytase (2000 FTU kg?1) (designated as S0, S15, S30, S45, S60 and S60P, respectively), and each diet was fed to triplicate groups. The results showed that the growth was significantly lower when dietary SPC replaced more than 45% FM. The turtles fed the S15 or S30 diet showed comparable feed and protein utilization efficiency compared with the S0 group, whereas more than 30% replacement of FM adversely affected these values. Increasing dietary SPC levels significantly lowered the apparent digestibility coefficients (ADC) of dry matter, protein, lipid, phosphorus and gross energy. Whole‐body protein, ash and phosphorus content showed a declining trend when dietary SPC levels increased, while body lipid and moisture content were unaffected. When the turtles were fed diets with increasing levels of SPC, serum total protein concentration, alkaline phosphatase and catalase activities decreased with a corresponding increase in glutamic pyruvic transaminase activity. Turtles fed the S60P diet showed comparable growth performance and feed utilization efficiency to the S40 group, and were superior to the S60 group. The present study showed that SPC could successfully substitute for 30% FM protein in the diets for P. sinensis juveniles, and the maximum effective substitution may be greater if exogenous phytase was added.  相似文献   

11.
A study was undertaken to determine the dietary protein level for optimal growth performance and body composition of juvenile Senegalese sole. Five experimental extruded diets were formulated to contain increasing levels of protein [430, 480, 530, 570 and 600 g kg?1 dry matter (DM)] and a constant lipid level, ranging from 100 to 130 g kg?1 DM. Triplicate groups of 35 sole (initial body weight: 11.9 ± 0.5 g) were grown over 84 days in 60‐L tanks supplied with recirculated seawater. Fish were fed by means of automatic feeders in eight meals per day. At the start and end of the trial, whole‐body samples were withdrawn for proximate composition analysis. At the end of 84 days of experimental feeding, daily weight gain and specific growth rate in fish fed diets P43 and P48 were significantly lower than those found in fish fed higher protein level diets (P53, P57 and P59). Similarly, feed efficiency was also significantly lower in fish fed diet P43 than in fish fed all other dietary treatments. Sole juveniles fed lower protein level diets (P43 and P48) showed a significantly lower protein content than fish fed the higher dietary protein level treatments (P53, P57 and P60). Changes within the tested dietary protein levels did not affect significantly protein productive value or total nitrogen (N) losses in fish. However, daily N gain was significantly higher (P < 0.05) in fish fed diets P53 and P60 than in fish fed the lowest protein level diet (P43). Data from the present study indicate that diets for juvenile Senegalese sole should include at least 53% crude protein to maintain a good overall growth performance. Based on a second‐order polynomial regression model, the daily crude protein requirement for maximum whole‐body N gain as estimated here for Senegalese sole juveniles was 6.43 g kg?1 body weight day?1 which corresponds to a value of 1.03 g N intake kg?1 body weight day?1. If the present data are expressed on a dietary crude protein concentration basis, the allowance for maximum protein accretion (N gain) would be met by a diet containing a crude protein level of 600 g kg?1.  相似文献   

12.
With the aim to evaluate different replacement levels of fish meal (FM) by pea protein concentrate (PPC) on survival, growth performance and body composition of juvenile tench (Tinca tinca), a 90‐day experiment was conducted with 6‐month‐old juveniles. Four practical diets (50% crude protein) differing in the level of replacement of FM protein by PPC protein were tested: 0% (control), 25%, 35% or 45%, corresponding to 0, 207.5, 290.4 or 373.3 g PPC kg?1 diet respectively. Survival rates ranged from 96.4% to 98.5%. The 25% and 35% replacement diets resulted in similar growth values (P > 0.05) to those obtained with the control diet (average of the three feeding treatments: 57.57 mm total length, 2.48 g weight and 1.87% day?1 specific growth rate). The 45% replacement diet had the lowest growth (P < 0.05). Fish with externally visible deformities ranged from 0% to 1.5%. The relation among amino acid profiles of the diets, body composition, growth performance of juveniles and amino acid requirements of other fish species is discussed. An amount of 290.4 g PPC kg?1 diet (35% replacement of FM protein) can be included in juvenile tench diets without impairing growth performance.  相似文献   

13.
The effect of dietary protein level and protein source on growth and proteolytic activity of juvenile Solea senegalensis was studied. In Experiment 1, fish were fed on four experimental diets containing increased protein levels (36, 46, 56 and 67%). In Experiment 2, Senegalese soles were fed on five diets with partial substitution of fish meal by soybean meal, soybean protein concentrate, soybean protein isolate, wheat gluten meal or pea protein concentrate. Results prove that growth and proteolytic activity in the distal intestine of fish were affected by the quantitative increase in dietary protein. The origin of protein source used in the elaboration of experimental diets affected both the amount and composition of the alkaline proteases secreted into the intestinal lumen; however, it did not decrease animal growth. Juvenile Senegalese sole showed capability to modulate digestive protease secretion when the concentration and/or source of dietary protein were modified. Quantity and quality of dietary protein affected protein hydrolysis in Senegalese sole intestine. This study establishes that 30% fish meal protein can be replaced by soybean derivatives without affecting intestinal proteases. Replacement with wheat gluten meal or pea protein concentrate should be taken cautiously, but further research is needed to establish whether growth performance and digestive enzyme physiology of Senegalese sole are affected by plant protein-supplemented diets in a long-term trial.  相似文献   

14.
This work aimed to determine whether a minimum provision of marine oil in practical diets for Litopenaeus vannamei is required when replacing fish meal (FM) by soy protein concentrate (SPC). The study consisted of three growth experiments conducted in 500‐L tanks with 70 shrimp m?2. In experiment #1, FM was progressively replaced by SPC as fish oil (FO) levels increased with a consistent input of whole squid meal (WSM). In experiment #2, FM was replaced by SPC under two levels of FO (10 or 20 g kg?1) without the presence of a feeding effector. In experiment #3, three dietary levels of krill meal (KRL) and WSM (5, 10 and 20 g kg?1) were included in a basal diet containing SPC and low levels of FM. Results showed that under a clear‐water condition, the dietary levels of FO in practical diets for L. vannamei have a significant impact on the amount of FM that can be replaced by SPC. As much as 31% replacement of FM/SPC was possible with 20 g kg?1FO. Whenever dietary fat was adjusted by using FO as a lipid source, complete replacement of FM by SPC was achieved with no negative effect on shrimp growth.  相似文献   

15.
A study was carried out to examine and optimize the inclusion levels of shrimp hydrolysate (SH) or tilapia hydrolysate (TH) in low fishmeal diets for olive flounder (Paralichthys olivaceus). A fishmeal (FM)‐based diet was considered as a high FM (HFM) diet, and a diet containing soy protein concentrate (SPC) as a FM replacer at 50% substitution level was regarded as a low FM (LFM) diet. Six other experimental diets were prepared by dietary supplementation of SH or TH to LFM diet at different inclusion levels of 15 g/kg, 30 or 45 g/kg in the expense of FM (designated as SH‐1.5, SH‐3.0, SH‐4.5, TH‐1.5, TH‐3.0 and TH‐4.5, respectively). After 10 weeks of a feeding trial, growth performance and feed utilization efficiency of fish were significantly higher in fish fed HFM, SH‐3.0, SH‐4.5, TH‐1.5 and TH‐3.0 diets compared to those of fish fed LFM diet. Intestine diameter, villus height and goblet cell counts of fish were significantly increased by dietary inclusion of SH or TH into LFM diet. Dry matter and protein digestibility of diets were significantly improved by SH or TH incorporation. Innate immunity of fish was significantly enhanced by dietary SH or TH supplementation into LFM diet. Disease resistance of fish was significantly increased against Edwardsiella tarda by dietary inclusion of SH and TH at the highest inclusion level (45 g/kg). The optimum inclusion level of SH or TH in a SPC‐based LFM diet could be ~30 g/kg and 15–30 g/kg, for olive flounder.  相似文献   

16.
The present study aimed to determine the effect of feeding time on growth and nitrogen excretion in juvenile sole. An 84‐day growth trial was conducted, in which food was supplied to three triplicate groups of juvenile Senegalese sole (3 g wet weight) at different schedules – diurnal, nocturnal and mixed. At the end of the growth trial, ammonia and urea excretion was assessed during a 24 h cycle. Improved growth (1.3% vs. 0.9% day?1, specific growth rate), higher nitrogen retention (0.35 vs. 0.27 g N kg?1 day?1), lower ammonia excretion (209 vs. 272 mg N‐NH4 kg?1 day?1) and lower total nitrogen excretion (278 vs. 352 mg N kg?1 day?1) were found in daytime‐fed fish compared with night‐fed fish. Fish in the mixed feeding regime showed intermediate values of ammonia and total nitrogen excretion, but did not differ from day‐fed fish regarding the other parameters. Results indicate that juvenile sole at a period of their life cycle appear to use more efficiently dietary protein for somatic growth under a diurnal than under a nocturnal feeding regime. This suggest that at least during a time‐window in the juvenile rearing a diurnal feeding regime might be more effective in the production of this species.  相似文献   

17.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

18.
A growth trial was conducted to evaluate the growth potential and nutrient utilization of Senegalese sole fed diets containing increasing replacement levels of dietary fishmeal (FM) by mixtures of plant protein (PP) sources. Six extruded isonitrogenous and isolipidic diets (55% crude protein and 8% crude fat on a dry matter basis) were fed to juvenile sole (mean initial body weight: 8 g ± 0.06) during 92 days. A reference diet containing FM as the main protein source (Control) was compared with five PP based-diets with increasing PP levels: 25% (PP25), 35% (PP35), 45% (PP45), 60% (PP60) and 75% (PP75). PP45, PP60 and PP75 diets were supplemented with crystalline amino acids to simulate the level present in the Control diet. The environmental impact of the tested diets was assessed through the determination of N and P budgets and calculating approximate Fish-in:Fish-out (Fi:Fo) ratios. Fish fed PP25 and PP75 reached a final body weight and daily growth index (DGI) similar to the Control group (P > 0.05). Diet PP45 displayed the lowest DGI (0.8 vs 1.3%), lowest protein efficiency ratio (1.03 vs 1.8) and highest FCR (1.7 vs 1.01). The dietary treatments with highest percentage of FM replacement (PP60 and PP75) displayed similar FCR values as the Control (1.2–1.0). Apparent digestibility coefficients (ADCs) of protein varied between 77 and 85% and were not significantly affected by the PP inclusion level. Whole body protein and energy content did not differ significantly among treatments, but protein gain was significantly higher in the Control group compared to PP35, PP45 and PP60 groups. The results indicate that Senegalese sole can effectively cope with plant protein-based diets, but growth rate and nutrient gain mainly depend on the selection of adequate plant protein blends, rather than on the plant protein incorporation level. Sole fed the highest PP level (PP75) showed good growth performance, efficient dietary nutrient utilization and a lower Fi:Fo ratio compared to the Control. The present results clearly show that increasing FM replacement level can have a positive environmental impact as reduces P fecal waste and the fishmeal used per kg of sole produced.  相似文献   

19.
为了探讨鱼蛋白水解物对黄颡鱼生产性能的影响,以日本鳀粉为对照,以实用型黄颡鱼饲料配方模式为基础开展实验:1以30.5%鱼粉为对照(FM),在相同配方模式下,以6%鱼蛋白水解物(MPH6)替代20%的鱼粉;2以30.5%鱼粉为对照(FM),在无鱼粉日粮中分别添加3%(FPH3)、6%(FPH6)、12%(FPH12)鱼蛋白水解物;共设计5组等氮等能实验日粮,在池塘网箱中养殖黄颡鱼[初始体质量(30.08±0.35)g]60 d。结果显示:与FM相比,FPH12在SGR、FCR、PRR和FRR方面均无显著差异,而MPH6、FPH3、FPH6组SGR降低了15.45%~24.39%,FCR升高了32.14%~42.86%,MPH6、FPH6差异显著,在PRR和FRR方面,MPH6、FPH3、FPH6组PRR降低了21.11%~27.78%,MPH6组FRR降低了41.51%;全鱼水分、粗蛋白、粗脂肪和灰分各组间差异不显著,FPH3、FPH6、FPH12肌肉多种游离氨基酸水平显著高于FM,其中Thr、Val、His与其在日粮中的水平显著相关;FPH6组HSI显著低于FM,鱼蛋白水解物对CP、VSI、肠体比的影响不显著;血清AST、ALT、HDL、LDL、TP、CHOL、TG无显著差异,FPH3组ALB显著低于FM。研究表明:黄颡鱼日粮中,12%鱼蛋白水解物(干物质)与30.5%鱼粉在生长速度、饲料效率、血清生理指标等方面具有一定的等效性;过高的植物蛋白日粮影响了黄颡鱼的生产性能;饲喂鱼蛋白水解物日粮使黄颡鱼肌肉游离氨基酸的含量升高,特别是呈味氨基酸的含量增加。  相似文献   

20.
This study evaluated the growth (first phase) and feeding responses (second phase) of juvenile mutton snapper fed four isonitrogenous and isoenergetic diets with increasing levels of soy protein concentrate (SPC) in substitution to fish meal (FM). The FM was replaced by SPC at 0% (basal diet, SPC000), 33% (SPC130), 57% (SPC214) and 77% (SPC300). After 95 days of rearing, fish fed SPC300 attained a significantly lower body weight (54.9 ± 13.2 g) compared with those fed diets SPC000, SPC130 and SPC214 (76.5 ± 14.0 g, 73.9 ± 13.8 g and 70.5 ± 14.0 g respectively). Fish yield increased significantly from 891 ± 36 g m?3 for fish fed SPC300 to an average of 1099 ± 111 g m?3 for other diets. A maximum fish body weight gain of 0.60 ± 0.05 g day?1 and a maximum specific growth rate of 1.47 ± 0.07% day?1 were achieved for SPC000. Behavioural assays conducted during 10 days revealed the loss in fish growth with diets containing higher levels of SPC was due to a decline in feed intake. Low feed intake driven by a poor feed palatability appeared to have been a major obstacle against higher inputs of SPC in diets for mutton snapper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号