首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat aphid, Sitobion avenae (fabricius), is one of the most important wheat pests and has been reported to be resistant to commonly used insecticides in China. To determine the resistance mechanism, the resistant and susceptible strains were developed in laboratory and comparably studied. A bioassay revealed that the resistant strain showed high resistance to pirimicarb (RR: 161.8), moderate reistance to omethoate (32.5) and monocrotophos (33.5), and low resistance to deltamethrin (6.3) and thiodicarb (5.5). A biochemistry analysis showed that both strains had similar glutathione-S-transferase (GST) activity, but the resistant strain had 3.8-fold higher esterase activity, and its AChE was insensitive to this treatment. The I50 increased by 25.8-, 10.7-, and 10.4-folds for pirimicarb, omethoate, and monocrotophos, respectively, demonstrating that GST had not been involved in the resistance of S. avenae. The enhanced esterase contributed to low level resistance to all the insecticides tested, whereas higher resistance to pirimicarb, omethoate, and monocrotophos mainly depended on AChE insensitivity. However, the AChE of the resistant strain was still sensitive to thiodicarb (1.7-fold). Thus, thiodicarb could be used as substitute for control of the resistant S. avenae in this case. Furthermore, the two different AChE genes cloned from different resistant and susceptible individuals were also compared. Two mutations, L436(336)S in Sa.Ace1 and W516(435)R in Sa.Ace2, were found consistently associated with the insensitivity of AChE. They were thought to be the possible resistance mutations, but further work is needed to confirm this hypothesis.  相似文献   

2.
Broad-spectrum insecticides are still widely being used. Chrysoperla carnea has been shown to develop resistance to the insecticides in the field. Knowledge of the evolution and genetics of resistance to insecticides in natural enemies could enable to explain how effectively natural enemies can be implemented in different IPM systems. To examine this, a population of C. carnea from Multan Pakistan was collected and was subjected to deltamethrin selection in the laboratory. Bioassays at generation G1 gave resistance ratios of 47, 86, 137, 76 and 110 for deltamethrin, alphamethrin lambdacyhalothrin, chlorpyrifos and profenofos respectively compared with susceptible Lab-PK. Bioassays at G4 with a deltamethrin-selected population (Delta-SEL) showed that selection gave resistance ratios of 896 and 30 for deltamethrin compared with the Lab-PK and UNSEL, respectively. Cross-resistance to other insecticides tested was observed in the selected population. A notable feature of the Delta-SEL strain was that resistance to deltamethrin, alphamethrin, lambdacyhalothrin, chlorpyrifos and profenofos did not decline over the course of four generations. Synergism tests with microsomal oxidase (MO) and esterase-specific inhibitors indicated that the deltamethrin resistance was associated with MO and, possibly, esterase activity. Reciprocal crosses between the Delta-SEL and Lab-PK strains indicated that resistance was autosomal and incompletely dominant. A direct test of monogenic inheritance suggested that resistance to deltamethrin was controlled by more than one locus. The broad spectrum of resistance, cross resistance, incompletely dominant mode of inheritance and stability of resistance to insecticides suggest that Delta-SEL population of C. carnea could be compatible with most spray programs.  相似文献   

3.
Microplate assay technique for estimation of esterase activity in a single insect was used in combination with dose mortality bioassays to detect pyrethroid resistance in three strains of Helicoverpa armigera and to study the frequency of pyrethroid resistant individuals within the population of the same strain at two larval stages, third and fifth instar. The third and fifth instar larvae of the field strains i.e., Nagpur strain and Delhi strain that displayed high degree of resistance towards deltamethrin, had higher esterase activity compared to a susceptible laboratory strain. The frequency distribution of individuals with elevated esterase activity above 1.00 absorbance unit was correlated with the resistance level of the strains. The frequency of resistant individuals in the third instar larvae of Nagpur strain and Delhi strain were 29% and 23%, respectively compared to 4% in the susceptible strain. The resistant individuals in the resistant strains have markedly increased in the fifth instar larvae with a frequency distribution of 63% and 90% in Delhi strain and Nagpur strain, respectively, while only 14% of individuals was found to have elevated esterase activity in the susceptible strain. The results demonstrated the role of esterase in pyrethroid resistance in H. armigera. Microplate assay proved to be a rapid and reliable biochemical technique for monitoring of pyrethroid resistance in H. armigera.  相似文献   

4.
The cytochrome P450-dependent monooxygenases (P450s) are an important enzymatic system that metabolizes xenobiotics (e.g., pesticides), as well as endogenous compounds (e.g., hormones). P450-mediated metabolism can result in detoxification of insecticides such as pyrethroids, or can be involved in the bioactivation and detoxification of insecticides such as organophosphates. We isolated (from the JPAL strain) a permethrin resistant strain (ISOP450) of Culex pipiens quinquefasciatus, having 1300-fold permethrin resistance using standard backcrossing procedures. ISOP450 is highly related to the susceptible lab strain (SLAB) and the high resistance to permethrin is due solely to P450-mediated detoxification. This is the first time in mosquitoes that P450 monooxygenase involvement in pyrethroid resistance has been isolated and studied without the confounding effects of kdr. Resistance in ISOP450 is incompletely dominant (D = +0.3), autosomally linked, and monofactorally inherited. It is expressed in the larvae, but not in adults. Cross-resistance to pyrethroids lacking a 3-phenoxybenzyl moiety (tetramethrin, fenfluthrin, bioallethrin, and bifenthrin) ranged from 1.5- to 12-fold. ISOP450 had only limited (6.6- and 11-fold) cross-resistance to 3-phenoxybenzyl pyrethroids with an α-cyano group (cypermethrin and deltamethrin, respectively). Examination of cross-resistance patterns to organophosphate insecticides in ISOP450 showed an 8-fold resistance to fenitrothion, while low, but significant, levels of negative cross-resistance were found for malathion (RR = 0.84), temephos (RR = 0.73), and methyl-parathion (RR = 0.55). The importance and uniqueness of this P450 mechanism in insecticide resistance is discussed.  相似文献   

5.
4种棉蚜抗药性种群的生命力及繁殖力   总被引:6,自引:0,他引:6  
用4种杀虫剂以浸渍法分别累代处理敏感棉蚜,以选育抗药性。每选育4代进行1次毒力测定及生命力和繁殖力的观察。选育至12代,棉蚜对溴氰菊酯的抗性倍数达4031.4倍,对久效磷、灭多威及硫丹的抗性倍数分别仅为6.3、6.1及4.0倍。棉蚜对溴氰菊酯抗性水平较低时,其生命力及繁殖力略低于敏感品系,随着抗性水平的提高,其生命力和繁殖力也随之增强,RF_(8)接近敏感品系的水平,RF_(12)及RF_(16)则明显超过。灭多威及硫丹抗性种群随抗性水平的提高,其生命力及繁殖力表现不同程度的降低。久效磷抗性种群,各抗性水平下其生命力和繁殖力与敏感品系相比无显著差异。  相似文献   

6.
A field population of the rice stem borer (Chilo suppressalis Walker) with 203.3-fold resistance to triazophos was collected. After 8-generation of continuous selection with triazophos in laboratory, resistance increased to 787.2-fold, and at the same time, the resistance to isocarbophos and methamidophos was also enhanced by 1.9- and 1.4-fold, respectively, implying some cross-resistance between triazophos and these two organophosphate insecticides. Resistance to abamectin was slightly enhanced by triazophos selection, and fipronil and methomyl decreased. Synergism experiments in vivo with TPP, PBO, and DEM were performed to gain a potential indication of roles of detoxicating enzymes in triazophos resistance. The synergism results revealed that TPP (SR, 1.92) and PBO (SR 1.63) had significant synergistic effects on triazophos in resistant rice borers. While DEM (SR 0.83) showed no effects. Assays of enzyme activity in vitro demonstrated that the resistant strain had higher activity of esterase and microsomal O-demethylase than the susceptible strain (1.20- and 1.30-fold, respectively). For glutathione S-transferase activity, no difference was found between the resistant and the susceptible strain when DCNB was used as substrate. However, 1.28-fold higher activity was observed in the resistant strain when CDNB was used. These results showed that esterase and microsomal-O-demethylase play some roles in the resistance. Some iso-enzyme of glutathione S-transferase may involve in the resistance to other insecticides, for this resistant strain was selected from a field population with multiple resistance background. Acetylcholinesterase as the triazophos target was also compared. The results revealed significant differences between the resistant and susceptible strain. The Vmax and Km of the enzyme in resistant strain was only 32 and 65% that in the susceptible strain, respectively. Inhibition tests in vitro showed that I50 of triazophos on AChE of the resistant strain was 2.52-fold higher. Therefore, insensitive AChE may also involved in triazophos resistance mechanism of rice stem borer.  相似文献   

7.
在70%的高选择压下,分别用溴氰菊酯、三氟氯氰菊酯和凯明2号(50%辛硫磷·甲基对硫磷·三氟氯氰乳油,即含三氟氯氰菊酯的复配药剂)对室内饲养了12代未经农药处理的棉铃虫Helicoverpa armigera(H(?)bner)敏感品系进行了抗性筛选。结果,经连续筛选至第12代的LD_(50)值与筛选前第1代的LD_(50)值比较,抗溴氰菊酯种群对溴氰菊酯的抗性为136.7倍,属高抗水平;抗三氟氯氰菊酯种群对三氟氯氰菊酯的抗性为9.5倍,抗凯明2号种群对凯明2号的抗性为3.4倍,均属低抗水平。用8种常用杀虫剂分别对这3个种群在停止上述杀虫剂筛选2代后进行了交互抗性分析。结果表明,3个种群平均对8种杀虫剂的抗性倍数中,对溴氰菊酯、氰戊菊酯、灭多威的抗性极显著高于其余5种杀虫剂;3个种群的平均抗性倍数之间差异极显著,顺序依次为抗溴氰菊酯种群>抗三氟氯氰菊酯种群>抗凯明2号种群;以平均抗性倍数表示的抗性种群与杀虫剂的交互作用有以下几个结果:①高抗溴氰菊酯的种群对氰戊菊酯和灭多威有极显著的交互抗性,但对三氟氯氰菊酯和凯明2号仍反应敏感。②抗三氟氯氰菊酯和抗凯明2号的2个种群对溴氰菊酯有极显著的交互抗性;抗三氟氯氰菊酯种群对灭多威和氰戊菊酯有一定抗性,抗凯明2号种群对硫丹有一定抗性。  相似文献   

8.
Strains of sheep louse Bovicola ovis (Schrank) with various levels of resistance to pyrethroid and one strain with high degree of resistance to organophosphate (OP) insecticides were used to investigate the biochemical mechanisms of insecticide resistance, i.e., enhanced levels of general esterases, specific acetylcholinesterases (AChE), glutathione S-transferase (GST), and mixed function oxidases. Native gel electrophoresis combined with quantitative enzyme assays showed analogous expression profiles of several esterase isozymes in all the strains tested. The determination of the sensitivity of each esterase isozyme to five inhibitors (acetylthiocholine iodide, butyrylthiocholine iodide, paraoxon eserine sulfate, and pCMB) led to the identification of nine esterases in the B. ovis strain. Gel electrophoresis results are supported by enzyme assay studies where, except for the OP resistant strain, no differences in esterase activities were detected in all the pyrethroid resistant and susceptible strains assayed. Statistical analyses demonstrated that some strains have elevated GST activities compared to the susceptible reference strain.  相似文献   

9.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

10.
We investigated the molecular basis of resistance in a strain of house fly (BJD) from Beijing, China. This strain showed 567-fold resistance to commonly used deltamethrin. Flies were 64-fold resistant to deltamethrin synergized by piperonyl butoxide (PBO). The 5′-flanking sequence of the cytochrome P450 gene CYP6D1 in BJD strain had a 15-bp insert as in the LPR strain. Two mutations (kdr, super-kdr) in the voltage sensitive sodium channel (VSSC) were also detected in the BJD strain. Our results showed that a combination of resistance alleles for CYP6D1 and VSSC existed in deltamethrin resistant house flies in China.  相似文献   

11.
药剂对小菜蛾抗性及敏感品系乙酰胆碱酯酶抑制作用比较   总被引:5,自引:1,他引:4  
采用浸叶法测定了云南通海、元谋和澜沧的小菜蛾plutella xylostella田间种群对常用杀虫剂的抗药性。结果表明,云南上述地区小菜蛾田间种群对各类杀虫剂均产生了不同程度的抗性。对有机磷类药剂的抗药性为1.74~31.1倍;对菊酯类药剂的抗药性为7.41~764倍;对阿维菌素类药剂则产生了 5.60~4.06×104倍的抗性。通过离体和活体试验测定了药剂对小菜蛾头部乙酰胆碱酯酶(AChE)的抑制作用。敌敌畏和灭多威对通海抗性品系AChE离体和活体内的抑制中浓度(I50)分别是敏感品系的209、26.5倍和2.21、2.16倍;敌敌畏对通海小菜蛾种群的离体和活体内抑制中时间(IT50)小于敏感品系,分别是敏感品系的0.32和0.17倍;而灭多威对通海小菜蛾种群的离体和活体内抑制中时间(IT50)则大于敏感品系,分别是敏感品系的1.37和1.74倍。  相似文献   

12.
为明确陕西关中地区麦蚜田间种群对杀虫剂的抗药性现状,采用浸叶法测定了兴平、礼泉、凤翔、岐山、扶风地区麦田禾谷缢管蚜种群对高效氯氰菊酯、溴氰菊酯、吡虫啉、异丙威、毒死蜱、阿维菌素、氟啶虫胺腈等7种杀虫剂的抗性水平。结果表明,禾谷缢管蚜对高效氯氰菊酯的抗性水平最高,其中凤翔种群对高效氯氰菊酯达到高水平抗性(抗性倍数为72.5),岐山和扶风种群对该药产生中等水平抗性(抗性倍数分别为31.4、29.9);5个地区的禾谷缢管蚜对溴氰菊酯、吡虫啉、毒死蜱、异丙威和阿维菌素的抗性水平较低,表现为敏感、敏感性下降或者低抗性;5个地区的试虫对氟啶虫胺腈均表现为敏感。分析认为,高效氯氰菊酯不适合用于关中地区禾谷缢管蚜防治,氟啶虫胺腈作为一种新型杀虫剂,可以在该虫防治中推广使用,吡虫啉、阿维菌素等其他几种杀虫剂可以在禾谷缢管蚜的防治中交替使用。  相似文献   

13.
A susceptible strain of diamondback moth, Plutella xylostella (L.), was used to select for resistance to tebufenozide in the laboratory. After continuous selection with tebufenozide 17 times during 35 generations, a resistant strain was achieved with high resistance to tebufenozide (RR 93.8). Bioassay revealed that this strain showed high cross-resistance to abamectin (RR 35.7), methoxyfenozide (29.1) and JS118 (16.5), and a little to deltamethrin (3.9), but no obvious cross-resistance was found to cypermethrin (1.3), fipronil (1.3), trichlorfon (1.1), chlorfenapyr (1.0), phoxim (0.9) and acephate (0.8). The resistant and susceptible insects had similar development rates, but life table tests indicated that the resistant strain showed reproductive disadvantages, including decreased copulation rate, reproductivity and hatchability. When compared with the susceptible strain, the resistant insects had a relative fitness of only 0.3. This indicated that tebufenozide resistance selected under laboratory conditions had considerable fitness costs in this pest, and therefore rotational use of insecticides without cross-resistance is recommended to delay development of resistance.  相似文献   

14.
Fipronil resistance mechanisms were studied between the laboratory susceptible strain and the selective field population of rice stem borer, Chilo suppressalis Walker in the laboratory. The borer population was collected from Wenzhou county, Zhejiang province. After five generations of selection, fipronil resistance ratio was 45.3-fold compared to the susceptible strain. Synergism experiments showed that the synergistic ratios of PBO, TPP and DEF on fipronil in susceptible and resistant strains of C. suppressalis were 7.55-, 1.93- and 2.91-fold, respectively, and DEM showed no obvious synergistic action on fipronil. Activities of carboxylesterase and microsomal-O-demethylase in the resistant strain were 1.89- and 1.36-fold higher that in susceptible strain, and no significant difference of glutathione-S-transferase activity was found between the resistant and susceptible strains. The Km and Vmax experiments also demonstrated that fipronil resistance of C. suppressalis was closely relative to the enhanced activities of carboxylesterase and microsomal-O-demethylase. Moreover, cross-resistance between fipronil and other conventional insecticides and the multiple resistant properties of the original Wenzhou’s population were also discussed.  相似文献   

15.
The interactions between six insecticides (methiocarb, formetanate, acrinathrin, deltamethrin, methamidophos and endosulfan) and three potential synergists (piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM)) were studied by topical exposure in strains selected for resistance to each insecticide, and in a susceptible strain of Frankliniella occidentalis (Pergande). In the susceptible strain PBO produced appreciable synergism only of formetanate, methiocarb and methamidophos. Except for endosulfan, PBO synergized all the insecticides to varying degrees in the resistant strains. A very high level of synergism by PBO was found with acrinathrin, which reduced the resistance level from 3344- to 36-fold. PBO slightly synergized the carbamates formetanate (4.6-fold) and methiocarb (3.3-fold). PBO also produced a high synergism of deltamethrin (12.5-fold) and methamidophos (14.3-fold) and completely restored susceptibility to both insecticides. DEF did not produce synergism with any insecticide in the resistant strains and DEM was slightly synergistic to endosulfan (3-fold). These studies indicate that an enhanced detoxification, mediated by cytochrome P-450 monooxygenases, is the major mechanism imparting resistance to different insecticides in F occidentalis. Implications of different mechanisms in insecticide resistance in F occidentalis are discussed.  相似文献   

16.
The synergism of S,S,S-tributyl phosphorotrithioate (DEF) and its effect on carboxylesterase activity were investigated in deltamethrin-selected resistant (DRR) and susceptible (DSS) strains of cotton aphids, Aphis gossypii (Glover). Compared to the DSS strain, the DRR strain showed 23,900-fold resistance to deltamethrin, and 7560- and 99-fold cross-resistance to bifenthrin and ethofenprox, respectively. The synergist, DEF, increased the toxicity of both deltamethrin and bifenthrin, but not of ethofenprox when DEF was pretreated of 15 h. DEF exhibited significant inhibition on the carboxylesterase activity in the DRR strain, but no significant effect on that of the DSS strain in vitro. After the cotton aphids exposing to DEF, the carboxylesterase activity decreased gradually until 15 h and then gradually recovered until 24 h in the DRR strain, which fluctuated according to the effect of DEF on the deltamethrin toxicity detected using DEF pretreatment in the DRR strain. Therefore, our studies suggested that the effect of DEF on carboxylesterase was associated with deltamethrin resistance in the DRR strain.  相似文献   

17.
18.
Beet armyworm, Spodoptera exigua is a major insect pest of vegetables in China, and has been reported to develop resistance to many broad-spectrum insecticides. Recently registered chlorantraniliprole provides a novel option for control of this pest resistant to other conventional insecticides. The susceptibilities of field collected populations were measured by diet incorporation assay with neonate, obvious variation of susceptibility was observed among the 18 field populations with LC50 values varying from 0.039 to 0.240 mg/liter. Moderate resistant level was discovered in 8 of 18 field populations, other 8 populations had become low level tolerance to chlorantraniliprole, and only one population in all the field colonies remained susceptible. Biochemical assays were performed to determine the potential mechanisms involved in tolerance variation. Field populations displayed varied detoxification enzyme activities, but the regression analysis between chlorantraniliprole toxicities and enzyme activities demonstrated each field population might have specific biochemical mechanisms for tolerance. Artificial selection in laboratory with chlorantraniliprole was carried out, 23 generations of continuous selections resulted in 11.8-fold increase in resistance to chlorantraniliprole, and 3.0-fold and 3.7-fold increases in mixed function oxidase and esterase, respectively. Compared with the susceptible strain kept in laboratory the selection strain had developed 128.6-fold resistance to this insecticide. Synergism assays showed the detoxification enzymes might not involved in the resistance observed in field collected populations and the selected strain.  相似文献   

19.
Most of the studies on insecticide impregnated bednets efficacy in malaria control have been undertaken in areas where mosquitoes are pyrethroid susceptible. The efficacy of pyrethroid-treated bednets was not compromised even when mosquitoes were kdr resistant. Here, we evaluate a case in which mosquitoes have kdr-like pyrethroid resistance coupled with metabolic mechanisms. Metabolic and kdr-resistance mechanisms in Anopheles stephensi were characterised in our previous study and this easily colonised species was used as a model to examine the efficacy of pyrethroid-treated bednets in the laboratory. Bioassays performed on adults of susceptible (Beech) and resistant (DUB-S) strains using WHO 0.75% permethrin-impregnated papers showed a resistance ratio of 9.75. The recovery rate of the mosquitoes of the DUB-S strain was significantly higher than that of the susceptible strain Beech. The overall permethrin metabolism rates by DUB-S, measured by HPLC method, were 1.5-fold more than by Beech strain. Bioassays performed on DUB-S mosquitoes using different pyrethroid-treated bednets showed that only deltamethrin at 25 mg/m2 and α-cypermethrin at 40 mg/m2 produced adequate mortality rates. Four other pyrethroids, including permethrin, were ineffective. The deterrency test performed on susceptible and resistant An. stephensi showed that there are significant differences between the entry rates of susceptible and resistant mosquitoes into the exposure tube containing permethrin-treated bednet. These data show that when mosquitoes have both kdr-type and metabolic resistance mechanisms, the efficacy of pyrethroid-treated bednets is questionable.  相似文献   

20.
The San Roman strain of the southern cattle tick, Boophilus microplus, collected from Mexico was previously reported to have a high level of resistance to the organophosphate acaricide coumaphos. An oxidative detoxification mechanism was suspected to contribute to coumaphos resistance in this tick strain, as coumaphos bioassay with piperonyl butoxide (PBO) on larvae of this resistant strain resulted in enhanced coumaphos toxicity, while coumaphos assays with PBO resulted in reduced toxicity of coumaphos in a susceptible reference strain. In this study, we further analyzed the mechanism of oxidative metabolic detoxification with synergist bioassays of coroxon, the toxic metabolite of coumaphos, and the mechanism of target-site insensitivity with acetylcholinesterase (AChE) inhibition kinetics assays. Bioassays of coroxon with PBO resulted in synergism of coroxon toxicity in both the San Roman and the susceptible reference strains. The synergism ratio of PBO on coroxon in the resistant strain was 4.5 times that of the susceptible strain. The results suggested that the cytP450-based metabolic detoxification existed in both resistant and susceptible strains, but its activity was significantly enhanced in the resistant strain. Comparisons of AChE activity and inhibition kinetics by coroxon in both susceptible and resistant strains revealed that the resistant San Roman strain had an insensitive AChE, with a reduced phosphorylation rate, resulting in a reduced bimolecular reaction constant. These data indicate a mechanism of coumaphos resistance in the San Roman strain that involves both insensitive AChE and enhanced cytP450-based metabolic detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号