首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
从雌性绵羊输卵管、子宫体、子宫颈、阴道组织中提取总RNA,根据已获得的绵羊ghrelin基因cDNA序列设计特异性引物,采用RT—PCR方法扩增出了绵羊ghrelin基因;将扩增产物克隆于pMD19-T载体后进行测序。以β-肌动蛋白(β-actin)基因作为内参,采用半定量RT—PCR法扩增ghrelin基因,经琼脂糖凝胶电泳后,应用凝胶成像分析系统计算雌性绵羊不同生殖道组织中ghrelin基因的表达量。结果显示,从雌性绵羊生殖道各组织均扩增出了233bp的ghrelin基因片段;ghrelin基因在子宫体的表达量最高,输卵管内次之,子宫颈和阴道内最低。表明,ghrelin对雌性绵羊生殖系统的调节及生殖激素的分泌等具有重要作用。  相似文献   

2.
Ghrelin是新近发现的含有28个氨基酸残基的多肽,是生长激素促分泌素受体(GHS-R)的天然配体,除调节生长激素分泌和能量平衡的功能外,还有许多其他的生物学效应。其中ghrelin及其受体广泛存在于生殖系统中,说明这一多肽可能对生殖系统具有重要的调节作用。笔者就ghrelin及其受体对生殖系统的调节作用的研究进展加以综述。  相似文献   

3.
垂体分泌的生长激素 (GH)是调节整个机体生长代谢的一种多功能激素。关于GH分泌调节的研究一直是营养学界研究的热点。最近在生长激素促释放素 (growthhormonesecretagogues,GHSs)对GH分泌调节的研究过程中发现的活性肽ghrelin对GH、胃酸的分泌 ,采食量的调节等方面起重要作用 ,本文将综述有关ghrelin的最新研究进展  相似文献   

4.
Ghrelin是一种具有生长激素释放活性的脑肠肽。最初发现ghrelin时,将其当作GHSR的内源性配基。随着研究的不断深入,发现它还与食欲调节、能量平衡和肥胖、心脏、胃肠功能、细胞增殖及睡眠等有关。作者综述了ghrelin的研究进展。  相似文献   

5.
为了研究皖西白鹅生殖系统内是否有产生Ghrelin细胞分布,应用免疫组化SABC法并结合DAB显色技术,结果:①在卵巢的生长卵泡中,均有ghrelin免疫阳性细胞,尤其在生长卵泡细胞的颗粒层更为明显;闭锁卵泡的卵泡外腺细胞也呈现ghrelin免疫阳性反应;②在输卵管五段的粘膜层中均观察到ghrelin免疫阳性细胞,其中,漏斗部细胞着色最深,数量最多,膨大部细胞反应最微弱,峡部、子宫部和阴道部ghrelin免疫反应介于二者之间,肌层和外膜均未见ghrelin表达。结论:产生Ghrelin的细胞在成年皖西白鹅卵巢和输卵管中均有广泛的分布,揭示Ghrelin可能调节生殖功能。  相似文献   

6.
根据GenBank中报道的绵羊ghrelin序列设计一对特异性引物,以蒙古绵羊真胃组织中提取的总RNA为模板,采用RT-PCR技术扩增出蒙古绵羊ghrelin的cDNA,并克隆到pTZ19载体中,经限制性内切酶谱和DNA序列测定,证实所克隆的蒙古绵羊ghrelin的cDNA为ghrelin的部分序列,因为用NCBI网站上的BLAST功能将测序结果同已发表绵羊ghrelin序列进行对比,205个碱基中仅有1个碱基的差异,该差异不影响翻译后多肽的序列。该段cDNA包含由168个碱基组成的开放读码框(ORF),该ORF编码56个氨基酸残基的前原蒙古绵羊ghrelin。对蒙古绵羊ghrelin的研究将有助于进一步揭示其生理和病理功能,对反刍动物多种疾病过程的认识及防治策略具有深远意义。  相似文献   

7.
采用免疫组化技术链酶亲和素-生物素-过氧化物酶复合物(StreptAvidin-Biotin-Complex,SABC)法,对成年皖西白鹅大脑和小脑中ghrelin神经元的定位和分布进行了研究。结果显示,大脑分泌ghrelin的神经元和神经纤维主要分布在大脑皮质内,其中锥体层阳性神经元数量最多,多为锥体细胞;小脑分泌ghrelin的神经元主要分布在小脑皮质内,其中蒲肯野细胞层和分子层免疫阳性神经元数量最多,颗粒层阳性神经元数量较少;而大脑和小脑白质内均未见分布。这表明ghrelin在成年皖西白鹅大脑和小脑皮质中分布广泛,可能以自分泌/旁分泌的形式调节中枢神经系统。  相似文献   

8.
妊娠山羊黄体组织中ghrelin的表达   总被引:1,自引:0,他引:1  
运用组织学和免疫组化方法对不同妊娠时期山羊黄体的组织学结构及ghrelin的分布规律进行了研究,结果表明:黄体外覆结缔组织性被膜,实质主要由粒性(大)黄体细胞和膜性(小)黄体细胞组成;在各时期均存在大黄体细胞的退化现象,退化黄体细胞数量随周期进程逐渐增多,结构变化表现为:细胞形态多变,胞质呈强嗜酸性,胞核固缩或碎裂.ghrelin阳性反应主要位于被膜和黄体细胞,各阶段被膜上均存在ghrelin表达,主要为纤维及血管的着色;黄体内ghrelin主要定位于大黄体细胞,另外部分小细胞也有表达,从分布范围和染色强度看,呈现出少-多再渐少的变化趋势;结合各周龄山羊黄体组织中ghrelin阳性产物相对表达量的分析,表明在妊娠早中期,黄体组织内有较高的ghrelin表达,而在妊娠后期表达较低.不同妊娠时期山羊黄体组织中ghrelin的这种周期性表达模式与黄体的功能相适应,提示ghrelin的表达与黄体的功能密切相关.  相似文献   

9.
《中国兽医学报》2017,(3):541-545
采用RT-PCR及荧光定量PCR方法,检测并分析藏猪与长白猪在卵泡期及黄体期下丘脑-垂体-卵巢轴中ghrelin基因mRNA的相对表达量。结果显示:在卵泡期,下丘脑、卵巢中ghrelin基因的mRNA表达量均藏猪显著高于长白猪(P<0.05),而垂体中藏猪虽高于长白猪,但两者之间差异不显著(P>0.05);在黄体期,垂体、卵巢中ghrelin基因的mRNA表达量藏猪分别显著高于长白猪(P<0.05),而下丘脑中藏猪虽高于长白猪,但两者之间差异不显著(P>0.05);无论在卵泡期还是黄体期,也无论是藏猪还是长白猪,自身相比,其ghrelin基因在下丘脑-垂体-卵巢轴的mRNA表达都有一致的变化规律,即卵巢显著高于下丘脑(P<0.05),下丘脑显著高于垂体(P<0.05)。结果表明:藏猪ghrelin基因在生殖轴中的mRNA表达量普遍高于长白猪,这将为从分子水平上分析藏猪产仔率低的原因及提高其产仔率的进一步研究奠定基础。  相似文献   

10.
ghrelin对生殖系统的调节作用   总被引:2,自引:0,他引:2  
ghrelin是新近发现的一个含有28个氨基酸残基的多肽,是生长激素促分泌素受体(GHS-R)的天然配体,除具有调节GH分泌和能量平衡的功能之外,尚有其他许多功能。近年来体外或体内试验研究表明,ghrelin对生殖激素如LH、PRL具有一定的调节作用;另外,ghrelin及其受体系统广泛存在于生殖系统中。提示这一新发现的激素可能对生殖系统具有重要的调节作用。文章就ghrelin对生殖系统调节作用的研究进展加以综述。  相似文献   

11.
Two experiments were conducted to elucidate the effects of post‐ruminal administration of starch and casein (Exp. 1), plasma amino acids concentrations (Exp. 2), and plasma glucose and insulin concentrations (Exp. 2) on plasma ghrelin concentrations in sheep. In Exp. 1, plasma ghrelin concentrations were determined by four infusion treatments (water, cornstarch, casein and cornstarch plus casein) in four wethers. Abomasal infusion of casein increased plasma α‐amino N (AAN) concentrations. Infusion of starch or casein alone did not affect plasma ghrelin concentrations, but starch plus casein infusion increased plasma levels of ghrelin, glucose and AAN. In Exp 2, we investigated the effects of saline or amino acids on ghrelin secretion in four wethers. Two hours after the initiation of saline or amino acid infusion into the jugular vein, glucose was also continuously infused to investigate the effects of blood glucose and insulin by hyper‐glycemic clump on plasma ghrelin concentrations. Infusion of amino acids alone raised plasma levels of ghrelin, but the higher plasma glucose and insulin concentrations had no effect on plasma ghrelin concentrations. These results suggest that high plasma levels of amino acids can stimulate ghrelin secretion, but glucose and insulin do not affect ghrelin secretion in sheep.  相似文献   

12.
The effect of appetite regulatory hormone cholecystokinin (CCK) on the secretions of oxyntomodulin (OXM) and ghrelin, and the effect of ghrelin on the secretions of CCK and OXM were studied in ruminants. Eight Holstein steers, 7 months old, 243 ± 7 kg body weight (BW), were arranged in an incomplete Latin square design (8 animals × 4 treatments × 4 days of sampling). Steers were intravenously injected with 10 µg of sulfated CCK‐8/kg BW, 20 µg of acyl ghrelin/kg BW, 100 µg of des‐acyl ghrelin/kg BW or vehicle. Blood samples were collected from ?60 min to 120 min relative to time of injection. Plasma concentrations of ghrelin, sulfated CCK and OXM were measured by double‐antibody radioimmunoassay. Plasma acyl ghrelin was increased to peak level (428.3 ± 6 pg/mL) at 60 min after injection of CCK compared with pre‐injected levels (203.3 ± 1 pg/mL). These results showed for the first time, that intravenous bolus injection of CCK increased ghrelin secretion in ruminants. In contrast, injection of ghrelin did not change CCK secretion. Administration of ghrelin or CCK has no effect on plasma OXM concentrations. In conclusion, our results show that administration of CCK increased ghrelin secretion but did not affect OXM release in ruminants. Ghrelin did not affect the secretions of CCK and OXM.  相似文献   

13.
The aim of these in vitro experiments was (1) to examine the effects of ghrelin on the basic functions of ovarian cells (proliferation, apoptosis, secretory activity); (2) to determine the possible involvement of the GHS-R1a receptor and PKA- and MAPK-dependent post-receptor intracellular signalling cascades; (3) to identify the active part of the 28-amino acid molecule responsible for the effects of ghrelin on ovarian cells. We compared the effect of full-length ghrelin 1-28, a synthetic activator of GHS-R1a, GHRP6, and ghrelin molecular fragments 1-18 and 1-5 on cultured chicken ovarian cells. Indices of cell apoptosis (expression of the apoptotic peptide bax and the anti-apoptotic peptide bcl-2), proliferation (expression of proliferation-associated peptide PCNA), and expression of protein kinases (PKA and MAPK) within ovarian granulosa cells were analysed by immunocytochemistry. The secretion of progesterone (P(4)), testosterone (T), estradiol (E(2)) and arginine-vasotocin (AVT) by isolated ovarian follicular fragments was evaluated by RIA/EIA. It was observed that accumulation of bax was increased by ghrelin 1-28, GHRP6 and ghrelin 1-18, but not by ghrelin 1-5. Expression of bcl-2 was suppressed by addition of ghrelin 1-28, GHRP6 and ghrelin 1-5, but promoted by ghrelin 1-18. The occurrence of PCNA was reduced by ghrelin 1-28, GHRP6, ghrelin 1-18 and ghrelin 1-5. An increase in the expression of MAPK/ERK1, 2 was observed after addition of ghrelin 1-28, GHRP6 and ghrelin 1-18, but not ghrelin 1-5. The accumulation of PKA decreased after treatment with ghrelin 1-28 and increased after treatment with GHRP6 and ghrelin 1-18 but not ghrelin 1-5. Secretion of P(4) by ovarian follicular fragments was decreased after addition of ghrelin 1-28 or ghrelin 1-5 but stimulated by GHRP6 and ghrelin 1-18. Testosterone secretion was inhibited by ghrelins 1-28 and 1-18, but not by GHRP6 or ghrelin 1-5. Estradiol secretion was reduced after treatment with ghrelin 1-28 but stimulated by ghrelins 1-18 and 1-5; GHRP6 had no effect. AVT secretion was stimulated by ghrelin 1-28, GHRP6 and ghrelin 1-18, but inhibited by ghrelin 1-5. The comparison of the effects of the four ghrelin analogues on nine parameters of ovarian cells suggest (1) a direct effect of ghrelin on basic ovarian functions-apoptosis, proliferation, steroid and peptide hormone secretion; (2) that the majority of these effects can be mediated through GHS-R1a receptors; (3) an effect of ghrelin on MAPK- and PKA-dependent intracellular mechanisms, which can potentially mediate the action of ghrelin at the post-receptor level; (4) that ghrelin residues 5-18 may be responsible for the major effects of ghrelin on the avian ovary.  相似文献   

14.
In two experiments, we studied (a) the changes of LH secretion in heifers under different feeding schedules and (b) total ghrelin concentration at oestrus in cows and heifers. In experiment one, synchronized heifers were allocated in three groups (R, regularly fed controls; F, fasted; and F‐F fasted‐fed). One day after the completion of the oestrous induction protocol, group F and F‐F animals stayed without feed for 24 hr; thereafter, feed was provided to R and F‐F cattle; 2 hr later, GnRH was administered to all animals. Blood samples were collected for ghrelin, progesterone, LH and cortisol concentrations. Fasting caused increased ghrelin concentrations in groups F and F‐F, while in response to GnRH, LH surge was significantly attenuated in groups F and F‐F compared to R. In experiment 2, lactating cows and heifers were used. On day 9 of a synchronized cycle, PGF2α was administered, and blood samples were collected twice daily until the third day after oestrus and analysed for progesterone, estradiol, ghrelin, glucose and BHBA concentrations. No difference was recorded between groups in steroids and BHBA concentrations. In comparison to mid‐luteal values, ghrelin concentrations significantly increased at perioestrual period in cows, but not in heifers. This study provides evidence that starving‐induced elevated ghrelin concentrations can have suppressing effect on LH secretion, even after ghrelin's restoration to basal values and that during oestrus, ghrelin secretion is differently regulated in cows and heifers, likely being independent from oestradiol concentrations. Further research is required to identify the determining factors that drive the different regulation of ghrelin secretion in cows and heifers.  相似文献   

15.
The pineal gland (PG) acts as a neuroendocrine transducer of daily and seasonal time through the nocturnal release of melatonin. Here, we examined the interaction of season, orexin, ghrelin, and leptin on melatonin secretion by pineal explants in short-term culture. Glands were collected after sunset from 12 ewes during long days (LD; April and May) and from an additional 12 ewes during short days (SD; October and November). Glands were transected sagittally into strips, with each equilibrated in 2.5 mL of Dulbecco's modified Eagle's medium for 60 min, followed by a 2-h incubation in control medium or medium containing orexin B (10 and 100 ng/mL), ghrelin (10 and 100 ng/mL), or 50 ng/mL of leptin. After a 3-h incubation, some PG explants treated previously with lower doses of orexin or ghrelin were challenged with 50 ng/mL of leptin and those treated with both doses of orexin were challenged with 300 nM of the β-agonist isoproterenol. One milliliter of medium was harvested and replaced from each well every 30 min. Treatment with the low dose of orexin during LD increased melatonin secretion about 110% (P<0.01); treatment with a high dose increased melatonin secretion about 47% (P<0.001). During the SD period, leptin stimulated (P < 0.05) melatonin secretion slightly compared with mean melatonin concentration in controls. However, together, orexin and leptin depressed (P<0.01) melatonin secretion. Both doses of ghrelin reduced (P < 0.01) melatonin concentration during the SD season compared with control culture. Addition of ghrelin and leptin to culture medium increased (P<0.01) melatonin concentration compared with ghrelin-treated culture and decreased melatonin concentration (P<0.01) compared with leptin-treated culture during SD. Isoproterenol stimulated (P<0.01) melatonin secretion compared with values observed during the pretreatment period. We conclude that orexigenic peptides (orexin B and ghrelin) and an anorectic peptide (leptin) affect PG directly. The responses of PG to those hormones depend on day length. Moreover, secretion of melatonin from the ovine PG is under an adrenergic regulation.  相似文献   

16.
Ghrelin in domestic animals: distribution in stomach and its possible role   总被引:12,自引:0,他引:12  
Ghrelin, a novel growth-hormone-releasing acylated peptide, was recently isolated from rat and human stomachs. In rat, peripheral or central administration of ghrelin stimulates the secretion of growth hormone (GH) from the pituitary gland. Recent work suggests that ghrelin plays an important role in energy homeostasis, body weight, and food intake. We examined the distribution of cells immunoreactive to ghrelin in the stomachs of domestic animals and rats, using a polyclonal antibody for the N-terminal fragment of rat ghrelin [1-11]. We measured the plasma levels of ghrelin before and after feeding in cows, and GH levels after central administration of ghrelin in Shiba goats, to elucidate the possible role of ghrelin. Immunostained cells were widely distributed from the neck to the base of the oxyntic gland in all animals. The plasma ghrelin concentration in cows decreased significantly 1 h after feeding, and then recovered to pre-feeding levels. Administration of ghrelin into the third ventricle in Shiba goats dramatically increased the plasma GH concentration dose-dependently. These results suggest that ghrelin plays an important role in GH secretion and feeding regulation in domestic animals.  相似文献   

17.
Ghrelin主要是由胃分泌的一种脑肠肽激素,它是生长激素促分泌素受体(GHSR)的内源性配基。目前,对哺乳动物Ghrelin研究相对较多,主要集中在Ghrelin结构及其对激素分泌、摄食、能量代谢、胃肠功能、生殖与免疫的调节作用,而对禽类Ghrelin结构和功能研究相对较少且稍显滞后。本文就禽类与哺乳类Ghrelin结构及功能进行比较研究作一综述,为进一步研究禽类Ghrelin的功能提供参考。  相似文献   

18.
The aim of our studies was to compare the roles of leptin and ghrelin in the direct control of proliferation, apoptosis, and secretory activity by porcine ovarian cells. In our in vitro experiments, we analyzed the effects of leptin and ghrelin treatments (at 0, 1, 10, or 100 ng/mL medium) on the accumulation of proliferation-related peptides (PCNA, cyclin B1, MAP kinase [MAPK]) and apoptosis-associated peptides (Bax, caspase 3, p53), and on progesterone secretion by cultured porcine granulosa cells, using immunocytochemistry, SDS PAGE-Western immunoblotting, and radioimmunoassay (RIA). Leptin stimulated proliferation (PCNA, cyclin B1, MAPK), apoptosis (Bax, p53), and progesterone secretion. Ghrelin promoted proliferation (PCNA, cyclin B1, MAPK) and progesterone secretion but suppressed apoptosis (Bax, caspase 3, p53). These observations suggest that both leptin and ghrelin directly control proliferation, apoptosis, and secretory activity by porcine ovarian cells. At the level of the ovary, in contrast to the hypothalamo-hypophysial system, leptin and ghrelin may have similar action in promoting granulosa cell proliferation and progesterone secretion, but they may be antagonistic to one another (leptin, stimulator; ghrelin, inhibitor) in controlling apoptosis.  相似文献   

19.
Release of growth hormone (GH) is known to be regulated mainly by GH-releasing hormone (GHRH) and somatostatin (SRIF) secreted from the hypothalamus. A novel peripheral release-regulating hormone, ghrelin, was recently identified. In this study, differences of the GH secretory response to ghrelin and GHRH in growing and lactating dairy cattle were investigated and an alteration of plasma ghrelin levels was observed. The same amounts of ghrelin and GHRH (0.3 nmol/kg) were intravenously injected to suckling and weanling calves, early and mid-lactating cows and non-lactating cows. Plasma ghrelin levels were also determined in dairy cattle in various physiological conditions. The peak values of ghrelin-induced GH secretion were increased in early lactating cows compared to those in non-lactating cows. The relative responsiveness of GH secretion to ghrelin was also increased compared with that to GHRH in early lactating cows. GH secretory responses to GHRH were blunted in mature cows with and without lactation. Conversely, GHRH-induced GH secretory response was greater than that to ghrelin in calves, and also greater in calves than in mature cows. Plasma ghrelin concentrations were elevated in early lactating cows compared to those in non-lactating cows. Plasma GH concentrations were higher in suckling calves and early lactating cows compared with those in non-lactating cows. These results suggest that GHRH is an effective inducer of GH release in growing calves, and that the relative importance of ghrelin in contributing to the rise in plasma GH increases in early lactating cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号