首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microplate assay technique for estimation of esterase activity in a single insect was used in combination with dose mortality bioassays to detect pyrethroid resistance in three strains of Helicoverpa armigera and to study the frequency of pyrethroid resistant individuals within the population of the same strain at two larval stages, third and fifth instar. The third and fifth instar larvae of the field strains i.e., Nagpur strain and Delhi strain that displayed high degree of resistance towards deltamethrin, had higher esterase activity compared to a susceptible laboratory strain. The frequency distribution of individuals with elevated esterase activity above 1.00 absorbance unit was correlated with the resistance level of the strains. The frequency of resistant individuals in the third instar larvae of Nagpur strain and Delhi strain were 29% and 23%, respectively compared to 4% in the susceptible strain. The resistant individuals in the resistant strains have markedly increased in the fifth instar larvae with a frequency distribution of 63% and 90% in Delhi strain and Nagpur strain, respectively, while only 14% of individuals was found to have elevated esterase activity in the susceptible strain. The results demonstrated the role of esterase in pyrethroid resistance in H. armigera. Microplate assay proved to be a rapid and reliable biochemical technique for monitoring of pyrethroid resistance in H. armigera.  相似文献   

2.
The role of esterase in pyrethroid resistance was studied in the final larval instar of different strains of the cotton bollworm, Helicoverpa armigera. The resistant strains viz., Nagpur strain and the Delhi strain were found to have elevated midgut esterase activity in comparison to the susceptible strain. Nagpur strain and Delhi strain have 2.24 and 1.73-fold higher esterase activity, respectively, than that of the susceptible strain. The Native PAGE displayed important differences in the midgut esterase isozyme pattern between the susceptible and the pyrethroid-resistant strains. Out of the 10 esterase isozyme observed, susceptible strain lacked three bands, E2, E6 and E10 that were found in the resistant strains. The potency of the synergists piperonyl butoxide (PBO) and dihydrodillapiole (DDA) as esterase inhibitor were also studied both in vitro and in vivo. The in vitro results clearly show that both PBO and DDA inhibited esterase activity in the two resistant strains, while there was almost no esterase inhibition in the homogenate of the susceptible strain. The in vivo inhibition studies (topical application of PBO and DDA followed by biochemical analysis) illustrated that PBO- and DDA-esterase binding is rather slow and non permanent process. Esterase inhibition did not occur immediately after the synergist treatment but at 4 and 8 h post treatment in case of PBO and DDA, respectively. Native PAGE revealed that the in vivo esterase inhibition caused by both PBO and DDA was due to the binding of the synergist with the E6 isozyme which was not present in the susceptible strain.  相似文献   

3.
Increased hydrolytic metabolism of organophosphate insecticides has been associated with resistance among Nebraska western corn rootworm populations. In this study, resistance-associated esterases were partially purified by differential centrifugation, ion exchange, and hydroxyapatite column chromatography, with a final purification factor of 100-fold and recovery of approximately 10%. Kinetic analysis of the partially purified enzyme indicated that the Km of the group II esterases was identical for the two populations, although Vmax was consistently threefold higher in the resistant population. A putative esterase, DvvII, was further purified to homogeneity by preparative polyacrylamide gel electrophoresis. DvvII is a monomer with a molecular weight of approximately 66 kDa, although three distinct isoforms with similar pIs were evident based on isoelectric focusing gel electrophoresis. Immunoassays with the Myzus persicae E4 antiserum indicated that group II esterases from D. v. virgifera were cross-reactive and expressed at much higher titers in the resistant population relative to the susceptible counterpart. These results suggest that the resistance is likely associated with overproduction of an esterase isozyme in resistant D. v. virgifera populations.  相似文献   

4.
Esterases hydrolyzing α-naphthyl acetate (α-NA), β-naphthyl acetate (β-NA), and p-nitrophenyl acetate (p-NPA) were investigated colorimetrically in larval homogenates of synthetic pyrethroid susceptible (S) and resistant (R) strains of Spodoptera littoralis (Boised). The hydrolytic activity towards the three substrates in cybolt, decamethrin, and fenvalerate R strains were from 3 to 6.5 times as high as in the S strain. The increase in esterase activity was closely associated with the development of resistance in the R strains. DEF (S,S,S-tributyl phosphorotrithioate) proved to be an inhibitor for all esterases, with a particularly potent action on p-NPA-hydrolyzing enzymes. The inhibitory action was more pronounced in R strains than in the S strain. Pretreatment with DEF increased the toxicity of pyrethroid compounds in the R strains more than in the S strain and hence decreased the levels of resistance in these strains. This is evidence that the esterases contribute to the resistance against synthetic pyrethroids in S. littoralis larvae.  相似文献   

5.
Wheat aphid, Sitobion avenae (fabricius), is one of the most important wheat pests and has been reported to be resistant to commonly used insecticides in China. To determine the resistance mechanism, the resistant and susceptible strains were developed in laboratory and comparably studied. A bioassay revealed that the resistant strain showed high resistance to pirimicarb (RR: 161.8), moderate reistance to omethoate (32.5) and monocrotophos (33.5), and low resistance to deltamethrin (6.3) and thiodicarb (5.5). A biochemistry analysis showed that both strains had similar glutathione-S-transferase (GST) activity, but the resistant strain had 3.8-fold higher esterase activity, and its AChE was insensitive to this treatment. The I50 increased by 25.8-, 10.7-, and 10.4-folds for pirimicarb, omethoate, and monocrotophos, respectively, demonstrating that GST had not been involved in the resistance of S. avenae. The enhanced esterase contributed to low level resistance to all the insecticides tested, whereas higher resistance to pirimicarb, omethoate, and monocrotophos mainly depended on AChE insensitivity. However, the AChE of the resistant strain was still sensitive to thiodicarb (1.7-fold). Thus, thiodicarb could be used as substitute for control of the resistant S. avenae in this case. Furthermore, the two different AChE genes cloned from different resistant and susceptible individuals were also compared. Two mutations, L436(336)S in Sa.Ace1 and W516(435)R in Sa.Ace2, were found consistently associated with the insensitivity of AChE. They were thought to be the possible resistance mutations, but further work is needed to confirm this hypothesis.  相似文献   

6.
7.
A Tetranychus cinnabarinus strain was collected from Chongqing, China. After 42 generations of selection with abamectin and 20 generations of selection with fenpropathrin in the laboratory, this T. cinnabarinus strain developed 8.7- and 28.7-fold resistance, respectively. Resistance to abamectin in AbR (abamectin resistant strain) and to fenpropathrin in FeR (fenpropathrin resistant strain) was partially suppressed by piperonyl butoxide (PBO), diethyl maleate (DEM) and triphenyl phosphate (TPP), inhibitors of mixed function oxidase (MFO), glutathione S-transferases (GST), and hydrolases, respectively, suggesting that these three enzyme families are important in conferring abamectin and fenpropathrin resistance in T. cinnabarinus. The major resistant mechanism to abamectin was the increasing activities of carboxylesterases (CarE), glutathione-S-transferase (GST) and mixed function oxidase (MFO), and the activity in resistant strain developed 2.7-, 3.4- and 1.4-fold contrasted to that in susceptible strain, respectively. The activity of glutathione-S-transferase (GST) in the FeR strain developed 2.8-fold when compared with the susceptible strain, which meant the resistance to fenpropathrin was related with the activity increase of glutathione-S-transferase (GST) in T. cinnabarinus. The result of the kinetic mensuration of carboxylesterases (CarE) showed that the structure of CarE in the AbR has been changed.  相似文献   

8.
Resistance in Spodoptera litura (Fabricius) has been attributed to enhanced detoxification of insecticides by increased levels of esterases, oxidases and/or glutathione S-transferases. Enzyme inhibiting insecticide synergists can be employed to counter increased levels of such enzymes in S. litura. Dihydrodillapiole induced synergism of pyrethroid toxicity was examined in the laboratory-reared third instar larval population of S. litura collected in Delhi (susceptible), and Guntur (resistant) region of Andhra Pradesh, India. The Guntur population was found to be 7.04 and 10.19 times resistant to cypermethrin and lambdacyhalothrin, respectively. The activity of cypermethrin, lambdacyhalothrin and profenophos against susceptible and resistance populations of S. litura, was gradually increased when used along with a plant-derived insecticide synergist dihydrodillapiole. The α-naphthyl acetate hydrolysable esterase activity in Delhi population was less as compared to the Guntur population. Resistance associated esterases in Delhi population were inhibited by pre-treatment with dihydrodillapiole. The esterase level in insect was instantly reduced initially, sustained for about 3 h and equilibrated at 4 h post treatment. The esterase activity of Guntur population was increased to 1.28 μmoles/mg/min at 2 h post treatment and subsequently reduced to lower than 0.70 μmoles at 4-12 h post treatment. The variation in esterase activity is suggestive of its homeostatic regulation in test populations. Dihydrodillapiole thus caused significant reduction of resistance in S. litura to cypermethrin, lambda cyhalothrin and profenophos.  相似文献   

9.
Resistance in a dual malathion- and permethrin-resistant head louse strain (BR-HL) was studied. BR-HL was 3.6- and 3.7-fold more resistant to malathion and permethrin, respectively, compared to insecticide-susceptible EC-HL. S,S,S-Tributylphosphorotrithioate synergized malathion toxicity by 2.1-fold but not permethrin toxicity in BR-HL. Piperonyl butoxide did not synergize malathion or permethrin toxicity. Malathion carboxylesterase (MCE) activity was 13.3-fold and general esterase activity was 3.9-fold higher in BR-HL versus EC-HL. There were no significant differences in phosphotriesterase, glutathione S-transferase, and acetylcholinesterase activities between strains. There was no differential sensitivity in acetylcholinesterase inhibition by malaoxon. Esterases from BR-HL had higher affinities and hydrolysis efficiencies versus EC-HL using various naphthyl-substituted esters. Protein content of BR-HL females and males was 1.6- and 1.3-fold higher, respectively, versus EC-HL adults. Electrophoresis revealed two esterases with increased intensity and a unique esterase associated with BR-HL. Thus, increased MCE activity and over-expressed esterases appear to be involved in malathion resistance in the head louse.  相似文献   

10.
The tarnished plant bug (TPB) has increasingly become an economically important pest of cotton. Heavy dependence on insecticides, particularly organophosphates and pyrethroids, for TPB control facilitated resistance development to multiple classes of insecticides. To better understand resistance and explore ways to monitor resistance in field populations, this study examined acephate susceptibility and the activities of two major detoxification enzymes in nine field populations collected in the Delta region of Mississippi and Arkansas in 2010. Two Arkansas populations from Reed and Backgate had 3.5- and 4.3-fold resistance to acephate, as compared to a susceptible laboratory strain. Extensive planting of cotton and heavy chemical sprays is a major driving force for resistance development to acephate in Mid-south cotton growing areas. Reduced susceptibility to acephate was highly correlated with elevated esterase activities. The acephate-resistant populations from Backgate, Lula, and Reed consistently had higher (up to 5.3-fold) esterase activities than susceptible populations. Regression analysis of LC50s with kinetic esterase activities revealed a significant polynomial quadratic relationship with R2 up to 0.89. Glutathione S-transferase (GST) also had elevated activity in most populations, but the variations of GST activities were not significantly correlated with changes of acephate susceptibility. Finally, examination of esterase and GST inhibitors indicated that suppression rates (up to 70%) by two esterase inhibitors in 2010 were slightly lower than those detected in 2006, and ethacrynic acid (EA) inhibited GST effectively in both years. Two other GST inhibitors (sulfobromophthalein and diethyl maleate) displayed significantly lower suppression rates in 2010 than those detected in 2006, suggesting a potential genetic shift in pest populations and a necessity of continued monitoring for insecticide resistance with both bioassay and biochemical approaches. Results indicated that using major detoxification enzyme activities for resistance monitoring may provide insight into acephate resistance in field populations of TPB.  相似文献   

11.
A housefly strain, originally collected in 1998 from a dump in Beijing, was selected with beta-cypermethrin to generate a resistant strain (CRR) in order to characterize the resistance and identify the possible mechanisms involved in the pyrethroid resistance. The resistance was increased from 2.56- to 4419.07-fold in the CRR strain after 25 consecutive generations of selection compared to a laboratory susceptible strain (CSS). The CRR strain also developed different levels of cross-resistance to various insecticides within and outside the pyrethroid group such as abamectin. Synergists, piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF), increased beta-cypermethrin toxicity 21.88- and 364.29-fold in the CRR strain as compared to 15.33- and 2.35-fold in the CSS strain, respectively. Results of biochemical assays revealed that carboxylesterase activities and maximal velocities to five naphthyl-substituted substrates in the CRR strain were significantly higher than that in the CSS strain, however, there was no significant difference in glutathione S-transferase activity and the level of total cytochrome P450 between the CRR and CSS strains. Therefore, our studies suggested that carboxylesterase play an important role in beta-cypermethrin resistance in the CRR strain.  相似文献   

12.
A field population of the rice stem borer (Chilo suppressalis Walker) with 203.3-fold resistance to triazophos was collected. After 8-generation of continuous selection with triazophos in laboratory, resistance increased to 787.2-fold, and at the same time, the resistance to isocarbophos and methamidophos was also enhanced by 1.9- and 1.4-fold, respectively, implying some cross-resistance between triazophos and these two organophosphate insecticides. Resistance to abamectin was slightly enhanced by triazophos selection, and fipronil and methomyl decreased. Synergism experiments in vivo with TPP, PBO, and DEM were performed to gain a potential indication of roles of detoxicating enzymes in triazophos resistance. The synergism results revealed that TPP (SR, 1.92) and PBO (SR 1.63) had significant synergistic effects on triazophos in resistant rice borers. While DEM (SR 0.83) showed no effects. Assays of enzyme activity in vitro demonstrated that the resistant strain had higher activity of esterase and microsomal O-demethylase than the susceptible strain (1.20- and 1.30-fold, respectively). For glutathione S-transferase activity, no difference was found between the resistant and the susceptible strain when DCNB was used as substrate. However, 1.28-fold higher activity was observed in the resistant strain when CDNB was used. These results showed that esterase and microsomal-O-demethylase play some roles in the resistance. Some iso-enzyme of glutathione S-transferase may involve in the resistance to other insecticides, for this resistant strain was selected from a field population with multiple resistance background. Acetylcholinesterase as the triazophos target was also compared. The results revealed significant differences between the resistant and susceptible strain. The Vmax and Km of the enzyme in resistant strain was only 32 and 65% that in the susceptible strain, respectively. Inhibition tests in vitro showed that I50 of triazophos on AChE of the resistant strain was 2.52-fold higher. Therefore, insensitive AChE may also involved in triazophos resistance mechanism of rice stem borer.  相似文献   

13.
The role of esterases in malathion resistance in Culex tarsalis has been investigated. When larvae of a resistant and a sensitive strain were placed in water containing [14C]malathion, malathion penetrated to give initially similar internal levels. With resistant mosquitoes, after 15 min the internal malathion concentration decreased to low levels while the monoacid degradation products accumulated in the larvae and were excreted into the surrounding water, whereas in susceptible larvae the internal malathion level stayed high and was lethal. It is suggested that the decrease in internal malathion and the resulting resistance were caused by an active malathion carboxylesterase in the resistant strain. A specific assay for malathion carboxylesterase with [14C]malathion showed 55 times more activity in resistant than in susceptible larvae, whereas when general esterase activity was assayed with α-naphthyl acetate only 1.7 times the activity was found. Analyses by starch gel electrophoresis showed a peak of malathion carboxylesterase, 60-fold higher from resistant than from susceptible larvae, in a gel zone which did not stain for general esterase activity. General esterases that did not hydrolyze malathion showed different electrophoretic patterns in the two populations, which are likely due to the nonisogenic character of the strains. These results show that use of a specific assay and the demonstration of degradation of malathion in vivo are essential for assessment of the contribution of esterase activity to the malathion-resistant phenotype in mosquito populations.  相似文献   

14.
Genetic and biochemical factors leading to resistance to various organophosphate (OP) based insecticides were studied in lines selected for OP-resistance in the oriental fruit fly Bactrocera dorsalis. Lines were separately selected for resistance to naled, trichlorfon, fenitrothion, fenthion, formothion, and malathion. Overall, these lines showed increased resistance ratios ranging from 13.7- to 814-fold relative to a susceptible (S) line. Also, in these newly selected lines the same three point mutations in the ace gene, previously identified in resistance studies and designated as I214V, G488S and Q643R, were found. As expected, the enzyme from the resistant lines showed lower overall activity and reduced sensitivity to inhibition by fenitrothion, methyl-paraoxon and paraoxon compared to the wild type acetylcholinesterase (AChE) enzyme. The apparent Vmax values for esterase from the resistant lines were 1.2-3.69 times higher than that of the S line. Although only the naled-, trichlorfon- and fenthion-r lines showed lower esterase affinities (based on apparent Km values) compared with the S line, all of the Vmax/Km ratios were higher in the resistant lines compared to that of the S line. The OP-resistant lines also displayed an overall similar pattern of isozyme expression, except for one additional band found only in the naled-r line and one band that was absent in the trichlorfon-, malathion-, and fenthion-r lines. Our results also show that overall, multiple examples of high OP resistance in selected lines of B. dorsalis exhibiting the same genetic alterations in the ace gene seen previously resulted in different effects on esterase enzyme activity in relation to various OP compounds.  相似文献   

15.
Separation of non‐specific esterases on electrophoretic gels has played a key role in distinguishing between races or biotypes of the tobacco whitefly, Bemisia tabaci. One intensively staining esterase in particular (termed E0.14) has assumed significance as a diagnostic of B‐type whiteflies (aka Bemisia argentifolii), despite any knowledge of its biological function. In this study, a whitefly strain (B‐Null) homozygous for a null allele at the E0.14 locus that had been isolated from a B‐type population was used to demonstrate a significant role for E0.14 in resistance of B‐type populations to pyrethroids but not to organophosphates (OPs). Bioassays with pyrethroids, following pre‐treatment with sub‐lethal doses of the OP profenofos (to inhibit esterase activity), coupled with metabolism studies with radiolabelled permethrin, supported the conclusion that pyrethroid resistance in a range of B‐type strains expressing E0.14 was primarily due to increased ester hydrolysis. In the same strains, OP resistance appeared to be predominantly conferred by a modification to the target‐site enzyme acetylcholinesterase. © 2000 Society of Chemical Industry  相似文献   

16.
The resistance of Cydia pomonella (L.) to organophosphates is widespread throughout the pome fruit growing areas. The lethal effects of two insecticides inhibitors of the acetylcholine esterase, azinphos-methyl and carbaryl, were evaluated in adults of five and four field populations of the codling moth, respectively. The lethal concentrations (LC50 and LC90) of these insecticides were determined in a susceptible strain from Spain (S_Spain). Topical bioassays using the approximate LC90 values (3000 mg (a.i.)/L of carbaryl and 2000 mg (a.i.)/L of azinphos-methyl) that were obtained in S_Spain were tested as diagnostic concentrations. The enzymatic activities of mixed-function oxidases (MFO), glutathione S-transferases (GST) and esterases (EST) were measured to investigate their potential role in the detoxification of these insecticides.Carbaryl and azinphos-methyl caused ?53% and ?39% corrected mortality, respectively, in field populations, although the diagnostic concentrations applied were twofold and fourfold higher than the maximum concentration registered in Spain, respectively. The activities of MFO and GST were 7.3- to 16.1-fold higher and 2.5- to 3.7-fold higher in all the field populations compared to those in S_Spain, respectively.  相似文献   

17.
Spanish Cydia pomonella (L.) field populations have developed resistance to several insecticide groups. Diagnostic concentrations were established as the LC90 calculated on a susceptible strain (S_Spain) for five and seven insecticides and tested on eggs and neonate larvae field populations, respectively. The three most relevant enzymatic detoxification systems (mixed-function oxidases (MFO), glutathione S-tranferases (GST) and esterases (EST)) were studied for neonate larvae.In eggs, 96% of the field populations showed a significantly lower efficacy when compared with the susceptible strain (S_Spain) and the most effective insecticides were fenoxycarb and thiacloprid. In neonate larvae, a significant loss of susceptibility to the insecticides was detected. Flufenoxuron, azinphos-methyl and phosmet showed the lowest efficacy, while lambda-cyhalothrin, alpha-cypermethrin and chlorpyrifos-ethyl showed the highest. Biochemical assays showed that the most important enzymatic system involved in insecticide detoxification was MFO, with highest enzymatic activity ratios (5.1-16.6 for neonates from nine field populations). An enhanced GST and EST activities was detected in one field population, with enzymatic activity ratios of threefold and fivefold for GST and EST, respectively, when compared with the susceptible strain. The insecticide bioassays showed that the LC90 used were effective as diagnostic concentrations. Measures of MFO activity alongside bioassays with insecticide diagnostic concentrations could be used as tools for monitoring insecticide resistance in neonate larvae of C. pomonella.  相似文献   

18.
The mechanisms for multiple resistances had been studied with two field resistant strains and the selected susceptible and resistant strains of Spodoptera litura (Fabricius). Bioassay revealed that the two field strains were both with high resistance to pyrethroids (RR: 63-530), low to medium resistance to organophosphates and carbamates, AChE targeted insecticides (RR: 5.7-26), and no resistance to fipronil (RR: 2.0-2.2). Selection with deltamethrin in laboratory could obviously enhance the resistance of this pest to both pyrethroids and AChE targeted insecticides. Synergism test, enzyme analysis and target comparison proved that the pyrethroid resistance in this pest associated only with the enhanced activity of cytochrome P450 monooxygenase (MFO) and esterase. However the resistance to the AChE targeted insecticides depended on the target insensitivity and also the enhanced activity of MFO and esterase. Thus, the cross-resistance between pyrethroids and the AChE targeted insecticides was thought to be resulted from the enhanced activity of MFO and esterase.  相似文献   

19.
The levels of susceptibility of populations of the European red mite Panonychus ulmi (Koch) (Acarina: Tetranychidae) collected from apple orchards in the Bursa region of Turkey to the insecticides chlorpyrifos and lambda-cyhalothrin, were determined by a petri leaf disk—Potter spray tower method. When compared with the susceptible population, resistance ratios at the LC50 level ranged from 6.0- to 35.6-fold, and from 0.7- to 5.7-fold for chlorpyrifos and lambda-cyhalothrin, respectively. Kinetic parameters of general esterase activity with α-naphthyl acetate as substrate indicated that an increased activity was present in the resistant populations compared with the susceptible populations. In these strains, 1.5- and 2.2-fold higher Glutathione S-transferase (GST) activity was also detected with the substrate 1-chloro-2,4-dinitrobenzene. General esterase activity gel profiles of these populations were studied by native polyacrylamide gel electrophoresis, but no relationship between resistance ratios and band patterns was detected. The results of this study document a decreased efficacy of chlorpyrifos and lambda-cyhalothrin in field populations of P. ulmi in Turkey, possibly linked to altered activities of esterases and GST.  相似文献   

20.
Aliesterase, carboxylesterase, and phosphorotriester hydrolase activities in six house fly strains were studied in relation to malathion resistance. Selection of two susceptible strains with malathion for three generations resulted in an increase in both carboxylesterase activity and LD50 of malathion, indicating that the increased detoxication by the enzyme was the major mechanism selected for malathion resistance. With the highly resistant strains, however, the carboxylesterase activity alone was not sufficient to explain the resistance level, and the involvement of additional mechanisms, including phosphorotriester hydrolase activity, was suggested. The E1 strain, which had high phosphorotriester hydrolase activity but normal or low carboxylesterase activity, showed a moderate level, i.e., sevenfold resistance. Upon DEAE-cellulose chromatography, two or three esterase peaks were resolved from susceptible, moderately resistant, and highly resistant strains. The substrate specificity, the sensitivity to paraoxon inhibition, and the αβ ratio of malathion hydrolysis were studied for each esterase peak from the different strains. The results suggested the existence of multiple forms of esterases with overlapping substrate specificity in the house fly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号