首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the level of pyrethroid resistance in Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), a major malaria vector in Korea, we cloned and sequenced the IIS4-6 transmembrane segments of the sodium channel gene that encompass the most widely known kdr mutation sites. Sequence analysis revealed the presence of the major Leu-Phe mutation and a minor Leu-Cys mutation at the same position in permethrin-resistant field populations of An. sinensis. To establish a routine method for monitoring resistance, we developed a simple and accurate real-time PCR amplification of specific allele (rtPASA) protocol for the estimation of resistance allele frequencies on a population basis. The kdr allele frequency of a field population predicted by the rtPASA method (60.8%) agreed well with that determined by individual genotyping (61.7%), demonstrating the reliability and accuracy of rtPASA in predicting resistance allele frequency. Using the rtPASA method, the kdr allele frequencies in several field populations of An. sinensis were determined to range from 25.0 to 96.6%, suggestive of widespread pyrethroid resistance in Korea.  相似文献   

2.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

3.
The insecticidal activity of four forms of Hong Jing (HJ) allylisothiocyanate (AITC), AITC + cypermethrin (HJA, HJB, and HJC) with ratio of (1:1, 4:1, and 2:1), pure AITC (HJD), and two forms of Hong Du (HD) AITC, AITC + chlorpyrifos (HDA and HDB) with ratio of (2:1 and 2:1), respectively, were studied on the major cruciferous insect larvae Plutella xylostella (L.) and Pieris rapae (L.) by combining both spraying and dipping methods. The P. rapae was more susceptible than P. xylostella larvae. The LC50 values 72 h after treatment of AITC forms (HJB, HJA, HJC, HJD, HDB, and HDA) on the P. rapae were; 0.07, 0.08, 0.16, 0.83, 0.26, 1.08 gL−1, and 0.69, 0.26, 5.45, 0.93, 3.01, 5.98 gL−1 on the P. xylostella, respectively. The toxicity of some of the AITC forms was very close to or better than that of the commercial contact insecticides such as chlorpyrifos (LC50 = 0.03 and 0.04 gL−1 on P. rapae and P. xylostella, respectively), and cypermethrin (0.65 and 0.78 gL−1, respectively, against P. rapae and P. xylostella). The ultrastructural studies on the integument of the third larval instar of P. xylostella treated by sub-lethal concentration (LC20) of HJB, HJD, and HDB were carried out by using transmission electron microscope. The more pronounced alterations in the hypodermis and mitochondria cells. They exhibited changes in all treated samples. The hypodermis was almost completely destroyed, and the mitochondria exhibited morphological alterations, represented by enlargement, matrix rarefaction and vacuolization of the mitochondria matrix, quantity of cristae reduced, and density electron matrix lessened. These AITC forms have potential as contact insecticides, and the ultra structural observations confirm the insecticidal efficiency of different AITC forms on P. rapae and P. xylostella.  相似文献   

4.
Head lice resistance to permethrin is mainly conferred by the knockdown resistance (kdr) trait, a voltage-sensitive sodium channel (VSSC) insensitivity factor. Three VSSC mutations (M815I, T917I and L920F) have been identified. Functional analysis of the mutations using the house fly VSSC expressed in Xenopus oocytes revealed that the permethrin sensitivity is reduced by the M827I (M815I) and L932F (L920F) mutations when expressed alone but virtually abolished by the T929I (T917I) mutation, either alone or in combination. Thus, the T917I mutation is primarily responsible for permethrin resistance in head lice. Comparison of the expression rates of channel variants indicates that the M815I mutation may play a role in rescuing the decreased expression of channels containing T917I. A step-wise resistance monitoring system has been established based on molecular resistance detection techniques. Quantitative sequencing (QS) has been developed to predict the VSSC mutation frequency in head lice at a population basis. The speed, simplicity and accuracy of QS made it an ideal candidate for a routine primary resistance monitoring tool to screen a large number of wild louse populations as an alternative to conventional bioassay. As a secondary monitoring method, real-time PASA (rtPASA) has been devised for more precise determination of low resistance allele frequencies. To obtain more detailed information on resistance allele zygosity, as well as allele frequency, serial invasive signal amplification reaction (SISAR) has been developed as an individual genotyping method. Our approach of using three tiers of molecular resistance detection should facilitate large-scale routine resistance monitoring of permethrin resistance in head lice using field-collected samples.  相似文献   

5.
Effects of high temperature on insecticide susceptibility and fitness were studied in the field population of Plutella xylostella (L.) (Lepidoptera: Plutellidae) (R DBM) and a susceptible field-insectarium population of P. xylostella (S DBM). R DBM displayed 18.3-fold resistance to methamidophos and 74.0-fold resistance to avermectin. The population growth tendency index (I) values were 41.8 (S DBM) and 27.7 (R DBM) at 25 °C, and 1.19 (S DBM) and 0.23 (R DBM) at 33.5 °C. The level of methamidophos resistance in the progenies of R DBM declined sharply when reared at high temperature for one generation. The increase of susceptibility to methamidophos appeared to pass from generation to generation. S DBM displayed higher up-regulation of Hsp70 expression at high temperature than R DBM. It was suggested that low fitness in R DBM caused by high temperature might be involved in the sharp decline of methamidophos resistance under high temperature conditions.  相似文献   

6.
The resistant Rdl allele for dieldrin insecticide was detected on the Hypothenemus hampei populations from Colombia using conventional PCR methods. Based on this sequence, a melting temperature (Tm) shift genotyping method that relies on allele-specific PCR is described for insecticide resistance-associated single nucleotide polymorphism (SNP) at the H. hampeiRdl gene. The method reported here uses GC-rich tails of unequal length attached to allele-specific primers containing 3′ terminal bases that correspond to SNP allelic variants. Specific PCR products are identified by inspection of a melting curve on a real-time PCR thermocycler using SYBR Green DNA binding dye. Resistant and susceptible alleles resulted in specific PCR products with Tm of 83.3 ± 0.1 °C and 86.0 ± 0.2 °C, respectively. The RdlTm-shift genotyping method is a new method to identify the Rdl gene in the coffee berry borer H. hampei, the principal pest of coffee that in general show low genetic diversity and very few genetic strategies for control of this pest have been developed. The method supplies a high-throughput tool for dieldrin resistance-associated SNP diagnostic in the coffee berry borer which will be useful for resistance-management strategies and as genetic marker in the colombian insect populations for genetics research.  相似文献   

7.
8.
Molecular mechanisms of monocrotophos resistance in the two-spotted spider mite (TSSM), Tetranychus urticae Koch, were investigated. A monocrotophos-resistant strain (AD) showed ca. 3568- and 47.6-fold resistance compared to a susceptible strain (UD) and a moderately resistant strain (PyriF), respectively. No significant differences in detoxification enzyme activities, except for the cytochrome P450 monooxygenase activity, were found among the three strains. The sensitivity of acetylcholinesterase (AChE) to monocrotophos, however, was 90.6- and 41.9-fold less in AD strain compared to the UD and PyriF strains, respectively, indicating that AChE insensitivity mechanism plays a major role in monocrotophos resistance. When AChE gene (Tuace) sequences were compared, three point mutations (G228S, A391T and F439W) were identified in Tuace from the AD strain that likely contribute to the AChE insensitivity as predicted by structure analysis. Frequencies of the three mutations in field populations were predicted by quantitative sequencing (QS). Correlation analysis between the mutation frequency and actual resistance levels (LC50) of nine field populations suggested that the G228S mutation plays a more crucial role in resistance (r2 = 0.712) compared to the F439W mutation (r2 = 0.419). When correlated together, however, the correlation coefficient was substantially enhanced (r2 = 0.865), indicating that both the F439W and G228S mutations may work synergistically. The A391T mutation was homogeneously present in all field populations examined, suggesting that it may confer a basal level of resistance.  相似文献   

9.
Genetic inheritance of resistance to Bacillus thuringiensis var kurstaki (BTK) was examined in a diamondback moth (Plutella xylostella) population collected from the Melaka region of Malaysia. A BTK‐selected sub‐population (BTK‐SEL) which was more than 100‐fold resistant to BTK compared with a susceptible (ROTH) population of P xylostella was used with standard reciprocal crosses and back‐crosses between ROTH and BTK‐SEL. Logit regression analysis of F 1 reciprocal crosses indicated that BTK resistance was inherited as an incompletely recessive autosomal trait and controlled by a single locus. In contrast, other studies have shown that resistance to Cry1Ac is inherited as an incompletely dominant autosomal trait in a Cry1Ac‐selected sub‐population of the same Melaka population. The frequency of the allele responsible for resistance decreased without exposure to insecticide in the laboratory. © 2000 Society of Chemical Industry  相似文献   

10.
Evolution of resistance by pests is the greatest threat to the continuous success of theBacillus thuringiensis (Bt) toxins used in conventional sprays or in transgenic plants. The most common mechanism of insect resistance to Bt is reduced binding of toxins to target sites in the brush border membrane of the larval mid-gut. In this paper, binding experiments were performed with three 125I-Cry1A toxins and the brush border membrane vesicles from Cry1Ac resistant or susceptible strains of Helicoverpa armigera. The homologous competition test showed that there was no significant difference in Cry1Ac-binding affinity, but the concentration of Cry1Ac-binding sites dramatically decreased in the resistant strain (Rt decreased from 5.87 ± 1.40 to 2.23 ± 0.80). The heterologous competition test showed that there were three Cry1Ac-binding sites in the susceptible strain. Among them, site 1 bound with all three Cry1A toxins, site 2 bound with both Cry1Ab and Cry1Ac, and site 3 only bound with Cry1Ac. In the Cry1Ac resistant strain, the binding capability of site 1 with Cry1Ab decreased and site 2 did not bind with Cry1Ac. It is suggested that the absence of one binding site is responsible for H. armigera resistance to Cry1Ac. This result also showed that the resistance fitted the “mode 1” pattern of Bt resistance described previously.  相似文献   

11.
Alternaria spp. cause leaf spot of almond and Alternaria late blight of pistachio in California, and azoxystrobin is a strobilurin fungicide that has been registered for the control of these diseases. To date, only a single point mutation of G143A in cytochrome b resulting to azoxystrobin resistance in Alternaria spp. was found in California. Based on this single point mutation, a real-time PCR assay was developed to quantify the frequency of the resistant allele G143A (FA) in pathogen samples taken from orchards. Forty-one almond and pistachio orchards were arbitrarily selected in eight counties of California. Fifty leaf lesions caused by Alternaria spp. per orchard were cut to extract the fungal DNA for a real-time PCR assay to determine the FA. About 88% of 41 surveyed orchards had Alternaria spp. with FA > 0.90, while six pistachio orchards showed a FA < 0.90. Therefore, azoxystrobin-resistant Alternaria populations are predominant in almond and pistachio orchards in California, and sprays of azoxystrobin to control Alternaria diseases are not recommended in these orchards. This study shows a potential use of a real-time PCR assay to efficiently quantify the frequency of azoxystrobin-resistant Alternaria spp. from large number of samples.  相似文献   

12.
Fipronil is a relatively new insecticide with great potential for insect control, however widespread use of cyclodiene insecticides has selected for an A302S mutation in the Rdl (GABA gated chloride channel) allele. This mutation gives resistance to cyclodienes and limited cross-resistance to fipronil. Given the concern over the possible reduction in efficacy and/or lifetime that fipronil might be used for pest control (given the extensive use of cyclodienes in the past), it is important to know the frequency of the A302S Rdl mutation in field populations. To ascertain the relative frequency of the A302S Rdl mutation in house fly populations we used three experimental approaches. First, we attempted to select for fipronil resistance by initially treating 33,100 field collected flies and selecting 14 additional generations. We were unable to produce a highly resistant strain. Second, we directly sequenced field collected flies. Third, we tested field collected house flies with a diagnostic dose of dieldrin and then genotyped the survivors. Out of the 4750 flies tested, there were no Rdl resistance alleles detected. We conclude that the resistant Rdl allele is rare in house flies in the US due to decades without cyclodiene use and a fitness disadvantage (in the absence of cyclodienes) of the 302S Rdl allele. The limited cross-resistance provided by the cyclodiene resistant Rdl allele, combined with the very low frequency of this allele in field populations, suggests that fipronil could be a promising insecticide for house fly control.  相似文献   

13.
Inheritance of resistance to the Bacillus thuringiensis Berl. CryIA(b) crystal protein was studied in Plutella xylostella L. (diamondback moth). A field population 50-fold more resistant to CryIA(b) than a control susceptible strain was used. Dose-mortality curves of the resistant population, the susceptible strain and the F1 from the two reciprocal crosses were compared. Resistance transmission to the F1 was dependent on the sex of the resistant progenitor. Sex ratio of the survivors to high doses of CryIA(b) in the F1 of the two reciprocal crosses did not corroborate the preliminary hypothesis of resistance being due to a recessive sex-linked allele. Since, in a previous work, the loss of CryIA(b) binding capacity of resistant insects had been demonstrated, binding to midgut tissue sections from F1 individuals was also analysed. The presence of binding in all of the F1 preparations showed that, at least, a recessive autosomal allele was responsible for the loss of binding capacity in the resistant population.  相似文献   

14.
A hydrophilic form of acetylcholinesterase (AChE) was purified from N-methyl carbamate susceptible (SA) and highly N-methyl carbamate-resistant (N3D) strains of the green rice leafhopper (GRLH), Nephotettix cincticeps Uhler. Both of purified AChE from SA and N3D strains displayed the highest activities toward acetylthiocholine (ATCh) at pH 8.5. In the SA strain, the optimum concentrations for ATCh, propionylthiocholine (PTCh), and butyrylthiocholine (BTCh) were about 1 × 10−3, 2.5 × 10−3, and 1 × 10−3 M, respectively. However, in the N3D strain, substrate inhibition was not identified for ATCh, PTCh, and BTCh to 1 × 10−2 M. The Km value in the SA strain was 51.1, 39.1, and 41.6 μM and that in the N3D strain was 91.8, 88.1, and 85.2 μM for ATCh, PTCh, and BTCh, respectively. The Km value in the N3D strain indicated about 1.80-, 2.25-, and 2.05-fold lower affinity than that of the SA strain for ATCh, PTCh, and BTCh, respectively. The Vmax value in the SA strain was 70.2, 30.5, and 4.6 U/mg protein and that in the N3D strain was 123.0, 27.0, and 14.5 U/mg protein for ATCh, PTCh, and BTCh, respectively. The Vmax value in the N3D strain was 1.75- and 3.15-fold higher for ATCh and BTCh than that in the N3D strain. However, it was 1.13-fold lower for PTCh. The increased activity of AChE in the N3D strain is due to the qualitatively modified enzyme with a higher catalytic efficiency. The bimolecular rate constant (ki) for propoxur was 27.1 × 104 and 0.51 × 104 M−1 min−1 in the SA and N3D strain and that for monocrotophos was 0.031 × 104 and 2.0 × 104 M−1 min−1 in the SA and N3D strain. AChE from the N3D strain was 53-fold less sensitive than SA strain to inhibition by propoxur. In contrast, AChE from the N3D strain was 65-fold more sensitive to inhibition by monocrotophos than AChE from the SA strain. This indicated negatively correlated cross-insensitivity of AChE to propoxur and monocrotophos.  相似文献   

15.
Glutathione S-transferases (GSTs) are known to catalyze conjugations by facilitating the nucleophilic attack of the sulfhydryl group of endogenous reduced glutathione on electrophilic centers of a vast range of xenobiotic compounds, including insecticides and acaricides. Elevated levels of GSTs in the two-spotted spider mite, Tetranychus urticae Koch, have recently been associated with resistance to acaricides such as abamectin [Pestic. Biochem. Physiol. 72 (2002) 111]. GSTs from acaricide susceptible and resistant strains of T. urticae were purified by glutathione-agarose affinity chromatography and characterized by their Michaelis-Menten kinetics towards artificial substrates, i.e., 1-chloro-2,4-dinitrobenzene and monochlorobimane. The inhibitory potential of azocyclotin, dicumarol, and plumbagin was low (IC50 values > 100 μM), whereas ethacrynic acid was much more effective, exhibiting an IC50 value of 4.5 μM. GST activity is highest in 2-4-day-old female adults and dropped considerably with progressing age. Furthermore, molecular characteristics were determined for the first time of a GST from T. urticae, such as molecular weight (SDS-PAGE) and N-terminal amino acid sequencing (Edman degradation). Glutathione-agarose affinity purified GST from T. urticae strain WI has a molecular weight of 22.1 kDa. N-terminal amino acid sequencing revealed a homogeneity of ≈50% to insect GSTs closely related to insect class I GSTs (similar to mammalian Delta class GSTs).  相似文献   

16.
二斑叶螨对阿维菌素的抗药性及抗性基因的PASA检测技术   总被引:2,自引:1,他引:1  
为了明确二斑叶螨Tetranychus urticae Koch对阿维菌素的抗性水平,采用玻片浸渍法测定了北京4个地区二斑叶螨雌成螨对阿维菌素的抗药性,建立了特异性等位基因PCR(PASA)方法,并检测了二斑叶螨谷氨酸门控氯离子通道(GluCl)基因片段上G323D的突变频率。结果显示,北京昌平、海淀、密云和怀柔4个田间二斑叶螨种群对阿维菌素均达极高抗性水平,其中昌平种群抗性最高,LC50值为448.93 mg/L,抗性倍数为4 988.11倍。室内敏感种群未见抗性个体,昌平和密云种群G323D等位基因突变频率为100.00%,怀柔和海淀种群分别为86.25%和90.00%。北京4个地区二斑叶螨种群对阿维菌素达极高抗性水平,抗性基因的突变频率也很高,表明阿维菌素不适宜用来防治这些地区的二斑叶螨种群。  相似文献   

17.
Effective control of the brown planthopper, Nilaparvata lugens Stål, across rice-growing regions of Asia has been seriously compromised over the last 2 years by the appearance of widespread resistance to the neonicotinoid insecticide, imidacloprid. Sequence analysis of the ligand-binding domain of the nicotinic acetylcholine receptor α1 subunit from two field-collected resistant strains (CHN-2 and IND-11) did not reveal the Y151S point mutation previously implicated in conferring target-site resistance in this species. This result was supported by ligand-binding studies with [3H]-imidacloprid that showed no significant change in insecticide binding to isolated membranes from susceptible and resistant strains. In contrast, there was an approximate 5-fold increase in the mixed function oxidase activity for the two resistant strains suggesting that imidacloprid metabolism by increased cytochrome P450 monooxygenase activity is the major mechanism of resistance in these strains.  相似文献   

18.
The brown planthopper (BPH), Nilaparvata lugens Stål, is a primary insect pest of cultivated rice, and its effective control is essential for crop production. However, in recent years, outbreaks of the brown planthopper have occurred more frequently in China. In order to determine the causes and mechanisms of insecticide-induced BPH resurgence and perform population management, we conducted the following studies. By the topical application method, our results showed that, fenvalerate acted as stimulus of fecundity from 3.50 × 10−3 to 2.02 × 10−2 μg/female in the BPH. Apart from 7.00 × 10−3 μg/female, the number of hatched nymphs was increased gradually with an increase in application dose from 3.50 × 10−3 to 1.74 × 10−2 μg/female. After continuous selection with fenvalerate for 11 generations by the rice-stem dipping method, a resistant strain was achieved with medium resistance to fenvalerate (RR 39.22). Life table study indicated that the resistant strain (G4 and G8) showed reproductive advantages, including increased female ratio, copulation rate and fecundity. But the hatchability of resistant strain was lower. The survival rate and emergence rate were significantly lower in G4 and G8 resistant strain. Resistant strains in G4 and G8 showed a fitness advantage (1.04 and 1.11), and the number of offspring in G8 generation was higher than that in G4 generation. The significant difference detected between resistant insects (G4, G5, G8 and G9) and S-strain contains not only the effect of resistant selection but also the effect of continuous rearing itself. Hence it was concluded that the BPH had the potential to develop high resistance against fenvalerate and the induction of the nymphs by sublethal doses of fenvalerate was of importance in the BPH population management, particularly in the predicting. Further studies demonstrated that triphenyl phosphate (TPP) and diethyl maleate (DEM) had no synergism on fenvalerate. However, piperonyl butoxide (PBO) displayed significant synergism in susceptible strain (1.97) and resistant strain (2.73). We concluded that esterase and glutathione S-transferase play little role in fenvalerate detoxification. The increase of the P450-monooxygenases detoxification is an important mechanism for fenvalerate resistance. Because their resistant populations had a fitness advantage, we should pay close attention to the occurrence of BPH and use other functionally different insecticides to control the BPH.  相似文献   

19.
BACKGROUND: The pyrethroid resistance of the diamondback moth Plutella xylostella (L.) is conferred by increased gene expression of cytochrome P450 to detoxify the insecticide and/or through gene mutation of the sodium channel, which makes the individual insensitive to pyrethroids. However, no information is available about the correlation between the increased metabolic detoxification and the target insensitivity in pyrethroid resistance. RESULTS: Frequencies of pyrethroid‐resistant alleles (L1014F, T929I and M918I) and two resistance‐related mutations (A1101T and P1879S) at the sodium channel and expression levels of the cytochrome P450 gene CYP6BG1 were examined individually using laboratory and field strains of P. xylostella. Real‐time quantitative PCR analysis using the laboratory strains revealed that levels of larval expression of the resistant strain, homozygous for the pyrethroid‐resistant alleles other than the M918I, are significantly higher than those of the susceptible strain. In the field strains, the expression levels in insects having the same resistant alleles as those of the resistant strains varied greatly among individuals. The expression levels were not significantly higher than those in the heterozygotes. CONCLUSION: Significant correlation between the target insensitivity and the increased metabolic detoxification in pyrethroid resistance of P. xylostella was observed in the laboratory but not in the field. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
The silphinenes are tricyclic sesquiterpenes that have antifeedant and toxic effects in insects and structural similarity to the known GABA antagonist, picrotoxinin. In murine synaptoneurosomes, silphinenes block GABA-stimulated influx of 36Cl with EC50s in the range of 10-30 μM. In insects, silphinenes were tested in neurophysiological recordings of central neurons from third instar Drosophila melanogaster larvae. Silphinenes reversed the blockage of neuronal firing induced by GABA, but had little effect below 100 μM. The structure-activity profile observed in the murine chloride flux assay was also observed in the larval neurophysiological assay, indicating little selectivity for the silphinenes. A reference silphinene was equally active on nerve preparations from the rdl strain of D. melanogaster, which is resistant to channel-blocking antagonists via an altered GABA receptor. This latter finding suggests that silphinenes interact with the insect GABA receptor in a manner somewhat different from PTX, and that rdl resistance in the field may have little effect on silphinene efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号