首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
The effects of flavonoids on methanogenesis and microbial flora in Dorper × thin‐tailed Han crossbred ewes were evaluated in two experiments. To investigate the effects of flavonoids on nutrient digestibility and nitrogen balance, 18 ewes (60.0 ± 1.73 kg body weight (BW)) were allotted to two dietary treatments in experiment one, a control diet and the control diet supplemented with flavonoids (2 g/head/day). In experiment two, the effects of supplementary flavonoids on ruminal fermentation and microbial flora were investigated using quantitative polymerase chain reaction with six ewes (67.2 ± 0.79 kg BW) with ruminal cannula assigned to the identical dietary treatments used in experiment one. Supplementary flavonoids improved the apparent digestibility of nitrogen (N, P < 0.001) and neutral detergent fibre (NDF, P = 0.024) and decreased daily CH4 output (P < 0.001). The ruminal pH (P = 0.638) and ammonia (P = 0.690) were not affected by supplementary flavonoids, whereas the total volatile fatty acid (VFA) content increased (P = 0.037). Supplementary flavonoids decreased ruminal populations of protozoans (P = 0.002) and methanogens (P < 0.001) and increased the populations of Fibrobacter succinogenes (P = 0.016). In conclusion, flavonoids improved the digestibility of organic matter and reduced CH4 output by inhibiting the populations of microbes involved in methanogenesis.  相似文献   

2.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

3.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

4.
One in vitro and one in vivo metabolism experiment were conducted to examine the effects of supplemental Zn on ruminal parameters, digestion, and DMI by heifers fed low-quality prairie hay supplemented with urea. In Exp. 1, prairie hay was incubated in vitro for 24 h with five different concentrations of supplemental Zn (0, 5, 10, 15, and 20 ppm) and two concentrations of supplemental Mn (0 and 100 ppm), both provided as chloride salts. Added Mn increased (P < 0.02) IVDMD, but added Zn linearly decreased (P < 0.03) IVDMD. Added Zn tended to increase the amount of residual urea linearly (P < 0.06) at 120 min and quadratically (P < 0.02) at 180 min of incubation, although added Mn counteracted these effects of added Zn. Six 363-kg heifers in two simultaneous 3 x 3 Latin squares were fed prairie hay and dosed once daily via ruminal cannulas with urea (45 or 90 g/d) and with Zn chloride to provide the equivalent of an additional 30 (the dietary requirement), 250, or 470 ppm of dietary Zn. After a 7-d adaptation period, ruminal contents were sampled 2, 4, 6, 12, 18, 21, and 24 h after the supplement was dosed. Supplemental Zn did not alter prairie hay DMI (mean = 4.9 kg/d) or digestibility, although 470 ppm added Zn tended to decrease (P < 0.06) intake of digestible DM, primarily due to a trend for reduced digestibility with 470 ppm supplemental Zn. Zinc x time interactions were detected for both pH (P = 0.06) and NH3 (P = 0.06). At 2 h after dosing, ruminal pH and ruminal ammonia were linearly decreased (P < 0.05; P < 0.01) by added Zn. At 5 h after feeding, ruminal pH was linearly increased (P < 0.05) by added Zn, suggesting that added Zn delayed ammonia release from urea. The molar proportion of propionate in ruminal fluid was linearly and quadratically increased (P < 0.02; P < 0.01) whereas the acetate:propionate ratio was linearly and quadratically decreased (P = 0.02; P < 0.05) by added Zn. Through retarding ammonia release from urea and increasing the proportion of propionate in ruminal VFA, Zn supplementation at a concentration of 250 ppm may decrease the likelihood of urea toxicity and increase energetic efficiency of ruminal fermentation.  相似文献   

5.
Normal fecal samples were taken from lactating cows fed either a total mixed ration (TMR; n = 30) or pasture‐based diet (20) and from dry cows fed mainly on hay (15). Diarrheic fecal samples (n = 51) were collected from 21 sick dairy cows. Fecal analyses of ammonia, urea, lactate and volatile fatty acid (VFA) levels were used to evaluate colonic fermentation. Most normal feces had reasonably neutral pH, however, alkaline feces were observed in diarrheic cows. Although fecal lactate is higher in cows on grazing pasture, lactate levels were generally lower in the cows in the present study. Fecal VFA levels were higher in lactating cows than in dry cows. Elevated fecal urea was observed in diarrheic cows, however, many fecal samples in normal and diarrheic cows contained no urea. Fecal VFA levels in diarrheic cows were lower than in normal lactating cows, but were approximately equivalent to those in dry cows. Grazing or dry cows showed higher acetate and lower n‐butyrate proportions compared with TMR‐fed or diarrheic cows. Higher proportions of branched chain VFAs were observed in diarrheic cows, and the lowest level was observed in grazing cows. The present results indicate that intracolonic nitrogen equilibrium and proteolytic fermentation are altered by diarrheic status.  相似文献   

6.
Lambs (29 +/- 2.5 kg) were fed three diets at various intakes to determine whether diet composition or level of intake was reflected in changes in diet digestibility or ruminal fluid characteristics. In Exp. 1, a 90% concentrated, pelleted diet or a whole shelled corn diet with a pelleted protein supplement was fed at three levels of intake: ad libitum and 92.5 and 85% of ad libitum (n = 15). Exp. 2 compared the 90% concentrate diet with diets in which the energy density was diluted to 55 or 72.5% concentrate by including alfalfa hay as a possible method of restricting energy intake (n = 6). Lambs were adapted to diets for 13 d; feces were collected for 6 d and ruminal fluid was collected 0, 3, and 6 h after feeding on the day following fecal collection. Restricting intake in Exp. 1 did not affect DM digestibility or digestibility of CP or starch. Digestibility of ADF was increased (P less than .10) by restricting intake. Ruminal fluid pH, ammonia concentration and VFA concentrations were affected little by either restricted intake level. Digestibility of DM was 4% higher (P less than .001) and starch 5% higher (P less than .001) for the whole shelled corn diet than for the pelleted, high-concentrate diet. Ruminal pH of lambs fed the whole shelled corn diet was higher and fluctuated less than the ruminal pH of lambs fed the high-concentrate, pelleted diet. In Exp. 2, diet digestibility was reduced (P less than .01) and ruminal pH was increased (P less than .002) by addition of hay. Restricted feeding of lambs did not seem to increase diet digestibility or alter ruminal conditions.  相似文献   

7.
Four ruminally and duodenally cannulated crossbred beef steers (397+/-55 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of increasing level of field pea supplementation on intake, digestion, microbial efficiency, ruminal fermentation, and in situ disappearance in steers fed moderate-quality (8.0% CP, DM basis) grass hay. Basal diets, offered ad libitum twice daily, consisted of chopped (15.2-cm screen) grass hay. Supplements were 0, 0.81, 1.62, and 2.43 kg (DM basis) per steer daily of rolled field pea (23.4% CP, DM basis) offered in equal proportions twice daily. Steers were adapted to diets on d 1 to 9; on d 10 to 14, DMI were measured. Field pea and grass hay were incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to evaluate the effects of increasing field pea level. Total DMI and OMI increased quadratically (P = 0.09), whereas forage DMI decreased quadratically (P = 0.09) with increasing field pea supplementation. There was a cubic effect (P < 0.001) for ruminal pH. Ruminal (P = 0.02) and apparent total-tract (P = 0.09) NDF disappearance decreased linearly with increasing field pea supplementation. Total ruminal VFA concentrations responded cubically (P = 0.008). Bacterial N flow (P = 0.002) and true ruminal N disappearance (P = 0.003) increased linearly, and apparent total-tract N disappearance increased quadratically (P = 0.09) with increasing field pea supplementation. No treatment effects were observed for ruminal DM fill (P = 0.82), true ruminal OM disappearance (P = 0.38), apparent intestinal OM digestion (P = 0.50), ruminal ADF disappearance (P = 0.17), apparent total-tract ADF disappearance (P = 0.35), or in situ DM disappearance of forage (P = 0.33). Because of effects on forage intake and ruminal pH, field peas seem to act like cereal grain supplements when used as supplements for forage-based diets. Supplementing field peas seems to effectively increase OM and N intakes of moderate-quality grass hay diets.  相似文献   

8.
This study examined how different methods of applying a fibrolytic enzyme or ammonia affect the nutritive value of Bermudagrass hay and the performance of beef cattle. Fifty Angus x Brangus crossbred steers (mean initial BW 244 +/- 26 kg) were individually fed for ad libitum intake of a 5-wk regrowth of a mixture of Florakirk and Tifton 44 Bermudagrass [Cynodon dactylon (L.) Pers] hay for 84 d with a concentrate supplement (77% soybean hull pellets, 23% cottonseed meal (DM basis) fed at 1% of BW daily. The Bermudagrass was conserved as hay without treatment (control), with NH(3) (30 g/kg of DM), or with a fibrolytic enzyme (16.5 g/t, air-dry basis) that was applied immediately after cutting (Ec), at baling (Eb), or at feeding. Chromic oxide was dosed to steers for 10 consecutive days, and fecal Cr concentrations from the last 5 d were used to estimate apparent total tract digestibility. In situ ruminal DM degradability was measured by incubating ground (4-mm) hay samples in duplicate in each of 2 ruminally cannulated cows having ad libitum access to Bermudagrass hay and 500 g/d of soybean meal. Unlike the enzyme treatment, ammoniation increased (P < 0.001) the CP concentration and reduced (P < 0.001) NDF, hemicellulose, and lignin concentrations of hay. Total DMI was greater (P < 0.05) for steers fed hays treated with Ec or NH(3) than for those fed control hays. All additive treatments increased (P < 0.05) DM digestibility, and NH(3), Ec, and Eb treatments also increased (P < 0.01) NDF digestibility. The initial and final BW, ADG, BCS, G:F, and hip height of the steers were not affected (P > 0.05) by treatment. The wash loss fractions in hays treated with Ec and Eb were lower than that in the control hay, but the potentially degradable fraction, total degradable fraction, and the effective degradability were increased (P < 0.01) by NH(3) treatment. Application at cutting was the most promising method of enzyme treatment, and this treatment was almost as effective as ammonia for enhancing forage quality.  相似文献   

9.
A study involving a 2 x 2 x 2 factorial arrangement of treatments was conducted to evaluate effects of hybrid (Pioneer 3335 and 3489), maturity (half milkline and blacklayer), and mechanical processing (field chopper with and without on-board rollers engaged) on intake and digestibility of corn silage. Forty Angus steers (322 +/- 5.2 kg BW) were assigned to the eight silage treatments (five steers per treatment) and individually fed using electronic gates. Diets consisted of 60% corn silage and 40% chopped alfalfa hay (DM basis). Following a 5-d adaptation period, intake was measured for 7 d and subsequently fecal samples were collected for 5 d. Chromic oxide (5 g/d) was fed beginning 7 d before fecal sample collection and digestibility was determined by the ratio of Cr in the feed and feces. Steers were reallocated to treatments and these procedures were repeated, providing 10 observations per treatment. In addition, all silages were ruminally incubated in six mature cows for 0, 8, 16, 24, 48, and 96 h to determine extent and rate of DM, starch, NDF, and ADF disappearance. Processing increased DMI of hybrid 3489 but did not affect DMI of hybrid 3335 (hybrid x processing; P < 0.06). Total tract digestibility of DM, starch, NDF, and ADF decreased (P < 0.01) as plant maturity increased. Maturity tended to decrease starch digestibility more for hybrid 3489 than for hybrid 3335 (hybrid x maturity; P < 0.10). Processing increased (P < 0.01) starch digestibility but decreased (P < 0.01) NDF and ADF digestibility, resulting in no processing effect on DM digestibility. There was a numerical trend for processing to increase starch digestibility more for latethan for early-maturity corn silage (maturity x processing; P = 0.11). Processing increased in situ rates of DM and starch disappearance and maturity decreased in situ disappearance rates of starch and fiber. These data indicate that hybrid, maturity, and processing all affect corn silage digestibility. Mechanical processing of corn silage increased starch digestibility, which may have been associated with the observed decreased fiber digestibility.  相似文献   

10.
The cell wall constituents of feces from three faunated and three defaunated (without ruminal ciliate protozoa) cattle fed on a Sudangrass hay and concentrate mixture (8:5) were analyzed. There was little difference in digestibility of dry matter between the faunated and defaunated cattle. Analysis of the fecal sugar residues revealed that the digestibilities of arabinose and galactose, derived from pectic and hemicellulosic substances located within the compound middle lamella, were higher in the defaunated cattle than the faunated cattle (P < 0.05), whereas the digestibilities of glucose and xylose, derived mainly from cellulose and xylan, were unchanged by the removal of protozoa. The digestibility of lignin was not different between the faunated and defaunated cattle, but those of mannose and p‐coumaric acid were lower in the defaunated than in the faunated animals (P < 0.05). The ratio of primary cell wall to secondary cell wall in fecal plant materials was lower for the defaunated than for the faunated cattle. The results in this study suggested that the defaunation enhanced the microbial degradation of the thin cell walls, but depressed the degradation of developed cell walls.  相似文献   

11.
In situ and in vivo digestibility experiments were conducted to determine the acceptability, digestibility, and safety of a return chewing gum/packaging (G/P) material mixture when fed to steers. In the in situ experiment, both ruminal and intestinal disappearances were measured. Two ruminally and duodenally cannulated steers, which were given free access to alfalfa hay (AH), were used in this study. Duplicate Dacron bags containing the G/P were incubated in the rumen for 0, 3, 6, 12, 24, and 48 h. After ruminal incubation, the 12-, 24-, and 48-h bags were placed in the duodenum and collected in the feces to determine intestinal disappearance. In situ ruminal DM disappearance was greater than 70% for all substrates tested at 0 h, indicating high solubility of the substrates in water, and began to reach a plateau after 12 h of incubation. Intestinal in situ disappearance was not different (P>.25) from zero. In the digestion trial, four ruminally cannulated steers (337+/-21.3 kg BW; mean +/- SD) were used in a 4x4 Latin square design with the following treatments: 0) 50% corn (C), 50% AH; 10) 45% C, 45% AH, 10% G/P; 20) 40% C, 40% AH, 20% G/P; 30) 35% C, 35% AH, 30% G/P. Steers fed G/P-containing diets had greater (P<.01) DMI than the control steers. Increasing the G/P resulted in a linear (P<.05) increase in DMI. Apparent DM digestibility tended to be higher (P<.10) for the G/P-containing diets than for the control. A quadratic effect (P<.05) on digestible DMI was observed, with greater (P<.01) digestible DMI values for G/P-containing diets (4.8 vs. 5.8 kg/d). Digestible organic matter and total nonstructural carbohydrate intakes followed trends similar to those of DM. Apparent aluminum digestibility of G/P-containing diets was not different (P>.13) from zero. The level of G/P in the diet had no effect (P>.2) on total VFA concentration or ruminal pH. There was a linear decrease (P<.01) in the molar percentage of isobutyrate and isovalerate in addition to a linear increase (P<.01) in butyrate and valerate with increasing levels of G/P. There was a quadratic effect (P<.01) on molar proportions of acetate and propionate and on the acetate:propionate ratio. Results of both experiments suggest that G/P may be fed to safely replace up to 30% of corn-alfalfa hay diets for growing steers with advantages in improving DMI and digestibility.  相似文献   

12.
One hundred and forty piglets ((Landrace × Yorkshire) × Duroc, 21 day of age) with an initial weight of 6.50 ± 0.71 kg, were randomly allotted into four treatments to determine the effects of a modified form of zinc oxide (ZnO) on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding and fecal score in weanling pigs. Dietary treatments were: (i) NC, negative control, basal diet containing zinc (Zn) from the premix; (ii) PC, positive control, basal diet containing Zn‐free premix + 3000 ppm ZnO; (iii) H1, basal diet containing Zn‐free premix + 3000 ppm ZnO (phase 1, days 1 to 14)/200 ppm modified ZnO (phase 2, days 15 to 42); (iv) H2, basal diet containing Zn‐free premix + 300 ppm modified ZnO (phase 1)/200 ppm modified ZnO (phase 2). During days 1 to 14, average daily gains (ADG) were higher (P = 0.04) in PC, H1 and H2 groups than that in NC group. Overall, H1 treatment increased the ADG compared with NC (P = 0.05). On day 14, the alkaline phosphatase and plasma Zn concentration were increased (P = 0.01 and 0.04, respectively) in PC, H1 and H2 treatments compared with NC treatment. On days 14 and 42, the fecal Lactobacillus counts in NC group were lowest (P = 0.01, P = 0.04 respectively) among treatments. All supplemented groups showed lower (P = 0.03) fecal score than NC treatment on days 21 and 28. In conclusion, dietary supplementation with modified ZnO increased growth rates and reduced fecal scores in weanling pig. Modified ZnO could be used as a substitute to ZnO as a growth promoter and reduce Zn excretion to the environment because of the lower dosage. [Correction added on 3 February 2015, after first online publication: the initial weight of ‘6.50 ± 1.11 kg’ has been replaced with ‘6.50 ± 0.71 kg’ in the abstract.]  相似文献   

13.
Growth and digestibility experiments were conducted on growing East African type goats offered Chloris gayana hay supplemented with one of three high-protein (119–128 g CP/kg DM) legume hays, Cassia rotundifolia (cassia), Lablab purpureus (lablab) or Macroptilium atropurpureum (siratro), and crushed maize to investigate the feed intake, digestibility, growth and urinary excretion of purine derivatives. Goats in the supplemented groups had higher total dry matter and nitrogen intakes and higher N retention and body mass gains than unsupplemented counterparts. The digestibility of dry matter, organic matter and neutral detergent fibre were increased by protein supplementation. Animals on supplemented diets had higher fractional outflow rates of particulate matter from the rumen. The production of protein by ruminal microbes and the efficiency of microbial N production were increased by supplementation. It was concluded that a mixture of low-quality grass hay (61.9 CP/kg DM) and either cassia, lablab or siratro hay, and maize grain can provide a productive balanced diet for growing goats.  相似文献   

14.
Four wethers were used in a 4 × 4 Latin square to study the feed intake, apparent digestibility, nitrogen balance and ruminal fermentation characteristics when fed total mixed ration (TMR) silages which included wet barley tea grounds (WBTG). The TMR silages were prepared using compound feed including wet brewers' grains (WBG), corn, oat hay, alfalfa hay, dried beet pulp, salt and vitamin-mineral supplement in a ratio of 30.7:15:8:24:10:12:0.15:0.15, respectively, on a dry matter (DM) basis. The WBTG and soybean meal mixture (7:3 on DM basis) were substituted for WBG at ratio of 0% (Control), 5% (LTG), 10% (MTG), and 15% (HTG) on DM of TMR. WBTG addition to the TMR silages increased lactic acid concentration, decreased pH, acetic acid and ammonia-N ( P  < 0.001). Feed intakes and digestibilities for LTG and MTG (except ether extract (EE) digestibility) treatments were not different from the control ( P  > 0.05). However, EE and neutral detergent fiber (NDF) intake, crude protein, EE and NDF digestibility was lower, but the DM and gross energy digestibility was higher for the HTG treatment compared to control ( P  < 0.01). With progressive increases in WBTG concentrations, nitrogen intake, fecal nitrogen and retention nitrogen did not differ, but the urinary nitrogen for MTG and HTG treatments were lower than that of the control ( P  = 0.001). The ruminal total volatile fatty acid concentration and the molar ratios of propionate and butyrate were higher, but the acetate, ratio of acetate to propionate and ammonia-N content were lower for the HTG treatment compared with the control ( P  < 0.05). Therefore, the possible proportion of replacing WBG with WBTG for TMR silage can be 10% or less of the diet DM.  相似文献   

15.
Our objectives were to compare the effects of sources of supplemental N on ruminal fermentation of dried citrus pulp (DCP) and performance of growing steers fed DCP and bahiagrass (Paspalum notatum) hay. In Exp. 1, fermentation of DCP alone was compared with that of isonitrogenous mixtures of DCP and solvent soybean meal (SBM), expeller soybean meal (SoyPLUS; SP), or urea (UR). Ground (1 mm) substrates were incubated in buffered rumen fluid for 24 h, and IVDMD and fermentation gas production kinetics and products were measured. Nitrogen supplementation increased (P < 0.10) ruminally fermentable fractions, IVDMD, pH, and concentrations of NH3 and total VFA, but reduced the rate of gas production (P < 0.10) and the lag phase (P < 0.01). Supplementation with UR vs. the soy-based supplements increased ruminally fermentable fractions (P < 0.05) and concentrations of total VFA (P < 0.10) and NH3 (P < 0.01), but these measures were similar (P > 0.10) between SBM and SP. In Exp. 2, 4 steers (254 kg) were fed bahiagrass hay plus DCP, or hay plus DCP supplemented with CP predominantly from UR, SBM, or SP in a 4 x 4 Latin square design, with four 21-d periods, each with 7 d for DMI and fecal output measurement. Nitrogen-supplemented diets were formulated to be isonitrogenous (11.9% CP), and all diets were formulated to be isocaloric (66% TDN). Intake and digestibility of DM, N, and ADF were improved (P < 0.05) by N supplementation. Compared with UR, the soy-based supplements led to greater (P < 0.05) DM and N intakes and apparent N and ADF digestibilities. Plasma glucose and urea concentrations increased (P < 0.10) with N supplementation and were greater (P < 0.01) for the soy-based supplements than for UR. Intake, digestibility, and plasma metabolite concentrations were similar (P > 0.1) for SBM and SP. In Exp. 3, 24 steers (261 kg) were individually fed bahiagrass hay plus DCP (control), or hay plus DCP supplemented with CP predominantly from UR or SBM. Over 56 d, DMI and ADG were greatest (P < 0.05) in steers fed SBM. Nitrogen supplementation increased (P < 0.05) DMI, ADG, and G:F. However, SBM supplementation produced greater (P < 0.05) DMI and ADG and similar (P > 0.05) G:F compared with UR supplementation. We conclude that supplemental N is important to optimize ruminal function and performance of growing steers fed forage diets supplemented with DCP. Diets with supplemental N mainly from SBM improved diet digestibility and animal performance beyond that achieved by UR.  相似文献   

16.
The objective of this study was to evaluate the relationships between chewing behavior, digestibility, and digesta passage kinetics in steers fed oat hay at restricted and ad libitum intakes. Four Hereford steers, with an initial average BW of 136 kg, were used in an experiment conducted as a balanced 4 × 4 Latin square with 4 treatments (levels of intake) and 4 periods. Animals were fed lopsided oat hay (Avena strigosa Schreb.) at 4 levels of intake (as a percentage of BW): 1.5, 2.0, 2.5, and ad libitum. Digestibility, chewing behavior, and digesta passage kinetic measurements were recorded during the experimental period. Chewing rates during eating and ruminating [(chews?min(-1))/g of DMI?kg(-1) of BW?d(-1)] decreased (P = 0.018 and P = 0.032, respectively) with increased DMI (g?kg(-1) of BW?d(-1)), whereas total chewing and total time spent on each chewing activity increased. Calculated total energy expended by the chewing activity was 4.2, 4.4, 5.2, and 5.3% of ME intake for DMI of 1.5, 2.0, and 2.5% of BW and ad libitum, respectively, indicating that adjustments in animal chewing behavior may be a mechanism of reducing energy expenditure when forages are fed at restricted intake. Hay digestibility decreased (P < 0.001) with increased DMI (r = -0.865). Digesta mean retention time (h) was strongly correlated with DMI (r = -0.868) and OM digestibility (r = 0.844). At reduced intake, hay digestibility was enhanced (P < 0.001) by extending digesta retention time and by increasing chewing efficiency, highlighting the relationship between chewing behavior and the digestive process. Fractional outflow rate of particulate matter from the reticulorumen (k(1)) was positively correlated with total chews, emphasizing that the decrease in particle size caused by chewing facilitates particle flow through the digestive tract. Increased hay intake also increased (P < 0.001) k(1), whereas passage rate of the liquid phase, transit time, and rumen fill were not affected (P > 0.05). The latter was correlated with rumen volume (r = 0.803). In conclusion, the results of this study indicate that animals fed at restricted intake increased chewing rate when eating and ruminating, which, along with a longer digesta retention time, contributed to enhance feed digestibility.  相似文献   

17.
Reduced lignin alfalfa (Medicago sativa L.) has the potential to provide a higher-quality forage source for livestock by improving forage digestibility. This study was conducted to evaluate apparent digestibility when feeding reduced lignin and nonreduced lignin alfalfa hay to adult horses, and to examine mean fecal particle size (MFPS) and mean retention time (MRT) between alfalfa forage types. In 2017, reduced lignin (“54HVX41”) and nonreduced lignin (“WL355.RR”) alfalfa hay was harvested in Minnesota at the late-bud stage. Alfalfa hays were similar in crude protein (CP; 199 g/kg), neutral detergent fiber (NDF; 433 g/kg), and digestible energy (2.4 Mcal/kg). Acid detergent lignin concentrations were lower for reduced lignin alfalfa hay (74 g/kg) compared to nonreduced lignin alfalfa hay (81 g/kg). Dietary treatments were fed to six adult, stock-type horses in a crossover study. Experimental periods consisted of a 9-d dietary adaptation phase followed by a 5-d total fecal collection phase, during which horses were housed in individual boxstalls and manure was removed on a continuous 24-h basis. At 12-h intervals, feces were thoroughly mixed, subsampled in duplicate, and used for apparent digestibility and MFPS analysis. On day 2 of the fecal collection phase, horses were fed two indigestible markers, cobalt (Co) and ytterbium (Yb), which were fed as Co-ethylenediaminetetraacetic acid and Yb-labeled NDF residue, respectively. Additional fecal samples were taken at 2-h intervals following marker dosing until 96-h post-dosing to evaluate digesta MRT. Data were analyzed using the MIXED procedure of SAS, with statistical significance set at P ≤0.05. Dietary treatment (i.e., alfalfa hay type) was included as a fixed effect, while experimental period and horse were considered random effects. Dietary treatments were similar in dry matter intake (1.6% bodyweight) and time to consumption (7.6 h). Apparent dry matter digestibility (DMD) was greater for reduced lignin alfalfa (64.4%) compared to nonreduced lignin alfalfa (61.7%). Apparent CP and NDF digestibility did not differ between dietary treatments, averaging 78% and 45%, respectively. Dietary treatments were similar in MFPS (0.89 mm) and MRT for both liquid (23.7 h) and solid (27.4 h) phase material. These results indicate an improvement in DMD for reduced lignin alfalfa hay when fed to adult horses, with no change in forage consumption, fecal particle size, or digesta retention time.  相似文献   

18.
Two metabolism (4 x 4 Latin square design) experiments were conducted to evaluate the effects of corn condensed distillers solubles (CCDS) supplementation on intake, ruminal fermentation, site of digestion, and the in situ disappearance rate of forage in beef steers fed low-quality switchgrass hay (Panicum virgatum L.). Experimental periods for both trials consisted of a 9-d diet adaptation and 5 d of collection. In Exp. 1, 4 ruminally and duodenally cannulated steers (561 +/- 53 kg of initial BW) were fed low-quality switchgrass hay (5.1% CP, 40.3% ADF, 7.5% ash; DM basis) and supplemented with CCDS (15.4% CP, 4.2% fat; DM basis). Treatments included 1) no CCDS; 2) 5% CCDS; 3) 10% CCDS; and 4) 15% CCDS (DM basis), which was offered separately from the hay. In Exp. 2, 4 ruminally and duodenally cannulated steers (266.7 +/- 9.5 kg of initial BW) were assigned to treatments similar to Exp. 1, except forage (Panicum virgatum L.; 3.3% CP, 42.5% ADF, 5.9% ash; DM basis) and CCDS (21.6% CP, 17.4% fat; DM basis) were fed as a mixed ration, using a forage mixer to blend the CCDS with the hay. In Exp. 1, ruminal, postruminal, and total tract OM digestibilities were not affected (P = 0.21 to 0.59) by treatment. Crude protein intake and total tract CP digestibility increased linearly with increasing CCDS (P = 0.001 and 0.009, respectively). Microbial CP synthesis tended (P = 0.11) to increase linearly with increasing CCDS, whereas microbial efficiency was not different (P = 0.38). Supplementation of CCDS to low-quality hay-based diets tended to increase total DM and OM intakes (P = 0.11 and 0.13, respectively) without affecting hay DMI (P = 0.70). In Exp. 2, ruminal OM digestion increased linearly (P = 0.003) with increasing CCDS, whereas postruminal and total tract OM digestibilities were not affected (P > or = 0.37) by treatment. Crude protein intake, total tract CP digestibility, and microbial CP synthesis increased (P < or = 0.06) with increasing level of CCDS supplementation, whereas microbial efficiency did not change (P = 0.43). Ruminal digestion of ADF and NDF increased (P = 0.02 and 0.008, respectively) with CCDS supplementation. Based on this data, CCDS used in Exp. 2 was 86.7% rumen degradable protein. The results indicate that CCDS supplementation improves nutrient availability and use of low-quality forages.  相似文献   

19.
This experiment evaluated the effect of 2 levels of diet concentrate (20 and 40% of DM) and 2 levels of ruminally undegraded protein (RUP: 25 and 40% of CP) on nutrient intake, total and partial apparent nutrient digestibility, microbial protein synthesis, and ruminal and physiological variables. Eight Nellore heifers (233 +/- 14 kg of BW) fitted with ruminal, abomasal, and ileal cannulas were used. The animals were held in individual sheltered pens of approximately 15 m(2) and fed twice daily at 0800 and 1600 h for ad libitum intake. Heifers were allocated in two 4 x 4 Latin square designs, containing 8 heifers, 4 experimental periods, and 4 treatments in a 2 x 2 factorial arrangement. All statistical analyses were performed using PROC MIXED of SAS. Titanium dioxide (TiO(2)) and chromic oxide (Cr(2)O(3)) were used to estimate digesta fluxes and fecal excretion. Purine derivative (PD) excretion and abomasal purine bases were used to estimate the microbial N (MN) synthesis. No significant interaction (P > 0.10) between dietary levels of RUP and concentrate was observed. There was no effect of treatment (P = 0.24) on DMI. Both markers led to the same estimates of fecal, abomasal, and ileal DM fluxes, and digestibilities of DM and individual nutrients. Ruminal pH was affected by sampling time (P < 0.001), but no interaction between treatment and sampling time was observed (P = 0.71). There was an interaction between treatment and sampling time (P < 0.001) for ruminal NH(3)-N concentration. A linear decrease (P = 0.04) over sampling time was observed for the higher level of RUP, whereas a quadratic effect (P < 0.001) of sampling time was observed for the lower level of RUP. The higher level of dietary concentrate led to greater MN yield regardless of the level of RUP. The MN yield and the efficiency of microbial yield estimated from urinary PD excretion produced greater (P < 0.01) values than those estimated by either TiO(2) or Cr(2)O(3), which did not differ (P = 0.63) from each other. However, all methods yielded values that were within the range reported in the literature. In conclusion, no interactions between dietary levels of RUP and concentrate were observed for ruminal and digestive parameters. Neither RUP nor concentrate level affected DMI. Titanium dioxide showed to be similar to Cr(2)O(3) as an external marker to measure digestibility and nutrient fluxes in cattle.  相似文献   

20.
The objective of this study was to evaluate the effects of physically effective NDF (peNDF) in goat diets containing alfalfa hay as the sole forage source on feed intake, chewing activity, ruminal fermentation, and nutrient digestibility. Four rumen-fistulated goats were fed different proportions of chopped and ground alfalfa hay in a 4 × 4 Latin square design. Diets were chemically similar but varied in peNDF content: low, moderate low, moderate high, and high. Dietary peNDF content was determined using the Penn State Particle Separator with 2 sieves (8 and 19 mm) or 3 sieves (1.18, 8, and 19 mm). The dietary peNDF content ranged from 1.9 to 11.7% using the 2 sieves and from 15.2 to 20.0% using the 3 sieves. Increasing forage particle length increased intake of peNDF, but decreased DMI linearly (P = 0.05). Ruminating and total chewing time (min/d) were increased linearly (P = 0.001 and 0.007, respectively) with increased dietary peNDF, resulting in a linear reduction (P < 0.001) in the duration of time that ruminal pH was less than 5.8 (10.9, 9.0, 1.2, and 0.3 h/d, respectively). Increasing dietary peNDF tended to increase the molar proportion of propionate linearly (P = 0.08) and decrease the molar proportion of butyrate (P = 0.09), but did not affect total VFA concentration. Increasing dietary peNDF linearly decreased the apparent digestibility of OM, NDF, and ADF in the total tract (P = 0.009, 0.003, and 0.008, respectively). This study demonstrated that increasing the dietary peNDF contained in alfalfa hay forage stimulated chewing activity and improved ruminal pH status, but reduced nutrient intake and efficiency of feed use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号